Beam Trajectory Simulation Considering Each Harmonic Components in HTS Quadruple Triplet

Zhan Zhang1, Shaqing Wei2, Sangjin Lee3,
1China Three Gorges University, Hubei, China, 2Uidak University, Gyeongju, Korea

Introduction

- Quadrupole magnets are used for beam focusing in accelerators. However, it is very difficult to design the quadrupole magnets by beam focusing analysis. Generally, the harmonic components of field quadrupole magnets are of concern as the source of beam defocusing and the quadrupole magnets are designed by reducing the harmonic components.
- In our previous study, two kinds of HTS quadrupole 3,400 mm length point-to-point triplets - core iron triplet and air core triplet were designed [1] as shown in Fig. 1. In this study, the beam analyses of two triplets and an ideal triplet were compared, the magnetic fields of three triplets were shown as in Fig. 2. And the effects of the harmonic components on beam defocusing were checked.

![Image 1](Beam spot range with respect harmonic components for ideal triplet: (a) \(b_y = 0.5\% \), (b) \(b_y = 0.5\% \), (c) \(b_{y,3} = 0.5\% \), (d) \(b_{y,6} = 0.5\% \), (e) \(b_{y,9} = 0.5\% \), and (f) \(b_{y,15} = 0.5\% \).)

Fig. 2. Magnetic field distribution of ideal triplet, core iron triplet, and air core triplet at reference radius 120 mm in z direction.

Simulation

- Fig. 3 shows the flow chart of beam analysis in triplet. The process is shown as following [2].

![Image 2](Beam spot range with respect harmonic components for iron core triplet: (a) \(b_y = 0.5\% \), (b) \(b_y = 0.5\% \), (c) \(b_{y,3} = 0.5\% \), (d) \(b_{y,6} = 0.5\% \), (e) \(b_{y,9} = 0.5\% \), and (f) \(b_{y,15} = 0.5\% \).

Fig. 4. Beam spot range without harmonic components: (a) ideal triplet, (b) iron yoke triplet, and (c) air yoke triplet.

Analysis

- Beam analysis without harmonic components shows in Fig. 4. Xmax and Ymax were defined as the maximum x and y coordinates of beam spots to show the beam spot range. There is no harmonic component in three triplets' magnetic field, but the results are different. There could be some other reasons which also can affect beam harmonic defocusing beside the harmonic components of the magnetic field of HTS quadrupole magnets.

![Image 3](Beam Trajectory Simulation Considering Each Harmonic Components in HTS Quadruple Triplet)

Fig. 5. Beam spot range with respect harmonic components for iron core triplet: (a) \(b_y = 0.5\% \), (b) \(b_y = 0.5\% \), (c) \(b_{y,3} = 0.5\% \), (d) \(b_{y,6} = 0.5\% \), (e) \(b_{y,9} = 0.5\% \), and (f) \(b_{y,15} = 0.5\% \).

![Image 4](Beam Trajectory Simulation Considering Each Harmonic Components in HTS Quadruple Triplet)

Fig. 6. Beam spot range with respect harmonic components for air core triplet: (a) \(b_y = 0.5\% \), (b) \(b_y = 0.5\% \), (c) \(b_{y,3} = 0.5\% \), (d) \(b_{y,6} = 0.5\% \), (e) \(b_{y,9} = 0.5\% \), and (f) \(b_{y,15} = 0.5\% \).

Conclusion

- According to the analysis, we can get the conclusions as following:
 - There could be some other reasons which also can affect beam harmonic defocusing beside the harmonic components of the magnetic field of HTS quadrupole magnets. The reasons would be discussed in the further work.
 - The effects of the plus and minus harmonic components can be different. The minus harmonic components would affect the beam focusing positively.
 - The effects of harmonics components are almost same as each other.

- This study suggested that the minus harmonic components could be reserved and all harmonic components should be considered and reduced, when an HTS quadrupole magnet was designed. The field quality of HTS quadruple magnets should be expressed by the all of the plus harmonic components.

Reference