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High definition 3D finite element analysis of low temperature Rutherford cable
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The cable mesh is built over a transposition pitch
within a simplified cabling process model
(pre-processor) [1]. Periodic boundary conditions
allow to build longer cable meshes, that can be
used for the 3D Finite Element mechanical
calculation of the cable in service @
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Both models (cabling and service) rely on a
bi-metallic description of the strands. Several

\_

Representative Volume Element for each type of strand [2]
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rand PIT strand ) Modeling and meshing of the

|dentification and characterization of the
of PIT and RRP strands (

c. Implementation of the
Representative Volume Element elastoplastic mechanical properties
, Nb;Sn and ‘dummy tin’)

-
e HomOgeneization of the elastoplastic mechanical properties of the filament bundle region composed of copper, tin and Nb,;Sn filaments (based on room temperature measurements [2])
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d. Numerical
traction tests
(2 methods)

e. Numerical mechanical

RRP strands (transverse)

f. Identification of the
homogenized properties of
the bundle region

behaviour of PIT and

J

geometrical options for the modeling of the

strand annular topology are used. The material
behavior law of each component is obtained
experimentally at the microstructure level [2].
Material properties are homogenized in 3D Q

Up to now, elastoplastic values at room temperature
are used, without cycling.

Multiscale post-processing allows the inclusion of a

B
@ Pre-processor: simplified cabling model
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b. 3D cabling model based on explicit
formulation [1], valiated by automated
comparison to tomographic data [3]
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it
a. Generation of the simpified mesh of one
transposition pitch of 18-strand cable, before
cabling, at the strand level (bi-metallic model)

high definition three-dimensional sub-modelling of the
strand geometry, up to the superconducting filaments
scale. Options for the description of the strand
topology are compared on the basis of these models.

The strain/stress map on the superconducting filaments
can be used to compute the critical current
degradation using existing scaling laws [4],[5].

CONCLUSIONS

This multiscale approach has allowed us to bridge 3D
mechanical models at the cable level to the estimation of
strain/stress map on the superconducting filaments, whic

drives the cable current transport capability. In the future,
after obtaining cryogenic material properties, the full loop

will be cross-checked with experimental critical current
measurements on a cable under transverse pressure [6].
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@ 3D FEM model of cable in service | Transverse compression test on 18-strand Rutherford cable

c. Construction of the full twist pitch
(or any length) of a cable

(based on periodic bounadary conditions)
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d. Preparation of the mechanical
model (cable configuration and

4 pp* $

______

1 transp. pitch

e. 3D numerical simulation of
transverse pressure

length, environment...) over a cable

References (details can be found on the poster board):
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G Mutiscale pcst-treatment up to the superconducting filaments scale

c. Export of the 3D strain/stress maps
on the detailed mesh of any strand

b. Second projection of the strain field
extracted from the mechanical model B2
over this deformed detailed mesh
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a. Projection of the strain field
extracted from the cabling model B1
over the detailed mesh of any strand

(no additional calculation)
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d. Subdivision of the detailed mesh
into several slices

Only Nb5Sn filaments
are considered
for post-treatment

Principal strain distribution within PIT strand
(one component shown)
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Plots A, B, C refer to the geometrical cofigurations described in Blb.
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Critical current degradation can be computed for
each element using existing scaling laws [4],[5]
and summed up on the whole domain
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Z [> ]2 = % [(tr(en))2 — (tr(ED))Z] [:>

Cross-check with experimental data is planned [6]
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This work has been conducted within the framework of the French ANR-funded project CoCaSCOPE (grant ANRGUI-AAP-05) | Cable samples have been provided by CERN
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