

Lessons learnt by manufacturing > 100 km of varied type of Cable-in-Conduit-Conductors

who we are

Superconductivity

ENEA:	<i>know-how on</i> superconducting materials, cables, magnets
TRATOS:	cabling and winding technologies
CRIOTEC:	cryogenics, welding techniques, engineering

what we've done so far

Wide range of CICCs:

- Nb₃Sn, NbTi, MgB₂, ReBCO;
- Very large (DEMO TF) to relatively small (NAFASSY);
- Final rectangular or round shape;
- Al-coextruded structures;
- Round or Circle-in-Square tubes;
- Long and Short twist pitch cables;
- Central or distributed cooling channel;
- Short samples or 800 m Unit Lengths.

FUSION FOR ENERG	Europe	2010	Supply of ITER TF conductors, ITER PF1/6 conductors and JT-60SA TF conductors	~ 72 km
국가액용합연구소 Hatered Flaton Research Institute	South Korea Rep.	2011-2014	All the Korean portion of the ITER TF conductor supply (jack. only)	~ 20 km
iter	International Body (France)	2012-2013	8 x ITER CS samples for the "crash-program"	
	Russian Federation	2013-2015	Manufacturing of 3 ITER PF samples for test in the SULTAN facility	
UNIVERSITÀ DECLI STUDI DI SALERNO	Italy	2013	Manufacturing of Nb ₃ Sn CIC conductors for the NAFASSY large bore magnet	~ 2.5 km
HFML Science in High Magnetic Fields	The Netherlands	2014	Manufacturing of Nb ₃ Sn CIC conductors for the 45T Hybrid Magnet project	~ 5 km
Siswire	South Korea Rep.	2014-2015	Manufacturing of 1 x ITER TF conductor (jacketing only)	~ 0.8 km
국가액용할연구소 National Fusion Research Institute	South Korea Rep.	2015	6 ITER TF conductors supply	~ 4.5 km
ENEL	Italy	2016	Manufacturing of 6 x JT-60SA TF additional lengths	~ 1.5 km
	ion Italy	2016	Manufacturing of Nb ₃ SN Samples for EU-DEMO TF Coils	
CERN	International Body (Switzerland)	2016-2017	Manufacturing of MgB ₂ sub-cables for the <mark>SC links</mark> (LHC/Hi- Lumi project)	
iter	International Body (France)	2017	ITER In-Vessel coils Conductors	
			TOTAL	> 105 km

Short samples vs. long length production

CABLING: short samples may not be fully representative of manufacturing process on large-size industrial machines, owing to: Cu-to-s.c. transition regions, stresses distribution and relaxation, etc.

JACKETING: the flow of material within the conductor cross-section during the lamination process is influenced by the cable-jacket engagement.

Dummy and qualification lengths are never enough

Qualification of a conductor design and a manufacturing process can only be conclusively assessed by the manufacture of a complete unit length using the actual material.

The successful accomplishment of QA/QC programs (as e.g. those demanded by ITER Organization) ensure conductor production uniformity and full traceability of intermediate assemblies across numerous suppliers.

www.icasweb.com

How to keep industry involved?

transfer of know-how from applied research to industry, leading to the set-up of production lines for CICCs in kilometric scale for large experiments as ITER, JT60-SA. **Challenge:** keep up the cabling and jacketing lines after that ITER procurement is over. Build-up and expertise, as well as confidence from industry to research have to be maintained to grant continuity for future purposes. Is it a real business?

Connect industry & applied research

Industrial expertise is highly effective during conceptual phase to find the best and simplest manufacturing solution for innovative CICC design, thus avoiding useless and time consuming prototyping iterations.

S. Turtù IEEE Senior Member, L. Affinito, A. Anemona, G. Celentano, S. Chiarelli, A. della Corte IEEE Senior Member, A. Di Zenobio, A. Formichetti, R. Freda, F. Maierna, L. Merli, L. Muzzi IEEE Senior Member,R. Righetti, F. Quagliata Tamisari, A. Bragagni, M. Seri, G. Roveta, M. Roveta

Cabling is a standard process, but handling of superconductor is not

In principle, cabling SC is a standard process for any cabling company. BUT handling of SC wire requires adequate skills and attitude (mechanical stress limits; full traceability; relatively short unit lengths; management of leftovers; no joints and no breakages allowed; etc.).

In addition, the risk in cabling SC is high in term of money and compared with transformation cost, so that a very specific control system and manufacturing process must be put in place.

Cable Insertion can partially affect last stage TP When inserting long (400 m or higher) cables into jacket assemblies, large pulling forces in combination with large friction factors may easily cause rotation of the cables.

jacket

cable

A twist pitch elongation at cable head is thus often found and may exceed nominal tolerances. This is an aspect which has been subject of several publications in the last years, especially concerning CICC procurement for ITER.

Impact of cabling process and cable layout on SC strands Possible defects may be caused to strands during cabling, in particular when very short Twist Pitch values are chosen. Measurements showed that only very large defects cause performance degradation. (R. Freda et al., "Performance Test of Superconducting Wires Subject to Heavy Deformations", http://hdl.handle.net/10840/6538)

Manufacturing flexibility plays a key role. - address technical issues on a case-by-case basis. - manage unpredictable obstacles arising in the conversion of conductor design to prototype and then to actual production unit length

THE LESSON – FLEXIBILITY

