

25th International Conference on Magnet Technology

RAI - Amsterdam August 27 - September 1, 2017

Center for Advanced Electrical Machines & Drives Huazhong University of Science and Technology

1

Design and Analysis of a Novel Large Mover Slot Opening Flux-Reversal

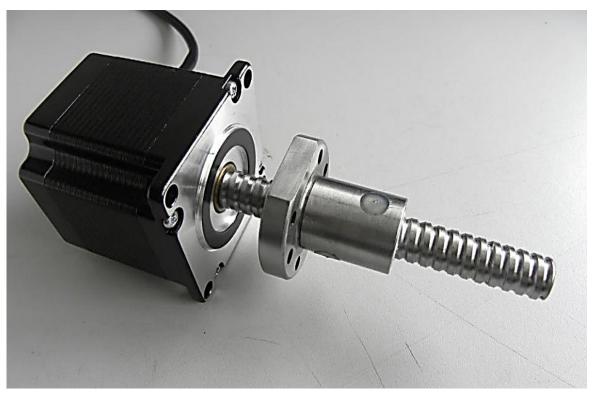
Linear Permanent Magnet Machine with HTS Bulks

Chaojie Shi¹, Ronghai Qu¹, Baoquan Kou², Dawei Li¹, and Yuting Gao¹

¹State Key Laboratory of Advanced Electromagnetic Engineering, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. ²Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China.

Paper ID: #506

Presented at Mon-Af-Or8


- Background
- > Configurations
- > Operation Principle
- > Performance Comparison
- > Conclusion

- > Configurations
- > **Operation Principle**
- > Performance Comparison
- > Conclusion

Conventional Rotary-to-linear Motion System

1. 1.

...

Rotary Machine + Ball screw

Low efficiency Low stability Slow dynamic response

Direct Drive

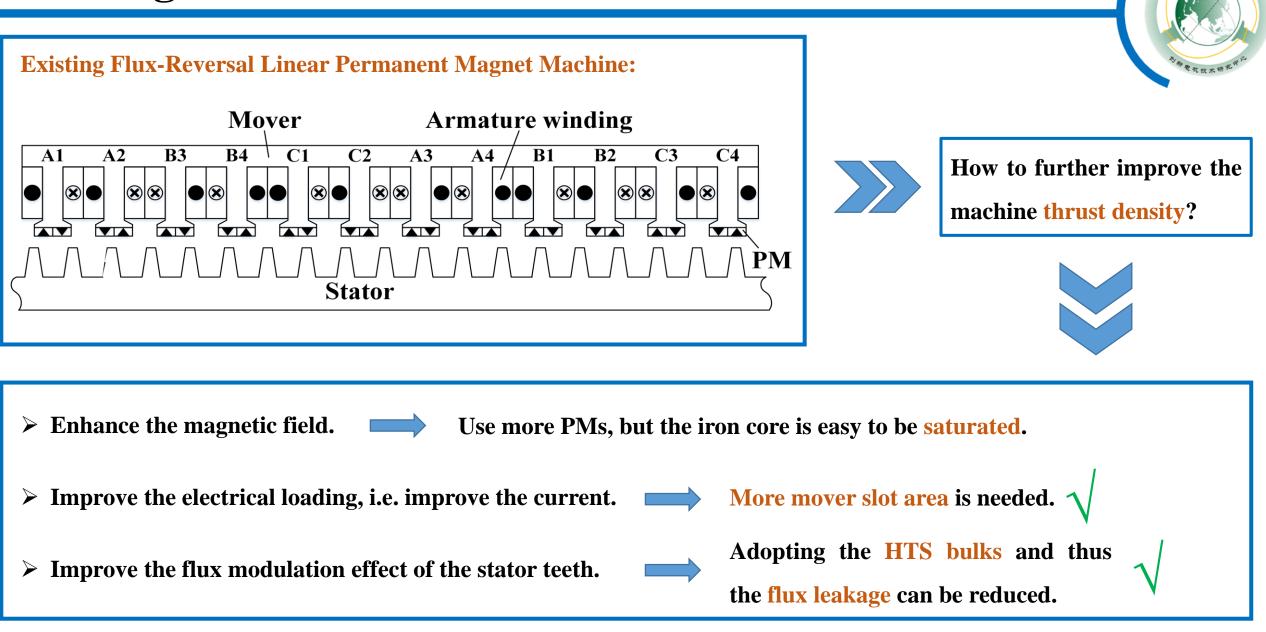
Linear Machine

High efficiency High stability Fast dynamic response

Advantages of the linear machine compared to the conventional rotary-to-linear motion system:

- ➢ High efficiency
- Simple structure
- > Easy maintenance
- Good heat-dissipating condition
- > Fast dynamic response
- Low noise level
- ≻ ...

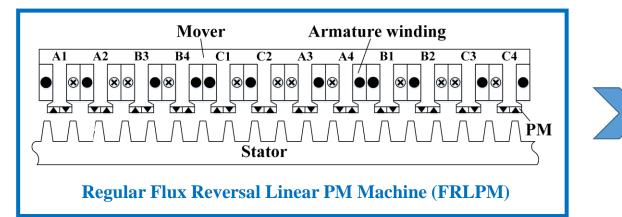
magnet machine:

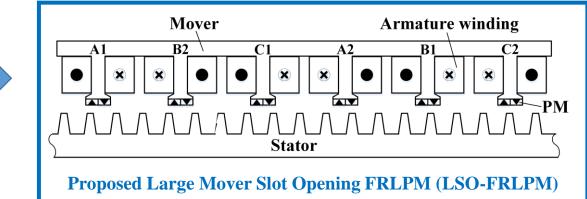

- High efficiency
- Simple structure
- > Robust rotor

▶ ...

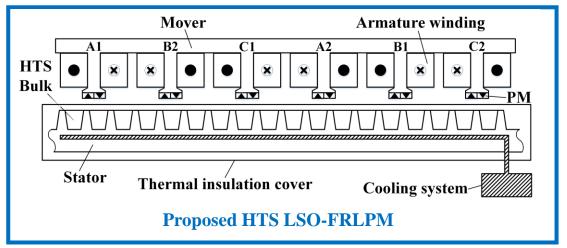
- High torque density
- Produce large torque at low speed

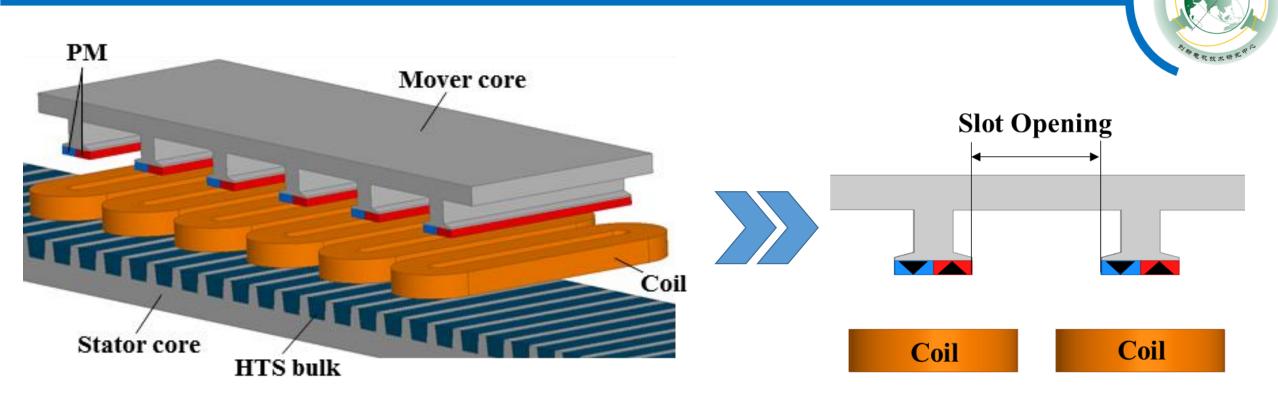
Flux-Reversal Linear Permanent Magnet Machine



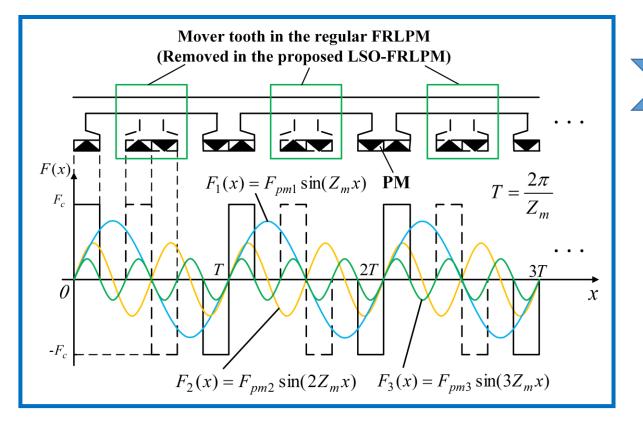

> Configurations

- > Operation Principle
- > Performance Comparison
- > Conclusion


> Configurations

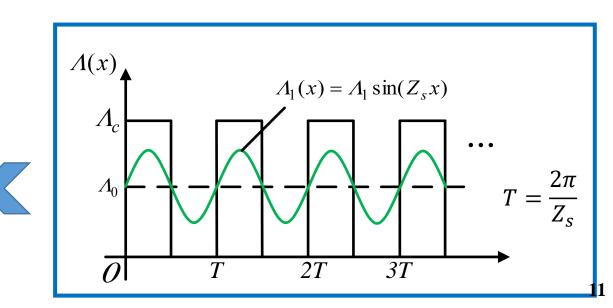

- > By removing half of the teeth of the regular FRLPM, the proposed LSO-FRLPM can be obtained.
- > The HTS bulks are inserted in the stator slots of the LSO-FRLPM, which is the proposed HTS LSO-FRLPM.
- The regular FRLPM and LSO-FRLPM share the same stator configuration.
- The HTS LSO-FRLPM has larger air-gap length due to the adoption of the thermal insulation cover.

> Configurations


3-D Sketch of the Proposed LSO-FRLPM (Effective Part)

Partial View of the Mover Slot

- > The concentrated windings are adopted in the HTS LSO-FRLPM.
- > The PMs mounted on the adjacent mover tooth have the same arrangement, while the PM arrangement of the adjacent mover teeth is opposite in the regular FRLPM.
- > The mover slot opening is much larger than the regular FRLPM due to the removing of half of the mover teeth.


- > Background
- > Configurations
- > Operation Principle
- > Performance Comparison
- > Conclusion

- The air-gap permeance function can be expressed as:
 - $\Lambda(x) \approx \Lambda_0 + \Lambda_1 \sin(Z_s x)$

$$F_{pm}(x,t) = \sum_{i=1,2,3...}^{\infty} F_{pmi} \sin[iZ_m(x-vt)]$$

The Fourier Series of the Magnetic Motive Force (MMF) contains both odd and even harmonics, while only odd harmonics exist in the MMF of the regular FRLPM.

$$F_{pm}(x,t) = \sum_{i=1,2,3...}^{\infty} F_{pmi} \sin[iZ_m(x-vt)]$$

$$A(x) \approx A_0 + A_1 \sin(Z_s x)$$

$$Pole-pair$$
number of the
air-gap
magnetic field.
$$= \sum_{i=1,2,3...}^{\infty} A_0 F_{pmi} \sin[iZ_m(x-vt)]$$

$$+ \sum_{i=1,2,3...}^{\infty} \frac{1}{2} A_1 F_{pmi} \begin{cases} \cos[(iZ_m-Z_s)x+iZ_mvt]] \\ -\cos[(iZ_m+Z_s)x-iZ_mvt] \end{cases}$$

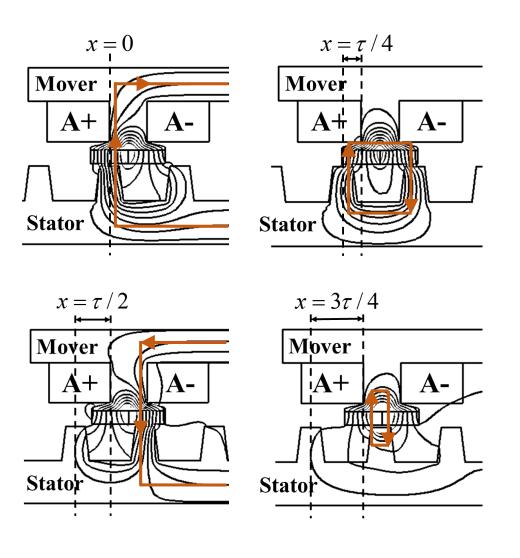
$$A_{ph}(t) = L_{ef} \int_0^{\infty} A_{ph}(t) = L_{ef} \int_0^{\infty} A_{ph}(t)$$

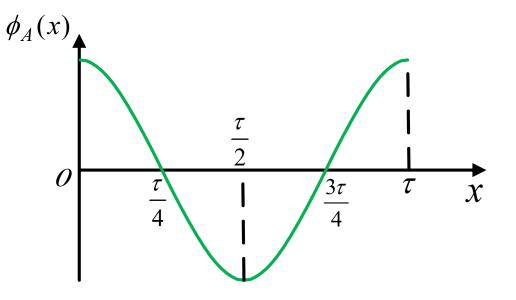
$$\lambda_{ph}(t) = L_{ef} \int_{0}^{2\pi} B_{g}(x,t) \bullet N(x,t) dx$$

$$N(x,t) = \sum_{j=1,3,5...}^{\infty} \frac{2N_{w}}{j\pi P_{a}} K_{wj} \cos[jP_{a}(x-vt)]$$

$$E_{ph}(t) = -\frac{d\lambda_{ph}(t)}{dt} \bullet \text{Pole-pair number of the back-EMF.}$$

$$= \sum_{\substack{i=1,2,3...\\n=(iZ_{m}+Z_{s})/P_{a}\in N_{>0}}^{\infty} \left[\sqrt{\frac{Z_{s}}{P_{a}}} L_{ef} N_{w} F_{pmi} \Lambda_{1} \right] \left[\bullet \left(\frac{K_{wm}}{m} - \frac{K_{wn}}{n}\right) \cos(Z_{s}vt) \right]$$


Important massages from the equations:



- > All MMF harmonics (F_1 , F_2 , F_3 ...) contribute to the back-EMF and the frequency of the back-EMF is determined by the stator slots number Z_s .
- > The armature windings pole-pair P_a is chose to be as small as possible in order to have a larger back-EMF, and thus the relationship between the mover teeth number Z_m , the stator teeth number Z_s , and the armature winding pole-pair P_a can be obtained as:

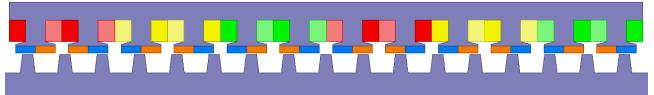
$$P_{a} = \min \begin{cases} P_{a} = |iZ_{m} \pm Z_{s}|; \frac{Z_{m}}{GCD(Z_{m}, P_{a})} = 3k \\ i = 1, 2, 3...; \quad k = 1, 2, 3... \end{cases}$$

> The flux distribution variation with different mover position of the proposed LSO-FRLPM:

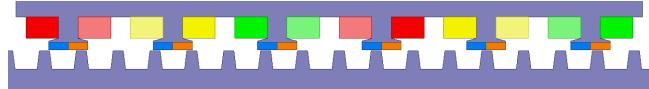
> The flux linkage of phase A reach its positive and negative

peak value at the mover position x = 0 and $x = \tau/2$.

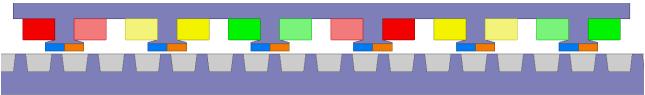
- > In the mover position $x = \tau/4$ and $x = 3\tau/4$, the flux linkage of phase A equals zero.
- > The main flux linkage of phase A is depicted in the figures.



- > Background
- > Configurations
- > **Operation Principle**
- Performance Comparison
- > Conclusion


> Performance Comparison

Three FEM models about the regular FRLPM, LSO-FRLPM and HTS LSO-FRLPM are built to compared with each other:

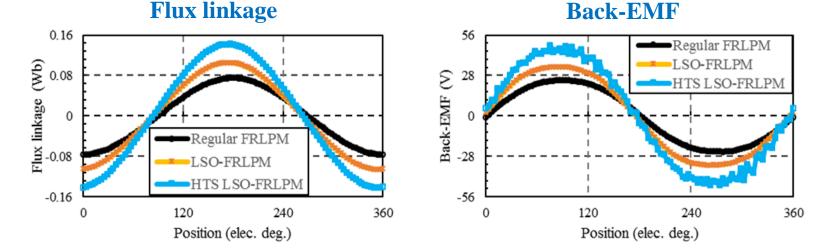

Regular FRLPM

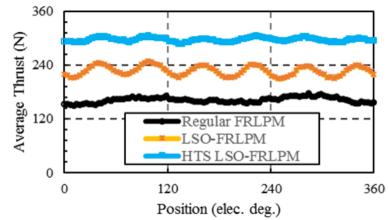
LSO-FRLPM



HTS LSO-FRLPM

Geometry Parameters of the Models


Machine	Regular FRLPM	LSO- FRLPM	HTS LSO- FRLPM
Mover width, L (mm)		312	
Mover height, h _{mover} (mm)		25	
Mover tooth number, Z _m	12	6	6
Mover slot opening ratio	0.25	0.625 ↑	0.625 ↑
Mover slot area, A _{slot} (mm ²)	2311	3136 ↑	3136 ↑
Cost of PMs (kg)	0.63	0.32↓	0.32↓
Air-gap length, g (mm)	0.6	0.6	1.5 ↑
Thickness of PMs, h _m (mm)		3.6	
Stack length, L _{ef} (mm)		100	
Stator tooth number, Z_s		17	


> Performance Comparison

> The three FRLPMs are compared with each other in terms of flux linkage, back-EMF and average thrust:

Average Thrust

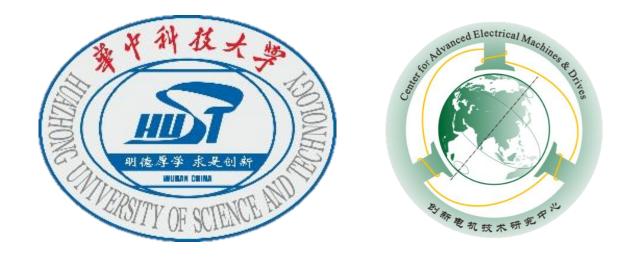
Performance Comparison

	· · · · · · · · · · · · · · · · · · ·				
Machine	Regular FRLPM	LS	O-FRLPM	HTS LSO- FRLPM	
Rated phase current, I (RMS, A)			3		
Current density, J (A/mm ²)			6.4		
Turns of coils per phase	296	_	401	401	
Winding factor	0.25		0.5 [↑]	0.5↑	
Flux-linkage per phase, Ψ (RMS, Wb)	0.053		0.074 ↑	0.099 ↑	
Back-EMF (RMS, V)	18.2		25.3 ↑	34.1 ↑	
Average thrust (N)	162.4		227.3 ↑	296.7 ↑	
Thrust ripple (%)	8.1		8.7 ↑	3.0↓	

 Flux-linkage, back-EMF and average thrust of both LSO-FRLPM and HTS LSO-FRLPM are significantly improved compared to the regular FRLPM.
 HTS LSO-FRLPM shows the best

performance.

- > Background
- > Configurations
- > Operation Principle
- > Performance Comparison


> Conclusion

> Conclusion

- > A novel large mover slot opening FRLPM (LSO-FRLPM) class is proposed in this paper.
- ➤ The air-gap flux density, back-EMF of the LSO-FRLPM are analytical derived in the paper and thus the operation principle of the proposed machine can be explained clearly.
- The proposed LSO-FRLPM with or without HTS bulks are compared with the regular FRLPM using the finite element method (FEM). The superiority of the LSO-FRLPM is verified by the FEM results.
- The LSO-FRLPM can produce a 40% higher average thrust than that of the regular FRLPM when the PM consumption of the LSO-FRLPM is only half of that of the regular FRLPM.
- The average thrust of the HTS LSO-FRLPM is 83% and 30% higher than that of the regular FRLPM and the LSO-FRLPM, and the thrust ripple of the HTS LSO-FRLPM is reduced by 63% and 66% compared to the regular FRLPM and the LSO-FRLPM.

Thanks for listening!

E-mail: chaojieshi@hust.edu.cn