Tue-Af-Po2.05-02

Construction and Test Results of Coils 2 and 3 of 800 MHZ REBCO Insert for MIT 1.3 GHZ LTS/HTS NMR Magnet

- **Dongkeun Park**¹, Juan Bascuñán¹, Philip C. Michael¹, Jiho Lee¹, Seungyong Hahn² and Yukikazu Iwasa¹ ¹ MIT Francis Bitter Magnet Laboratory/Plasma Science and Fusion Center, Cambridge, MA, USA ² Dept. of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea

Background – MIT 1.3G

2012 – 2014 Post-theft Phase 3A by NIBIB-NIGMS
2015 – 2018 Phase 3B1 by NIGMS: H800 completed
2018 – 2020 Phase 3B2

L500/H800

H800 (Operated at 4.2 K in LHe)

- 3-nested-coil formation
- No-insulation (NI) winding
- REBCO tape, 6-mm wide, 75-µm thick, made by SuperPower Inc.

Coil 1: 26 DP; 8.67 T (369 MHz) Coil 2: 32 DP; 5.64 T (240 MHz) Coil 3: 38 double-pancakes; 4.44 T (189 MHz)

Tue-Af-Po2.05-02 Dongkeun Park

Background – MIT 1.3G

Noteworthy Features

- H800 field contribution: 61.3%
- NI winding technique for All HTS
- Inside-notched Coil Design
 → Short but homogeneous
- Persistent-mode HTS shims: \rightarrow Z1, Z2, (X, Y)
- SCF shaking magnet
 → Not practical
 → May use L500
- LHe re-condensation

Dongkeun Par DP Winding & Individual Tests

- Conductor: 6-mm wide, 75-µm thick REBCO conductor from SuperPower
- Winding Tension: 50 N

Individual DP Test Results

Coil 3 Avg. DP $I_c = 70$ A, 10% Dev.

Stacking Order

Objectives:

- 1) Achieve the maximum critical current margin
- 2) Match as closely as possible the OD for low joint resistance

Coil 2 Ic estimation at 4.2 K, 30.5 T operation

- : Consider angular dependent Ic properties of REBCO
- : FEM result \rightarrow In regular DPs 15.3 T ~ 21.6 T within 15.6°

Preloading

Objectives:

Prevent any motions in the DP stacked coil during cool-down and energization, while the coil maintains its elastic behavior

16.3 kN was pre-loaded by6 Belleville washer sets, eachconsist of 8 Belleville in series

Splicing "Bridge" Joints

Objectives:

Minimize splice resistance for less Joule heating at 4.2 K operation

"Bridge" joint requires:

- 12-mm wide REBCO from SuperPower

77-K testing before overbanding shows Joint resistance are okay <30 n Ω per each splice

Over-banding & Test setup

Objectives:

Mechanical reinforcement against radial direction expansion during energization \rightarrow Limit the hoop strain under criterion, <0.4%

Solder SS304 tape to a REBCO tail and wind with 50 N tension along the guide rail

4.2 K Test Setup after over-banding completed

Coil 2 Test @ 77 K

Overall test procedures:

77-K Test \rightarrow (RT) over-banded \rightarrow 77-K Test \rightarrow 4.2-K Test

* No significant changes were observed after Coil 2 was over-banded

77-K test procedures:

 $0 \rightarrow 10 \rightarrow 20 \rightarrow 30 \rightarrow 35 \rightarrow 40 \rightarrow 30 \rightarrow 0 A @ 2 A/min and settle >1 hr at every step$

Tau

[sec]

469

475

479

461

Coil 2 Test @ 77 K

Testing Procedure:

НС	Unit	Calculation (As Wound)	Measured (0→@30 A)	Measured (40 → @30 A)
Z1	ppm/cm^1	-7.4	-605.1	-13.5
Z2	ppm/cm^2	-368.3	-279.6	-355.8
Z3	ppm/cm^3	0.9	6.2	-5.5
Z 4	ppm/cm^4	-1.4	-1.8	-0.6
Z5	ppm/cm^5	0.0	0.0	0.0
Z 6	ppm/cm^6	0.0	0.0	0.0

• Z1 Term was reduced significantly

- Z2 Term was consistent with calculation after over-current to 40 A
- Induced SCF in the first ramp seems to be erased by over-current of 40 A

Coil 2 Test-1 @ 4.2 K

Cooling and 4.2-K Test Procedure:

- Purge LN2 completely \rightarrow Connect flow meter \rightarrow Transfer LHe with <1 psig
- Set current (1st test) $0 \rightarrow 204 \text{ A} \rightarrow \text{P/S cut} \rightarrow 0 \text{ A}$ (2nd test) $0 \rightarrow 204 \text{ A} \rightarrow 251.3 \text{ A} \rightarrow 260 \text{ A} \rightarrow 251.3 \text{ A} \rightarrow 0 \text{ A}$

Coil 2 Test-1 @ 4.2 K

Power supply current cut out by low flow rate of cooling water:

- At least in Coil 2 stand-alone test at 4.2 K, 204 A, Coil 2 was self-protected
- During the re-tests, we checked Coil 2 reproduced same field, voltage performance

- Time constant : 1050 s (x2.4 of *t* at 77 K)
- Overall coil voltage at 204 A after fully settled: 0.25 mV
 Total resistance, R=0.25 mV / 204 A = 1.23 μV
 → ~100 nΩcm²
- Coil 2 has no damage after sudden power supply cut out
 - ➔ NI coil's self-protection behavior

Coil voltage, Field (hall voltage) vs time

Coil 2 Test-2 @ 4.2 K

After attaching the water boost pump, the power supply problem was cleared

• Coil 2 ramped up to 251.3 A, I_{op} , and beyond, 260 A.

Tue-Af-Po2.05-02

Dongkeun Park

- Field distribution at 4.2 K is more symmetric than 77 K REBCO has more symmetrical field angular dependence characteristics at 4.2 K than 77 K
- It seems SCF generating Z2 error term was not erased by over current (O.C.) since 260 A is still far lower than I_c

нс	Unit	Calculation (As Wound)	Before O.C. @ 251.3 A	After O.C. @ 251.3 A
Z1	ppm/cm^1	-7.4	-3.6	-14.4
Z2	ppm/cm^2	-368.3	-379.2	-395.9
Z3	ppm/cm^3	0.9	3.6	5.4
Z4	ppm/cm^4	-1.4	-1.3	-1.3
Z5	ppm/cm^5	0.0	0.0	0.0
Z 6	ppm/cm^6	0.0	0.0	0.0

Coil 2 Test-2 @ 4.2 K

Coil voltage, magnet constant summary for Coil 2

22.5

22

21.5

21

Magnet Constant [mT/A]

Coil 2 Tests @ 4.2 K

Helium consumption during charging of NI coils:

- Analytical approach
- Experimental measurement by both flow meter and LHe level meter

$$Q_{t}(t) = Q_{s} + I^{2}(t) R_{j} + \frac{V_{c}^{2}(t)}{R_{m}} E_{c}: \text{ unique term in NI coils}$$

$$E_{c} = \frac{L_{m} \tau I_{op}^{2}}{t_{r}^{2}} \left[t_{r} + \tau \exp\left(\frac{-t_{r}}{\tau}\right) - \tau \right]$$
with $L_{m} = 3.04$ [H], $I_{op} = 204$ [A], $t_{r} = 6120$ [s], $\tau = 1050$ [s]
$$\Rightarrow \underline{E_{c}} = 18 \text{ kJ},$$

Dissipated during charging only by turn-to-turn resistance

- Heat dissipation rate was measured by gas flow meter. Integrated heat dissipation during charging and settling was <u>26.4 kJ</u>
 c.f.) 18 kJ (analytical & numerical, ∫ V(t)²/R_m dt, way)
- Standing loss + Joule heating from current leads/joints
 = (26.4-18) kJ / 11,300 s = 0.72 W

Summary

Phase 3B of **MIT 1.3-GHz LTS/HTS NMR** magnet project is in good progress

✓ Coil 2 of 3-nested-coil H800 was completed

- Assembled, DP-DP jointed, over-banded, and most importantly,

successfully tested at 4.2 K to its design current of 251.3 A and

beyond up to 260 A without discernible resistive voltage

- The center field was 5.6 T (<1% discrepancy by SCF)

- Coil 3, the outermost stack of 38 DPs, we have wound all DPs and tested at 77 K
- ✓ We plan to assemble all 3 coils into H800 and operate it at 77 K and 4.2 K in early 2018.

International ConstructionAs-Wound H800 Key Parameters @ 4.2 K, IImage: As-Wound H800 K						
Parameter		Coil 1	Coil 2	Coil 3		
Frequency	[MHz]	369	240	189		
Field contribution	[T]	8.67	5.64	4.44		
B _{⊥, Max} at 1.3 GHz	[T]	4.8	4.6	3.8		
I _c (B _⊥ , 4.2 K)/I _c (77 K, sf)		>2.3	>2.3	>2.7		
Total # DP coils		26	32	38		
# Inside-Notched DP coils		6	10	8		
# turns/pancake		185	120	96		
# turns/notched pancake		177	118	92		
ID average of regular DPs	[mm]	91.0	150.79	196.90		
ID average of notched DPs	[mm]	92.35	151.41	197.20		
OD average (before over-band)	[mm]	119.12	169.23	211.30		
Overall height	[mm]	323.65	393.93	465.65		
SS over-band radial build	[mm]	7	5	3		
Inductance	[H]	2.43	3.04	3.77		
Charging delay time constant	[s]	570	1030	1400 ¹		
Average turn-to-turn resistivity, ρ_c	[µΩ·cm²]	37	60	86		
Axial force on mid-plane	[kN]	363	613	772		
Peak total hoop strain	[%]	0.47	0.39	0.35		
Field error at 1-cm / 3-cm DSV	[ppm]	1.1 / 34 (peak-to-peak)				