Eight-piece quadrupole magnet tolerance analysis*

J. Liu, R. Dejus, A. Donnelly, C. Doose, A. Jain, M. Jaski

Argonne National Laboratory, Argonne, IL 60439

Big offset between magnetic center from the mechanical center

Background

Early R&D magnets for the APS Upgrade project were built based on a conventional two-piece quadrupole magnet design. However, the as-assembled magnets showed high multipole errors and magnetic center offsets that were out of specification. An eight-piece quadrupole design and assembly method is developed that produces the desired magnetic field quality and can be manufactured cost-effectively.

Objectives

- > Identify the key features that affect the magnetic field quality in both two-piece and eight-piece quadrupole magnet designs.
- > Determine the appropriate tolerances for the identified key features in both quadrupole magnet designs.
- Select the design and the proper machining and assembly tolerance level for APS Upgrade storage ring.

Conventional Two-Piece Quadrupole R&D Magnets Measurements show satisfactory results after 0.004 re-alignment of pole tips. 0.187 Use Criss-Cross Two-piece Quadrupole gauge pins and a center pin to Intrinsically has big tolerance stack-up on final pole tips re-align magnet locations, pole tips to be High lower order harmonics symmetric.

New Eight-Piece Quadrupole R&D Magnets EIGHT-PIECE R&D MAGNET YOKE ASSEMBLY MEASUREMENT **Alignment Steps:** Assemble magnet as is; 2. Measure aperture diameters; 3. Average measurements and subtract 10 μm to select center gauge pin; 4. Measure pole tip gaps; Rotating wire 5. Average measurements and subtract 10 μm to select criss-Bottom Pads cross gauge block; bn (units) Aperture 6. Loosen clamping screws 7. Insert center pin in the aperture; 8. Insert criss-cross gauge blocks in pole tip gaps at both ends; 9. Tighten the clamping screws Detail view of pole tips to the specified torque; Four pole tips will be 10.Drill and ream taper dowel

Mechanical Tolerance Stack-up Analyses

- TcVis Variation Analysis Virtually making parts
- Virtually assemble parts Virtually measure parts Simulate using Monte

Mean 10.241

Stdev 0.006

APERTURE AND GAP SIZES AT DIFFERENT TOLERANCE LEVELS

	A 4	A 4 C4 1	<u> </u>	
Part tol. (mm)	Aperture	Aperture Std.	Gap size	Gap size
	mean	Dev.	Mean	Std. Dev.
	(mm)	(mm)	(mm)	(mm)
0.025	26.044	0.035	10.209	0.067
0.050	26.079	0.094	10.241	0.133
0.100	26.177	0.140	10.306	0.267

Magnetic Tolerance Analyses

The effect of Aperture Size change

Down-stream

10.314

10.291

0.042

26.090

26.138

10.343

26.141

10.3285

10.3065

10.316

10.3065

26.1155

0.022

- Aperture size change will affect both main field and 12-pole
- Acceptable aperture is 26 mm to 26.271 mm

The effect of gap Size change

- Change in gap size will affect 12-pole
- ❖ Acceptable aperture is 10.05 mm to 10.30 mm

The effect of surface profile error

- Pole tip surface profile error will affect sextupole
- Acceptable profile error is 30 μm

Conclusions

- > The key feature that affects the magnetic field is identified to be the symmetry of the four pole tips around the quadrupole longitudinal axis
- > With a conventional two-piece design quadrupole, even 25 μm machining error will result in excessive stack-up tolerances and hence deteriorated magnetic field quality. With eight-piece design, 50 µm standard machining precision is sufficient to make high quality magnet
- Eight-piece design and 50 μm machining tolerance will be selected for APS Upgrade quadrupole magnet

*Work supported by U.S. Department of Energy, Office of Science, under contract numbers DE-AC02-06CH11357

change

The Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Advanced Photon Source • 9700 S. Cass Ave. • Argonne, IL 60439 USA • www.aps.anl.gov • www.anl.gov

pin hole on the mating

11. Apply metal-filled epoxy to

the pre-machined key slots.

flanges;

symmetry within 25 μm

The aperture could

The gap could change