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Introduction
Halbach PM array offers many attractive features: sinusoidal flux distribution, self-shielding effect,

high fundamental field, low cogging torque, etc. Normal discrete Halbach array pursues a better flux
distribution by increasing the number of segments per pole. However, a higher number of discrete
segments also increase the cost of fabrication. Hence, optimization on other parameters is required to
reach the optimal compromise between the cost and performance.

In this paper, a general process is presented to design an arbitrary Halbach PM array with multi-
parameters: arc length of PM and gap, magnetization direction of PM segment. This process includes a
universal analytical model and a multi-objective optimizer. In addition to the conventional type, a
new arrangement of Halbach array with gap-symmetry-axis is also analyzed and validated by FEA. The
effectiveness of a multi-objective optimization algorithm is examined. Owing to the clearness and
flexibility of proposed model, more design requirements can be achieved.

Fig. 1 Structure of 3-segment Halbach
array in one pole-pair 
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Fig. 3 Comparision of FEA and analytical predicted air-gap flux distribution in PM-symmetry-axis Halbach

array when m=2, 3, 4. (a) Radial Br. (b) Tangential Bt.    
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Validation by FEA
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Fig. 4 Gap-symmetry-axis Halbach array. Comparison of FEA and analytical predicted air-gap 

flux distribution in Halbach array when m=2, 3, 4. (a) Radial Br. (b) Tangential Bt.    

Fig. 3 PM-symmetry-axis Halbach array.  Comparison of FEA and analytical predicted air-gap 

flux distribution when m=2, 3, 4. (a) Radial Br. (b) Tangential Bt.    
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𝛾 defines the angular position of each PM segment’s center.
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 Assumptions: 1. Back iron has infinite permeance 2. End-effect and slot-effect are neglected.
 Through solving the governing Laplacian/quasi-Poissonian field equations in the air gap and

magnet regions, analytical model of magnetic field distribution can be derived as shown.
 Two plus-minus signs differ the equation of 𝐵𝑟𝑛 and 𝐵𝜃𝑛, ‘+’ is for 𝐵𝑟𝑛, and ‘−’ is for 𝐵𝜃𝑛.
 The derivation from slotless to slotted model of surface PM machine has already well solved

by comformal mapping method or by subdomain model, which can also be applied in
Halbach PM array. Moreover, the cogging torque, electromagnetic torque, back-EMF in
Halbach PM machine can also be predicted through these methods.

‘+’ is for 𝑀𝑟𝑛,
and ‘−’ is for 𝑀𝜃𝑛

Analytical models for both types are well validated by
2-D FEA when segment number of each pole m =2, 3,
4. Parameters of models are shown in Table I.

When m increases, Radial flux distribution becomes
more sinusoidal, and the peak of Tangential flux
distribution becomes smaller, which represents a
better performance.

Despite the differences on flux distribution, two type
of m-segment Halbach array have the same primary
flux density and total harmonic distortion. It proves
that Gap-symmetry-axis Model is as practical as the
conventional one.

Multi-Objective Optimization

Conclusions
A general design process of arbitrary Halbach arrays with accurate analytical models and a multi-objective optimizer has bee proposed.

Both traditional and a new type of arrangement of Halbach array was calculated and validated by FEA, which are proved to be same effective.

Through combining accurate analytical model with mathematical software, a simple and time-saving design optimization towards more cost

efficiency and more extensive use for Halbach array can be achieved.

The test on 3-segment PM array shows that after parameter design by optimizer, both fundamental flux density and THD of “unequal”

Halbach array can be better than “equal” one. It proves the necessity of parameter design on Halbach PM array.

Special requirements can be easily achieved via this process, Halbach array model with two main flux harmonics are given as an example.

 In the next researches, more design and performance parameters will be included into this process through existing methods for surface PM

machines: stator slots, materials, modulating pieces, cogging torque, back-EMF, EM torque, etc.

An optimization on 3-segment Halbach array general
model was given to examine the effectiveness.

Created spots of 5 generations during the genetic
optimized algorithm were differed by colors, which
are gradually getting closer to Pareto front.

The yellow Star in Fig. 5 locates the performance of
the original type with equal arc and magnetization.

Pareto front revealed by red line offers researchers
valuable tradeoff information between objectives.

Compared to the original one, optimized model has
better performances on Br and THD, see Table II.

Proposed process is more effective towards different
requirements. For example, more than one main flux
harmonics can be easily achieved by changing
objectives of optimization, see Fig. 6, densities of 1st

and 4th harmonics are both greater than 0.8 T.
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Fig. 5 Scatter diagram of the genetic optimization with 5 
generations for 3-segment Halbach array.

Fig. 6 Optimal model with 1st and 4th as 
main flux harmonics.
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(a) Flux lines on the FEA model

(b) Flux distribution and harmonic analysis


