

Hi-Lumi LHC Twin Aperture Orbit Correctors 0.5 m Model Magnet Development & Cold Test

Presented by G. De Rijk

G.A. Kirby,

L. Gentini, J. Mazet, M. Mentink, F. Mangiarotti, J. Van Nugteren, J. Murtomäki, P. Hagen F.Pincot, N.Bourcey, J. C. Perez, G. De Rijk, E. Todesco.

MT 25

Amsterdam

August 2017 Mon-Mo-Or1

Talk Over View

- What is "High Luminosity LHC"
- Orbit Corrector Function & Environment
- CCT aperture development :
- Winding tests
- Coil development
- Cold test
- Planning
- Conclusions

CERN

What is "High Luminosity LHC"

Goal of Hi-Lumi LHC increase Luminosity by factor ~10 In CMS and ALTAS Installation Due 2024 - 2026

Specification and choice of CCT

Specification

- 2 aperture H,V dipole corrector
- $\int B=5Tm, B= 2.8 T, L_{mag}=1.8m$
- Imax = 600A

Ribbon cos₍₉₎ vs CCT

Ribbon Cos⊙

- Field quality limited due to collars using up yoke space between the apertures
- Ribbon glue is rad hard limited
- Ribbon conductor suffers from electrical shorts during production and ongoing degradation during operation, probably due to radiation damage.

CCT:

- Radiation hard "full metal jacket" design
- Low cost
- Fast to produce.
- Very good field quality
- Little tooling

Magnetic Field Optimization

Case, Radial hybrid pole keys, aperture 2, both powered

More complicated than one plot,

Example of one configuration Presenting harmonic solution due to high field in the adjacent aperture

To achieve 5 Tm field integral with less than 10 units we first determine the maximum field in one aperture that will not pollute the field quality in the adjacent aperture.

1st winding test with the rectangular wire !!!! Rectangular wire failed !!! Impossible to wind in channel

The enamel rectangular wire rotated as we tried to wind and finally was impossible to wind into the slot!

Cutting tests 0.1mm to 0.4mm wall thickness select 0.35mm min value.

1mm dia x 7 mm high speed tool.

Machining the short 0.5m model CCT formers Multi pass cuts.

- With 1 mm slot the tool breaks often
- Many passes needed

Machined former development

The 1mm wide x 5mm deep channel could not be machined over the 128 m long 0.5m former!

Moving to a 2 mm wide slot, the cutting tool is much stronger! The machining time / cost to machine the channel is reduced! The double slot width reduces machining time (cost) but doubles the number of joints

Wire Performance with polyimide insulation

Insulation curing temperature 420 C for 30 sec degraded the wire Ic by 10%.

Magnet margin is still high at 55 % SS

It was difficult to find a supplier for the polyimide insulation

CNC machined slot width 2.10 mm wide. Anodization 0.040 mm layer thickness Anodization surface build up 0.020mm final slot width 2.06 mm

The anodized coating give a hard surface protection that bonds well to the resin & provides some electrical insulation

Al formers 6082-T6 for the final magnets Polishing test to de-burr? and then Hard Anodization (Micro-Machining)

Example of polishing to remove burrs

Coil Winding first model

First single aperture model still with Al-bronze formers

Two wires are wound at the same time, with low tension. This is repeated until we have the full 2 wide by 5 high coil.

Joints at both end in the magnet former

The joints have to be on the former to cope with thermal contraction effects

Wiring Diagram

HILUM

Jointing

Jointing system:

- 1) Tined wires,
- 2) Copper tubes
- 3) Crimp for mechanical support
- 4) Solder
- 5) Insulation

Joint box

In total a single aperture has only 9 pieces !

Coils impregnated inside the magnet outer support tube

Seal mechanical support

Insulation between the two layers

Two layers of insulation Polyimide or Mylar with min 4 mm brake down distance from ground or the other former

Magnet Assembly

First model Magnet Test

First test of 0.5 m model, single aperture Al-Bronze former

- Tested to 1.9K
- RRR of wire measured at 253, high!
- No quench up to 422 A nominal
- One quench at 438 A (short model hot spot 63K, voltage to Ground 320V, for 2.2m magnet this would then be 193 K and 330 V)
- Then No quench up to 460 A ultimate design value
- Thermal cycle no quench.
- Nominal ramp rate 4.2 A/s.
- Max tested ramp rate with no quench 40 A/s

Joint resistances: Average 5.7 nOhm's 120 +/- 20 n Ω over one aperture.

Energy distribution during quench : with 0.7 Ω dump: Coil 13%, Dump 59%, aluminium support tube and formers 28%

LHC / HL-LHC Plan

Closing Comments and Conclusions

- CERN is developing a CCT 3 Tesla orbit corrector for use Hi-Lumi LHC
- This old idea from the 1960's has many positive points:
 - Simple design / Potentially low-cost, No significant tooling.
 - Field errors appear to be insensitive to small mechanical errors.
 - Radiation hard design, "Full metal jacket around impregnated conductor".
- Short 0.5 metre Proof of concept model test successfully completed .
- 2.2 m prototype test planned for winter 2017 / 2018 Full Field quality will be measured in this test.
- Series production ~ 18 to 20 twin aperture magnets Should start in 2019

Thank you for your attention

Definition of CCT skew angle

CCT skew angle optimisation

Due to the cross talk the max aperture field is set to ~2.7 T For a fixe d 5 Tm integral & magnet length ~2m the optimum skew angle is 30 deg. Lower skew angles give more field less conductor but have longer ends!

Components for the 0.5m model

Orbit Corrector Function & Environment

The two counter rotating HL-LHC beams are brought to full energy, then the sets of orbit correctors quickly (within 100 sec) maneuver the two beams into collision.

							sign resp	osible 🐁	Drawing stat	us 🛬	Manu	facturing I order res	. .
				Manufacturing follow-up F			Cantini		(black)		Chlank		- la
				0.5			. Genani		(Diank)		Ulank)	
				ITEM Number	ST0772446		olank)				11		
			Definition							11			
			Nomenelature		4					11			
	(Date	02.05.2016	4					11		
			Date Of CODDECTOD ACCEMPLY va	03.03.2016 CDD (aldas	4					11			
				U4 CURRECTUR ASSEMIDET VS	CDD Folder	4					11		
	~	The second se	Extracted by	L. Gentini			Destas				Manufasturing		
			_				0	Design.		_		Manuracturing	_
Nomenc	ST number 👻	Definition 👻	👻 Make or E 👻	Material 👻	SCEM 👻	Supr 🚽	Su 🗸	Design	Urawi	👻 Desigi	n Na 👻	Manufacturing	м
re	070700000						er	resposib	ii stati			order responsib	
LHCMCBTT	ST0732836	DZQ4 CORRECTOR EXTERNAL PIM	2 CERIN Design	AIUEN AV-5083 (H116)			_	L. Gentini					
LHCMCBTT	ST0739488	FIX INSULATING END PLATE	2 CERIV Design	Epoxy GF EP GC 308 (G-II)			-	L. Gentini		_			-
LHCMCBTT	ST0747071		2 CERIV Design	Epoxy GF EF GC 308 (G-II)			-	L. Gentini					-
LHCMCBTT	ST0737413	OU CODDECTOD VOVE V2	4 CERIV Design	EN 1.4307 [St. Steel 304L]			-	L. Gentini		_			-
LHCMCBTT	ST0763312		84 CERIV Design	[ARMCO# [Fe 39,99%]			-	L. Gentini					
LHCMCBTT	510760324	Q4 FIX EXTREMITY FLANGE V2	1 CERIV Design	EN 14306 (St. Steel 304L)			-	L. Gentini					-
LHCMCBTT	ST0772764	MACHET COLLACCEMPLY 2	1 CERIV Design	EN 1.4306 (St. Steel 304L)		-	-	L. Gentini					-
LHCMCBTT	ST0772447	MAGNET COLLASSEMBLY V3	2 CERIN Design	0			-	L. Gentini		_			-
LHCMCBTT	ST0772448	INNER COL V3	2 CERIV Design	Copper			-	L. Gentini					
LHCMCBTT	510/72487	UUTER COLLV3	2 CERIN Design	Copper			_	L. Gentini		_			-
LHCMCBTT	ST0776711	INSULATING FREE END PLATE	2 CERIN Design	Epoxy GF EP GC 308 (G-11)			-	L. Gentini					
LHCMCBTT	ST0776540	CONNECTION BOX 2	4 CERIV Design	Epoxy GF EP GC 308 (G-II)			-	L. Gentini		_			-
LHCMCBTT	ST0776078	YOKE HOD V2	4 CERIV Design	EN I.4307 (St. Steel 304L)			-	L. Gentini					-
LHCMCBTT	510772446	V3 Q4 CORRECTOR ASSEMBLT		F			_	L. Gentini		_			-
LHCMCBTT	010763171	INSULATING WIRE LINE 1 V2	1 CERIN Design	Epoxy GF EF GC 308 (G-H)		-	_	L. Gentini					-
LICHCOTT	ST0763172	INSULATING WIRE LINE 2 V2	1 CERN Design	Epoxy GF EF GC 306 (G-11)			_	L. Gentini		_			_
LICHCOYY	CT0753174		A CERM Design				-	L. Gentini					-
LICHCBTT	CT0779652		4 CERN Design	EN14206 (St. Steel 2041.)				L. Gentini		_			
LICHCBYY	CT0773033		4 CERN Design	EN1.4506 (St. Steel 304E)			-	L. Gentini		-			-
LICHCBIT	ISD 4022 MIR-04		4 Normalized	Steipler Steel 04 Opier Ipox 04	47 42 77 160 A			E. Genuin		_			
	ISO 4762_1410-04	HEX NOT STILLET GHADE A MID	17 Normalized	Stanles Steel At Aclel IIIOs At	47.43.11.100.4	-	-			-			-
	ISO 4762 M4v12, 64	HEX SKT HD CAP SCREW M4X12	16 Normalized	St Steel 04	47 62 71 155 7					_			
	100 4702 1414812-M4		A Normalized	Staiplass Steel 04 Opier Ipon 04	47.72.15.010.0	-	-			-			-
	ISO 8752 12v80-42	Slot heavy duty spring pin_12v80	28 Normalized	Stainless Steel &2 &rier Inov &2	1110.00.010.0								
	ST0343798	SPBING LOCK V/ASHEB M04 (GBO)	16 Commercial Item	St Steel 64	47 78 15 202 8	Bossard	BN672				_		
	ISD 4762 M3x25-A4	HEX SKT HD CAP SCREW M2225	24 Normalized	St Steel 44	47 62 71 110 0	Jossaru	Diaora						
	ST0263158	SPBINGLOCK VASHEB M03/(GBO)	24 Commercial Item	St Steel A4	47 78 15 200 0	Bossard	BN 673				_		
	ST0529388	HEX SKTLOV HD SCBEV M4v8	8 Commercial Item	St Steel A2		BOSSAR	BN 2844						
	ISO 4762 M2x8-12.9-A0	HEX SKT HD CAP SCREW M2X8	52 Normalized	Steel 12.9		1.000000	1				_		
											,		

Low number of drawings / components ~ 20 leading to low cost of manufacture!

	2017									2018																	
	August			September		October			November			December			January					Febuary				March			
	w 32 w	33 w 34	4 w 35 w 31	3 w 37 w 3	8 8 w 39 v	√40 w4	w42	 w43 w	/44 w	45 w 46	w41v	48 v	/49 w	50 v 51	w52 w1	w2	w3	w4 v	/5 w	6 V	/7 w	8 1	w9 w10) w	11 w1	2 w 13	w 14
			MT	EUC	45																						
2nd CCT apertuer v2 design 0.5m long																											
New former design																			-	-		1	10				
CNC m/c 0.5m formers							•												1		E	-					
Polish formers ?							_												-		-		-				
Hard anodize										-									6	1	-						
joint box manufactuer																				12	-	1	17				
Winding 0.5 m inner former																			1		12	1					
Winding 0.5 m outer former																			- 1								
Coil assembly , jointing,																							14				
impregnation																							1				
yoke assembly																						9	1				
Cold test !																Tes	t 500r	пm			1 Section 2	-					
	A	uguist		Septemb	er		Octob	er		Nove	ember		De	cembe	er	J	anua	ry			Febua	ary		M	larch		
	w 32 w	33 43	4 v 35 v 3	5 w37 w3	8 w 39 v	v40 v4	°w42	w43 w	/44 w	45 w 46	w47v	ν48 w	/49 w	50 w 51	w52 w1	w2	wЗ	w4 v	/5 w	6 v	#7 W	8 1	w9 w10	i w	11 w1	2 w 13	w 14
2.2m full lengh model																									-5		
component manufactuer			just	Joint box	es nee	ded																				æ.,	2
former manufactuer			F	ormers an	d outer	suport	tube n	nlo																			
polishing + Anodization																											
CERN 0.825 wire insulation (430 c for 30 sec?																											
CERN 0.825 wire insulation (200 c)			_																								
modify 927 coil winding m/c																											
coil winding aperture 1																											
coil assembly / jointing																											
impregnation																											
coil winding aperture 2																											
coil assembly / jointing																											
impregnation																											
Magnet assembly into yoke																											

Base line insulation

Glass sleeve compressed thickness ~ 0.052 mm

Polyimide 48 % overlapped wrapped 4mm wide tape,

Insulation tested at > 9 kV (very good)

Polyimide tape provides electrical insulation Glass sleeve impregnated with radiation hard resin provides mechanical support.

