

The Commissioning of a Hybrid Magnet at CHMFL

YUNFEI TAN*, BINGJUN GAO, WENGE CHEN, XIAONING LIU, ZHEGNRONG OUYANG, ZHONGCHENG WU, GUANGLI KUANG

High Magnetic Field Laboratory, CAS MT 25, Amsterdam, Netherlands Aug. 28, 2017

Outline

- 1. Brief Introduction of CHMFL
- 2. A hybrid magnet at CHMFL
- 3. Summary and Perspective

1. Brief Introduction of CHMFL

 The Steady High Magnetic Field Facility (SHMFF) was founded by the National Development and Reform Commission of China (NDRC) in 2008;

 The Project is undertaken by the High Magnetic Field Laboratory, Chinese Academy of Sciences (CHMFL).

Where is CHMFL?

Science Island Anhui Province P. R. China

Science Island ---- a very beautiful peninsula! Area: 2.6 km²

Layout of Magnet Hall

Water Cooled Magnets at CHMFL

Record

	Magnets	Magnet Field, T	Bore, mm	Power, MW	Current Status
Resistive Magnets	WM1	38.5*	32	25.2	Open for users
	WM2	25	50	15	Open for users
	WM3	19.55	200	20	Open for users
	WM4	27.5*	32	10	Open for users
	WM5	35*	50		Or a for users

A. power supply modules Installations

B. Water cooling system

Main Equipment

C. Helium Cryogenic System

2. A Hybrid Manget at CHMFL

A hybrid magnet has been designed, manufactured, assembled and tested at CHMFL, it consists of a superconducting outsert and a water-cooled insert.

Water Cooled Insert of Hybrid Magnet

Bitter Disks
Six Coils
Inner diameter
38 mm
Outer diameter
710 mm

Coils A,B,C,D,E,F of insert of hybrid magnet

Superconducting Outsert of Hybrid Magnet

CICC Three Coils

Inner diameter 920 mm

Outer diameter 1297 mm

Parameters of Superconducting Outsert

	Coil A		— Coil B	Coil C
	Grade I	Grade II	Coll B	Con C
Type of winding	layer	layer	layer	pancake
Conductor type	Nb ₃ Sn CICC using "insulate-wind-and-react" route			
Conduit material	modified 316 LN			
Strond Samuelian	(2SC+1Cu)×4×4×5	((2SC+1Cu)×3+	(1SC+2Cu))×3×4×:	5 ((1SC+2Cu)×3
Strands configuration		(1SC+2Cu))×3×5		+3Cu)×3×4
CICC size (mm×mm)	22.0×15.0	20.2×13.4	20.2×13.4	15.0×14.4
Conduit thickness (mm)	2.2	2.2	2.2	2.0
Void fraction of conductor (%)	~ 30	~ 30	~ 30	~ 30
Compressive peak load a, (MPa)	10.20	10.13	8.87	10.30
Number of turns	104 (2 layer ×	114 (2 layer ×	228 (4 layer ×	720 (72 pancake ×
Number of turns	52 turns/layer)	57 turns/layer)	57 turns/layer)	10 turns/pancake)
Inner diameter of winding (mm)	930.0	998.0	1147.6	1296.8
Outer diameter of windings (mm)	996.0	1057.6	1268.8	1604.8
Height of windings (mm)	1196.0	1208.4	1208.4	1223.0

0.5

1.0

4.5

11.353

2.58

2.30

51.2

1.27b(1.21)c

0.5

1.0

10.051

2.30

1.90

68.8

2.37b(2.25)c

14100b (13410)c

11.566 b (11.0) c

1.02975 102.362 b (92.589) c 0.5

1.0

7.745

3.64

3.22

156.6

6.73 b (6.40)c

0.5

1.0

12.732

2.15

1.91

66.7

1.20b (1.14) c

Turn insulation (mm)

Nominal current (A)

Operation temperature (K)

Combined inductance (H)

Combined stored energy (MJ)

Layer/pancake insulation (mm)

Maximum field at the windings (T) b

Temperature margin w/o degradation (K)^b

Temperature margin with 15 % degradation (K) b

Field contribution at center (individual coils) (T)

Field contribution at center (combined coils) (T)

Total length of the superconducting wire (km)

Large Cold Bore with 920 mm of Outsert

Fabrication Process of Superconducting Outsett

Hybrid Magnet Magnet assembly Magnet lifting

Superconducting Strands for the Outsert

Stand parameters

Wire diameter (mm)	Ø0.81±0.005
Bare wire diameter (mm)	0.806
Cr plated (µm)	1-2
Cu/non-copper	1.0±0.1
d _{eff} (μm)	≤80
Critical current, Ic (A) (4.2K,12T,0.1µV/cm)	≥540A (non-Cu Jc≥2100A/mm²)
RRR	≥ 100
n value	≥20
Twist pitch (mm)	15 ± 3
Hysteresis loss (7T-0-7T cycle) (kJ/m³)	≤1600

To achieve the central field requirements and keep the overall magnet size compact, Nb3Sn strands must have the critical current density Jc above 2100 A/mm2 at 12 T and 4.2 K. We selected a Ti-doped restacked-rod process (RRP) Nb₃Sn wire made by Oxford Instruments Supercond. Tech. (OST).

CICC Design for the Outsert

MAIN PARAMETERS OF THE CICCS

	CICC A_{\perp}	$CICC\;A_{II}$	CICC B	CICC C
Cable pattern	(2Sc+1Cu)x4x4x5	$(2Sc + 1Cu) \times 3$ $(1Sc + 2Cu) \times 1$ $\times 3 \times 5$	(1Sc+2Cu)x3x4x5	$(1Sc + 2Cu) \times 3$ $(3Cu) \times 1$ $\times 3 \times 4$
N of superconducting strands	160	105	60	36
N of copper strands	80	75	120	108
Twist pitch (mm)	82/133/187/232	82/133/170/205	82/133/170/205	82/133/170/205
CICC dimensions(mm)	22.0x15.0	20.2 x13.4	20.2 x13.4	15.0 x14.4
Jacket material	316LN	316LN	316LN	316LN
Jacket wall thickness (mm)	2.2	2.2	2.2	2.0
Void fraction (%)	~30	~30	~30	~30

CICC Fabrication for the Outsert

Joint Design for the Outsert

Schematic design of joints

U shape conductors

Cable cleaning

Joint compressing tool Welding

Two-turn current loop

R & D of joints

Joints resistance test system

Winding Process for the Outsert

Heat Treatment for the Outsert

Scheme of the furnace

TABLE I. Specifications of the heat treatment furnace.

Cryostat components for the Outsert

National Control of the Control of t		
the main pumping tube turbo-molecular pumps	~3	supply bar LN2 buffer LN2 buffer TSth HV96 HV97 TSth Grad et al. (ac.) 21 plus of a
WEIGHTEN PULLPHING	uiiita	i l 🔺 i
		magnet cryostat

CRYOSTAT VESSEL PARAMETERS

Cryostat vessel outside diameter, mm	2890
Cryostat vessel inside diameter, mm	800
Total height of the cryostat vessel, m	6.0
Vertical height of the support leg, m	2.93
Main cylindrical section thickness, mm	15
Design base pressure, Pa	5×10^{-4}
Material of construction	304L
Required leak rate of completed cryostat vessel, Pa• m ³ /s	1×10^{-6}
Interior surface area, m ²	45
Interior free volume, m ³	16
Total mass of the cryostat vessel, ton	15

Quench Detection and Protection for the Outsert

Layout of quench detection circuit

Main parameters of quench detection:

- Operating current, lop (kA) 13.41
- Inductance, L(H) 1.02975
- Store d e n e rg y, E (MJ) 92.589
- Dump re sista n c e, $R_D(\Omega)$ 0.272
- Disc harge time constant, τ_d (s) 3.788
- Volta ge thre shold (m V) 40~50
- De la y time, t_d (s) < 0.7
- Switch a c tion time, $t_s(s)$ < 0.1
- Max. term in a l volta ge (kV) < 4
- Hot spot temperature (K) <150

Four pieces of co-wound wire were installed on the four outer corners of the CICC, the co-wound can compensate the inductive signals, and be used for quench signal detection.

Scheme of conductor cross-section

HTS Current leads for the Outsert

The diagram of HTS current leads and busline

A pair of 16 kA HTS current leads were used to decrease the thermal load of cryogenic system.

Cooling Scheme for the Outsert

The outsert has 8 layers in total 72 pancakes in coil C. An independent hydraulic channel is assigned to each group of six double pancakes. A set of four valves at the inlet distributes the total mass flow of 18 g/s, and controls the mass flows through each cooling channel.

Final Assembling of the Outsert

Coils installed in place

Commissioning of the Hybrid Magnet

The first successful performance of the hybrid magnet produced 40T on Nov. 13, 2016, since that day, a series of scientific experiments have been carried out on the hybrid magnet system.

Research on the hybrid magnet

- Layered trigonal PtBi₂ single crystal
- > Extremely large linear magnetoresistance (LMR)
- > Pronounced SdH oscillations

3. Summary and Prospective

- A 10 T superconducting magnet with 800 mm large bore has been successfully developed at CHMFL.
- A 40 T hybrid magnet combined with a superconducting outsert and a resistive insert have been operated at CHMFL.
- A series of researches have been carried out on the hybrid magnet.
- The hybrid magnet has the potential to produce more than 45T central field after a maintenance of the resistive insert in the near future.

Thank you for your attention