

25th International Conference on Magnet Technology

The Business of Science®

An engineering perspective on high field superconducting magnets

Thu-Mo-Or-33-04

<u>Andrew Twin</u>, Steven Ball, Rod Bateman, Joe Brown, Neil Clarke, Ziad Melhem, Daniel Strange, Roman Viznichenko, David Warren, Richard Wotherspoon,

Oxford Instruments Nanoscience

- NMR 'requirements prototyping'
 - Low drift magnets & minimal quenching up to 22 Tesla
- High field 'outsert' developments using LTS conductors
 - Increasing energy density with high critical current wires
- High field magnet developments using HTS superconductors
 - The challenge of strain and quench management

Challenge of high field magnets :size and stored energy of NMR magnets

The Business of Science®

Two main high field design challenges :

© Oxford Instruments 2017

of a 22 Tesla (950 MHz) 21 MJ

Requirements prototyping identified as the best technique to develop high field magnets

The Business of Science®

Running prototype coils and wires in a 10 Tesla background field magnet :- The stresses are now due to Lorentz forces

i.e. A TRULY REPRESENTATIVE MAGNET TEST

Wire strain and quench characterisation

The Business of Science®

Provides Stress/Strain curves for superconducting wires at 4.2K background fields up to 10 Tesla.

Also make preliminary assessment of the short sample performance (SSP) & quench behaviour of new wires before their use in prototype magnets!

NMR @ 22T, requirements prototyping NbTi coils

A theoretical model predicting strain is good but designing zero quench coils is the aim.

The Business of Science®

Is this still a representative test with respect to coil quench behaviour?

Can the magnet engineer replicate the tensile stresses on a unit cell of composite to best investigate it's quench behaviour at the micro Joule level?

Quench performance of NbTi test coils compared to 21 Tesla NbTi NMR coils

Quench performance bronze route Nb3Sn test coils and 21 Tesla magnet NMR coils

Requirement prototype coils give the engineer a new perspective on different coil structures.

The Business of Science®

An example of two different coil constuctions tested at > \$1,000 per quench in full NMR magnet and \$10 per quench in test coils.

Restack rod process (RRP) wires : new coil structures, lower quench probability

Magnet test coil ramped up in background field with strain gauges fitted :-

Next challenge

Quench dynamics modelling and experiment. Again done using requirement prototype coils with both voltage monitoring & fibre optics. 14Tesla background magnet

All this work led to a new class of 'compact' high field magnets for research

The Business of Science®

Compact 22T/52 mm (2.2K) 20 T/52 mm(4.2K) for Research Applications

15T_160mm system - LTS @ 4.2K Prof Wang, IEE, China used for HTS inserts

Further development brought a new class of 'outsert' magnets for high field research

The Business of Science®

15T_250mm @ T = 4.2K LTS - NHMFL

Requirements	Specifications	Actual
Flux density	< 0.0143 over a 10	0.0144 over a 10
homogeneity	mm DSV	mm DSV
Energisation rate	< 1 hours	59.55 min
Stored energy	7.3 Mjoule nominal	6.95 MJoule
Static Helium Boil	< 3.2 L / hour	1.2 L / hour
off (No insert coil)		
Helium Capacity	300 L nominal	313 L

19T_150mm @ T = 4.2K LTS - HLD

Requirements	Specifications	Actual
Flux density	< 0.04 % over a 10	< 0.04 % over
homogeneity	mm DSV	a 10 mm DSV
Energisation rate	< 2 hours	< 2 hours
Stored energy	5.7 MJoule	5.7 MJoule
Static Helium Boil	< 3.2 L / hour	0.86 L / hour
off (No insert coil)		
Helium Capacity	240 L	240 L

© Oxford Instruments 2017

Further engineering modelling is required for these large magnet systems

- Key requirements achieved & unique features
 - Low vibration No nitrogen shield
 - Top loading magnet support system for flexibility in mounting & exchanging insert coils
 - Low loss magnet current leads
 - Fully integrated magnet protection system
- Complex mechanical interactions defined
 & modelled for cryostat mechanical design:
 - Vacuum load (internal/external)
 - Internal pressure (helium evaporation/Q)
 - Magnet mass (~750Kg)
 - System mass (~1495Kg)
 - Quench eddy current forces

The

future?

A new type of Ultra High-Field Magnet >30T

•Three primary approaches for high-field electromagnets

1) Non superconducting;

•RT copper magnets. No inherent upper-field limit – only more power & cooling required (i.e. need to be close to a power static & a lake)

•Stronger materials enabling current record: 33T (~35MW) at NHMFL.

•For special applications only – pulsed fields (100 T) also done

2) Hybrid-combination of 1) and 3);

•A copper magnet (inner section) combined with a superconducting magnet (outer section).

•Current record: 45T (30Cu/15SC)T, at NHMFL.

3) All Superconducting;

- Low-temperature superconductors (LTS) 4K-20K
- High-temperature superconductors (HTS) 40K-100K

Engineering Current Density (J_e) limitations dictate conductor selection

The Business of Science®

© Oxford Instruments 2017

BSSCO coils of various diameters are under test at 19 Tesla at HLD Dresden

The Business of Science®

Coil#1 fabrication & test at Low B field

Small and large diameter coils at HLD, reactions at B-OST and NHMFL

Successfully tested to high short sample at 19T

The next generation of requirement prototype coils (the best route to 30T and beyond?)

Acknowledgments

- Oxford Instruments Nanoscience, Tubney Woods, Abingdon, OX13 5QX
 - Dave Warren, Roman Viznichenko, Steven Ball, Joe Brown, Chris King, Wenbin Ma, Dan Strange, Neil Clarke, Jeff Coles, Richard Wotherspoon, Ziad Melhem, Steve Chappell
- Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR HLD), Bautzner Landstrasse 400, D-01328 Dresden, Germany
 - Prof. Joachim Wosnitza, Dr Thomas Hermannsdörfer and Dr. Sergei Zherlitsyn
- Bruker-OST, Carteret, NJ 07008, USA
 - Dr Yibing Huang, Dr Jeff Parrell and Dr Hanping Miao
- Applied Superconductivity Center/National High Field Magnetic Field Laboratory/Florida State University (ASC/NHMFL/FSU), 2031 E Paul Dirac Dr, Tallahassee, FL 32310, USA
 - Prof. David Larbalestier, Dr. Ulf Peter Trociewitz, Dr Huub Weijers AGNETIC and Dr Eric Hellstrom

HLD.

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

