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E�ective field theory (EFT) formulations of dark matter interactions have proven to be a con-
venient and popular way to quantify LHC bounds on dark matter. However, some of the non-
renormalizable EFT operators considered do not respect the gauge symmetries of the Standard
Model. We carefully discuss under what circumstances such operators can arise, and outline poten-
tial issues in their interpretation and application.

PACS numbers: 95.35.+d, 12.15.Lk

Introduction.
Despite overwhelming evidence that dark matter (DM) is
the dominant form of matter in the universe, we remain
ignorant about its fundamental nature. An appealing
class of DM candidates which enjoy considerable theo-
retical motivation are weakly interacting massive parti-
cles (WIMPs): heavy particles with weak-scale mass and
interaction strengths. Indeed, the production of WIMP-
type particles at the LHC is now one of the foremost
goals of the particle physics community.

Given the large number of WIMP-type theories, it is
desirable to express the DM interactions in a model-
independent manner. This can be achieved with an e⌅ec-
tive field theory (EFT) framework, in which a set of non-
renormalizable e⌅ective operators is used to parametrise
the interaction of a pair of DM particles with Standard
Model (SM) particles. The EFT operators would be ob-
tained as a low energy approximation to a renormalizable
theory by integrating out the particle(s) that mediates
the interaction. A standard set of operators have been
listed in Refs.[1, 2] (see also [3]).

For fermionic dark matter ⇥ interacting with SM
fermions f , these operators take the form:

1

⇥2
(⇥��⇥)

�
f�ff

⇥
, (1)

where ⇥ has dimensions of mass and is related to the
mass M and coupling constants gi of a heavy mediator
as ⇥ = M/

⌅
g1g2, and ��,f are various Gamma matrices.

While the EFT description is very useful at low ener-
gies, such as those relevant for direct detection, it now
well appreciated that the EFT approach may be unsuit-
able at LHC energies. Specifically, if the momentum
transfer in a process is comparable to or larger than the
mass of the mediator, the EFT will not provide an accu-
rate description of the underlying physics. Many recent
papers have attempted to quantify the point at which an
EFT description is no longer valid [4–6] or have proposed
the use of simplified models as an alternative framework
for undertaking DM searches at colliders [7–10].

Here we make a more subtle point: if an EFT operator
does not respect the weak gauge symmetries of the SM, it
may be invalid at energies comparable to the electroweak
scale, vEW ⇥ 246 GeV, rather than the energy scale of
new physics, ⇥. For example, if we attempt to use elec-
troweak gauge symmetry violating operators at LHC en-
ergies, serious di⇧culties can be encountered soon above
the EW scale, such as the bad high energy behaviour of
cross sections. An example is the well-known unitary vi-
olation rising as s/(4m2

W ) in SU(2)L non-invariant WW
scattering, due to the longitudinal W modes induced by
the symmetry breaking. In the SM, the violations are
removed by an internal Higgs particle, but internal fields
are “integrated out” in the EFT formalism. Thus, the
limit of validity for the operator is the weak scale if any
internal Higgs or W or Z particle is present in the Feyn-
man diagram. More generally, sacred symmetries like the
electroweak Ward identity can be violated, which implies
a weak-scale cuto⌅, as we explain later in this paper.

EFT Operators and Gauge Invariance.
The standard list of DM-SM e⌅ective operators [2] con-
tains several operators which violate the SM weak gauge
symmetries. We argue that if an EFT operator does not
respect the weak gauge symmetries of the SM, it neces-
sarily carries a pre-factor of the Higgs vev to some power,
a remnant of the SU(2)L scalar doublet

⇤ �
⇤

�+

�0 = 1⇥
2
(H + vEW + i⇤�0)

⌅
. (2)

Acting as an SU(2)L doublet, enough powers of ⇤ are re-
quired to form an SU(2)L-invariant operator. The fields
�± and ⇤� are gauged away to become, in unitary gauge,
the longitudinal modes of the W± and Z. So, in fact, it
is the real, neutral field 1⇥

2
(H + vEW) whose nth power

appears in the operator. Commonly, the H part of the
expression is omitted, leaving just an implicit vnEW in the
coe⇧cient. Of course, the vnEW must come with a ⇥�n.
Omission of the H part in the operator may ignore some
interesting phenomenology. In this paper, we will also
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The validity may break down even before hitting the scale of new physics 

for example: unitarity violation from WL scattering

2

ignore the H contributions to operators, and focus on
the operators proportional to (vEW/�)n. Such terms in
the coe⇤cients of SU(2)-violating operators clearly sat-
isfy the criterion that as SU(2) symmetry is restored,
vEW ⇧ 0, the operator’s coe⇤cient vanishes, and the
operator decouples. 1

Scalar operator: Consider the scalar (or pseudo
scalar) operators

mq

�3
(⌅⌅) (qq) =

mq

�3
(⌅⌅) (qLqR + h.c.) . (3)

This operator is clearly not SU(2)L invariant, as ⌅ and
qR are SU(2)L singlets, while qL is a component (either
uL or dL) of the usual left-handed SM doublet, QL. A
coupling to the Higgs boson has been anticipated by the
factor of mq in the coe⇤cient. Most authors invoke mini-
mal flavor violation to motivate this choice of normaliza-
tion. Although this SU(2)L violating e⇥ective operator
can be a good low energy description of new physics, no-
tice that its coe⇤cient cannot be arbitrarily large as it is
controlled by the Higgs vev. Although formally a dimen-
sion 6 operator, it is competitive only with dimension 7
operators, given its 1/�3 normalization.

Vector operator: Now consider vector (or axial vec-
tor) operators of the form

1

�2
(⌅�µ⌅) (q�µq) =

1

�2
(⌅�µ⌅) (qL�µqL + qR�µqR) .

(4)
These operators respect SU(2)L provided that the co-
e⇤cients of the uL and dL operators are equal2, Any
(uL�µuL) operator that does not have a matching dL
term should be suppressed by two powers of vEW/� (one
for each unmatched uL):

v2EW

�4
(⌅�µ⌅)(uL�µuL). (5)

Including the suppressed coe⇤cient, this SU(2)-violating
operator competes with dimension 8 operators, i.e., while
the SU(2) conserving (axial)vector operators are dimen-
sion 6, SU(2) violating (axial)vector operators compete
with subdominant, higher-order, dimension 8 operators.

Mono-W and SU(2)L invariance.
Issues arise if one tries to use gauge symmetry violating

1 In what follows, we will assume that there is but a single vev,
vEW. If there were further vevs, the good relation mW =
cos �W mZ requires the additional vevs to come from additional
doublet fields, or to be be small if coming from non-doublet fields.
The vevs then add in quadrature to give (2mW /g2)

2. Thus, any
individual vev will o�er an energy-scale below the SM vev. In the
sense that we will argue against larger energy-scales for e�ective
operators, our assumption of a single EW vev is conservative.

2 Isospin violating operators, such as those invoked in [11, 12], can
obviously be crafted from the RH quark fields.

operators at LHC energies. For particular processes, the
lack of gauge invariance can manifest as a violation of
unitarity in high energy scattering. As an example of
a problem encountered with an SU(2)L violating EFT,
consider the following operator:

1

�2
(⌅�µ⌅)

�
u�µu+ ⇤d�µd

⇥
. (6)

This Lagrangian violates SU(2)L, unless ⇤ = 1. The
case of unequal u and d couplings was considered in
Ref. [13], where a very strong constructive(destructive)
“interference e⇥ect” was found for ⇤ = �1(+1), the de-
gree of which depends on the energy scale. The analysis
of Ref. [13] was subsequently repeated by the LHC exper-
imental collaborations ATLAS [14, 15] and CMS [16, 17].
We shall demonstrate that the large cross section en-
hancement for ⇤ ⌃= +1 is in fact due the production of
longitudinally polarizedW ’s as a result of breaking gauge
invariance.
At parton level, the mono-W process is u(p1)d(p2) ⇧

⌅(k1)⌅(k2)W+(q). The relevant diagrams are given in
Fig.1, and the corresponding contributions to the ampli-
tude M ⇥M �⇥⇤�(q) ⇥ (M�

1 +M�
2 )⇥

⇤
�(q) are

M�
1 =

1

�2

⇧
v̄(p2)�

� �gW

/p2 � /q
�µ PL⌥

2
u(p1)

⌃
[ū(k1)�µv(k2)] ,

M�
2 =

⇤

�2

⇧
v̄(p2)�

µ gW

/p1 � /q
�� PL⌥

2
u(p1)

⌃
[ū(k1)�µv(k2)] , (7)

where gW is the weak coupling constant, and ⇥⇤� is the
polarization vector of the W . We note that the W lon-
gitudinal polarization vector at high energy is

⇥L� =
q�
mW

+O
⇤mW

E

⌅
⇤

⌥
s

mW
. (8)

Thus the high energy WL contribution to the usual po-
larization sum,

⌥
⇤ ⇥

⇤
�⇥

⇤ �
⇥ = �g�⇥ + q�q⇥

m2
W

, is ⇥L�⇥
L �
⇥ ⌅

q�q⇥/m2
W ⇤ s/m2

W .
We can verify that the sum of the two amplitudes of

Fig.1 is not gauge invariant unless ⇤ = 1, by observ-
ing that the relevant Ward identity is not satisfied. At
high energy, the Goldstone boson equivalence theorem re-
quires that the amplitude for emission of a longitudinally

�

�d

u

W
(a)M1

�

�d

u W

(b)M2

FIG. 1. Contributions to the mono-W process u(p1)d(p2) �
�(k1)�(k2)W

+(q), in the e�ective field theory framework.
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[ū(k1)�µv(k2)] ,

M�
2 =

⇤

�2

⇧
v̄(p2)�

µ gW

/p1 � /q
�� PL⌥

2
u(p1)

⌃
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ignore the H contributions to operators, and focus on
the operators proportional to (vEW/�)n. Such terms in
the coe⇤cients of SU(2)-violating operators clearly sat-
isfy the criterion that as SU(2) symmetry is restored,
vEW ⇧ 0, the operator’s coe⇤cient vanishes, and the
operator decouples. 1

Scalar operator: Consider the scalar (or pseudo
scalar) operators

mq
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(⌅⌅) (qq) =

mq
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(⌅⌅) (qLqR + h.c.) . (3)

This operator is clearly not SU(2)L invariant, as ⌅ and
qR are SU(2)L singlets, while qL is a component (either
uL or dL) of the usual left-handed SM doublet, QL. A
coupling to the Higgs boson has been anticipated by the
factor of mq in the coe⇤cient. Most authors invoke mini-
mal flavor violation to motivate this choice of normaliza-
tion. Although this SU(2)L violating e⇥ective operator
can be a good low energy description of new physics, no-
tice that its coe⇤cient cannot be arbitrarily large as it is
controlled by the Higgs vev. Although formally a dimen-
sion 6 operator, it is competitive only with dimension 7
operators, given its 1/�3 normalization.

Vector operator: Now consider vector (or axial vec-
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1

�2
(⌅�µ⌅) (qL�µqL + qR�µqR) .

(4)
These operators respect SU(2)L provided that the co-
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(uL�µuL) operator that does not have a matching dL
term should be suppressed by two powers of vEW/� (one
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Including the suppressed coe⇤cient, this SU(2)-violating
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sion 6, SU(2) violating (axial)vector operators compete
with subdominant, higher-order, dimension 8 operators.

Mono-W and SU(2)L invariance.
Issues arise if one tries to use gauge symmetry violating

1 In what follows, we will assume that there is but a single vev,
vEW. If there were further vevs, the good relation mW =
cos �W mZ requires the additional vevs to come from additional
doublet fields, or to be be small if coming from non-doublet fields.
The vevs then add in quadrature to give (2mW /g2)

2. Thus, any
individual vev will o�er an energy-scale below the SM vev. In the
sense that we will argue against larger energy-scales for e�ective
operators, our assumption of a single EW vev is conservative.

2 Isospin violating operators, such as those invoked in [11, 12], can
obviously be crafted from the RH quark fields.

operators at LHC energies. For particular processes, the
lack of gauge invariance can manifest as a violation of
unitarity in high energy scattering. As an example of
a problem encountered with an SU(2)L violating EFT,
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Ref. [13], where a very strong constructive(destructive)
“interference e⇥ect” was found for ⇤ = �1(+1), the de-
gree of which depends on the energy scale. The analysis
of Ref. [13] was subsequently repeated by the LHC exper-
imental collaborations ATLAS [14, 15] and CMS [16, 17].
We shall demonstrate that the large cross section en-
hancement for ⇤ ⌃= +1 is in fact due the production of
longitudinally polarizedW ’s as a result of breaking gauge
invariance.
At parton level, the mono-W process is u(p1)d(p2) ⇧

⌅(k1)⌅(k2)W+(q). The relevant diagrams are given in
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the SU(2) conserving (axial)vector operators are dimen-
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tice that its coe⇤cient cannot be arbitrarily large as it is
controlled by the Higgs vev. Although formally a dimen-
sion 6 operator, it is competitive only with dimension 7
operators, given its 1/�3 normalization.

Vector operator: Now consider vector (or axial vec-
tor) operators of the form
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These operators respect SU(2)L provided that the co-
e⇤cients of the uL and dL operators are equal2, Any
(uL�µuL) operator that does not have a matching dL
term should be suppressed by two powers of vEW/� (one
for each unmatched uL):
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(⌅�µ⌅)(uL�µuL). (5)

Including the suppressed coe⇤cient, this SU(2)-violating
operator competes with dimension 8 operators, i.e., while
the SU(2) conserving (axial)vector operators are dimen-
sion 6, SU(2) violating (axial)vector operators compete
with subdominant, higher-order, dimension 8 operators.

Mono-W and SU(2)L invariance.
Issues arise if one tries to use gauge symmetry violating

1 In what follows, we will assume that there is but a single vev,
vEW. If there were further vevs, the good relation mW =
cos �W mZ requires the additional vevs to come from additional
doublet fields, or to be be small if coming from non-doublet fields.
The vevs then add in quadrature to give (2mW /g2)

2. Thus, any
individual vev will o�er an energy-scale below the SM vev. In the
sense that we will argue against larger energy-scales for e�ective
operators, our assumption of a single EW vev is conservative.

2 Isospin violating operators, such as those invoked in [11, 12], can
obviously be crafted from the RH quark fields.

operators at LHC energies. For particular processes, the
lack of gauge invariance can manifest as a violation of
unitarity in high energy scattering. As an example of
a problem encountered with an SU(2)L violating EFT,
consider the following operator:
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This Lagrangian violates SU(2)L, unless ⇤ = 1. The
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“interference e⇥ect” was found for ⇤ = �1(+1), the de-
gree of which depends on the energy scale. The analysis
of Ref. [13] was subsequently repeated by the LHC exper-
imental collaborations ATLAS [14, 15] and CMS [16, 17].
We shall demonstrate that the large cross section en-
hancement for ⇤ ⌃= +1 is in fact due the production of
longitudinally polarizedW ’s as a result of breaking gauge
invariance.
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⌅(k1)⌅(k2)W+(q). The relevant diagrams are given in
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doublet fields, or to be be small if coming from non-doublet fields.
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individual vev will o�er an energy-scale below the SM vev. In the
sense that we will argue against larger energy-scales for e�ective
operators, our assumption of a single EW vev is conservative.

2 Isospin violating operators, such as those invoked in [11, 12], can
obviously be crafted from the RH quark fields.

operators at LHC energies. For particular processes, the
lack of gauge invariance can manifest as a violation of
unitarity in high energy scattering. As an example of
a problem encountered with an SU(2)L violating EFT,
consider the following operator:

1

�2
(⌅�µ⌅)

�
u�µu+ ⇤d�µd

⇥
. (6)

This Lagrangian violates SU(2)L, unless ⇤ = 1. The
case of unequal u and d couplings was considered in
Ref. [13], where a very strong constructive(destructive)
“interference e⇥ect” was found for ⇤ = �1(+1), the de-
gree of which depends on the energy scale. The analysis
of Ref. [13] was subsequently repeated by the LHC exper-
imental collaborations ATLAS [14, 15] and CMS [16, 17].
We shall demonstrate that the large cross section en-
hancement for ⇤ ⌃= +1 is in fact due the production of
longitudinally polarizedW ’s as a result of breaking gauge
invariance.
At parton level, the mono-W process is u(p1)d(p2) ⇧

⌅(k1)⌅(k2)W+(q). The relevant diagrams are given in
Fig.1, and the corresponding contributions to the ampli-
tude M ⇥M �⇥⇤�(q) ⇥ (M�

1 +M�
2 )⇥

⇤
�(q) are

M�
1 =

1

�2

⇧
v̄(p2)�

� �gW

/p2 � /q
�µ PL⌥

2
u(p1)

⌃
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coupling to the Higgs boson has been anticipated by the
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controlled by the Higgs vev. Although formally a dimen-
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operators, given its 1/�3 normalization.
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(uL�µuL) operator that does not have a matching dL
term should be suppressed by two powers of vEW/� (one
for each unmatched uL):
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Including the suppressed coe⇤cient, this SU(2)-violating
operator competes with dimension 8 operators, i.e., while
the SU(2) conserving (axial)vector operators are dimen-
sion 6, SU(2) violating (axial)vector operators compete
with subdominant, higher-order, dimension 8 operators.

Mono-W and SU(2)L invariance.
Issues arise if one tries to use gauge symmetry violating

1 In what follows, we will assume that there is but a single vev,
vEW. If there were further vevs, the good relation mW =
cos �W mZ requires the additional vevs to come from additional
doublet fields, or to be be small if coming from non-doublet fields.
The vevs then add in quadrature to give (2mW /g2)

2. Thus, any
individual vev will o�er an energy-scale below the SM vev. In the
sense that we will argue against larger energy-scales for e�ective
operators, our assumption of a single EW vev is conservative.
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Ref. [13], where a very strong constructive(destructive)
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where gW is the weak coupling constant, and ⇥⇤� is the
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due to longitudinal W production

at high energy the polarization vector is which contributes to the polarization sum



3

polarized WL is equivalent to that for the emission of the
corresponding Goldstone boson. Since the Goldstone bo-
son couples to quarks with strength proportional to their
mass, these terms are close to zero. (See Ref.[18] for a
similar discussion about the related process ⌦⌦⌃ ⇧eW .)
The Ward identity for the longitudinal W at high energy
therefore takes the form

M�⇥L� ⇤
q�
mW

M�(q, ...) = iM( +(q)) ⌥ 0. (9)

For the sum of the mono-W amplitudes of Fig.1 we find

q�M� =
gW
�2

�
v̄(p2) (1� ⌃) �µ

PL 
2
u(p1)

 
[ū(k1)�µv(k2)] ,

(10)
which clearly vanishes only for ⌃ = 1.

The “interference e⇥ect” seen in the mono-W process
is not truly due to constructive/destructive interference
as previously claimed, but is just a manifestation of the

fact that the breaking of electroweak gauge-invariance
has given rise to a WL component. The increased cross
section for ⌃ �= 1 is in fact due to unphysical terms that
grow like s/m2

W , which originate from the +q�q⇥/m2
W

term in the polarization sum. At high energy, these terms
would grow large enough to violate unitarity. But even
at lower energy, their presence may be problematic.
To explicitly demonstrate this behaviour, we now de-

rive an analytic expression for the parton-level mono-W
process du ⌃ ⌦⌦W+. We work in the center-of-mass
frame, and follow the phase space parametrization de-
scribed in Section V of Ref.[19]. We define ⌅ to be the
angle of the W w.r.t. the beam line and x = 2EW /

 
s,

where
 
s is the total invariant mass. For simplicity we

take m⌅ = 0 (the cross section will be approximately in-
dependent of m⌅ for m2

⌅ ⌅ s). We include a factor of
1/3 from averaging over initial state quark colors.
For ⌃ = 1 the di⇥erential cross section is well behaved

and is given by

d2�
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W

⇥2 , (11)

where
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� x2 + 20x� 17

⇥
+ 16m6

W (cos (2⌅) + 3)
↵
,

If we take the limit mW ⌃ 0, remove the color factor 1/3, and replace gW /
 
2 with the electron charge e, we find

Eq. 11 reproduces the cross section for the e+e� ⌃ ⌦⌦� monophoton process reported by Ref.[19, 20] for m⌅ = 0 and
unpolarized e+e� beams. This provides a useful check for our more complicated mono-W calculation.

For ⌃ �= 1, however, the cross section is not well behaved at high energy. The +q�q⇥/m2
W term in the polarization

sum contributes to the cross section a term

d2�
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which violates unitarity when s⇧ m2
W .

The total cross sections, for m⌅ = 0, are plotted in
Figs(2,3) as a function of

 
s. We also calculate the cross

sections in MadGraph [21], and find the results agree.
For brevity of notation, we have defined �1 and �2 to
be the contributions to the cross section from the �g�⇥
and +q�q⇥/m2

W terms in the polarization sum, respec-
tively. The ⌃ = 0,�1 cross sections grow faster with

 
s

than for ⌃ = 1. At LHC energies the cross sections are
already dominated by the unphysical terms arising from
the longitudinal polarization, unless ⌃ ⌥ 1.

From Renormalizable Models to EFTs.
Let us now consider a renormalizable, gauge invariant,
model of DM interactions, and examine the way in which
unequal couplings to u and d quarks can be obtained.
Consider the case where qq ⌃ ⌦⌦ is mediated by the
exchange of a t-channel scalar. The Lagrangian is given
by

Lint = fQL⇤⌦R + h.c

= fud
�
⇤uuL + ⇤ddL

⇥
⌦R + h.c., (13)

where QL = (uL, dL)T is the quark doublet, ⇤ =
(⇤u, ⇤d)T ⇥ (3, 2, 1/3) is a scalar field that transforms
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FIG. 2. Total parton-level cross sections as a function of en-
ergy, for � = 600 GeV and particular choices of �. Upper:
contribution from the +q�q⇥/m

2
W term in the polarization

sum. The cross section scales simply as (1� �)2. Lower: con-
tribution of the �g�⇥ term in the polarization sum. At LHC
energies the q�q⇥ terms dominates unless � ⇥ 1. (Notice the
di⇥ering vertical scales between the upper and lower panels.)

under the SM gauge group like QL, and f is a coupling
constant. Such couplings are present in supersymmetric
(SUSY) models, with ⇧ identified as a neutralino and ⇥ a
squark doublet, and have been considered as a simplified
model for DM interactions in Refs. [22–25].

If we take the EFT limit, assuming the ⇥ are very
heavy, the lowest order operators are of dimension 6:

1

⇥2
u

(u�u)(⇧�⇧) and
1

⇥2
d

(d�d)(⇧�⇧), (14)

where the suppression scales are ⇥u,d ⌅ m�u,d/f . The
relevant Lorentz structure � is a sum of vector and ax-
ial vector terms as can be seen by Fierz transforming
the t-channel matrix elements obtained from Eq.13 to
s-channel form [26].

The strength of DM interactions with u and d quarks
can di⌅er if the masses of ⇥u and ⇥d are non-degenerate.
However, given that (⇥u, ⇥d) form an electroweak doublet,
their mass splitting must be controlled by vEW. The
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FIG. 3. Total parton-level cross sections for � = 600 GeV, for
particular choices of �. Solid lines are the analytic calculation
and dots are the MadGraph calculation.

relevant terms in the scalar potential are [27]

V = m2
1(⇤

†⇤) +
1

2
⇤1(⇤

†⇤)2 +m2
2(⇥

†⇥) +
1

2
⇤2(⇥

†⇥)2

+ ⇤3(⇤
†⇤)(⇥†⇥) + ⇤4(⇤

†⇥)(⇥†⇤). (15)

If m2
1 < 0 and m2

2 > 0, the SM Higgs doublet obtains a
non-zero vev, while the ⇥ does not. The presence of ⇤4

splits the ⇥ masses as

m2
�d

= m2
2 + (⇤3 + ⇤4)v

2
EW , (16)

m2
�u

= m2
2 + ⇤3v

2
EW , (17)

implying that �m2
� ⇥ m2

�d
� m2

�u
= ⇤4 v2EW . Note that

while we have engineered unequal scalar masses, and thus
unequal DM couplings to u and d quarks, we do not have
complete freedom. The parameter ⌅ of Eq.6 is given by
⌅ = 1/(1+�m2

�/⇥
2) = 1/(1+⇤4 v2EW /⇥2). For ⇥ >⇤ 1 TeV

and a perturbative value for ⇤4, ⌅ will not deviate far
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malizable model.) Furthermore, it is clear that SU(2)L
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At LHC energies the cross sections are dominated by the unphysical terms arising from the 
longitudinal polarization

2

ignore the H contributions to operators, and focus on
the operators proportional to (vEW/�)n. Such terms in
the coe⇤cients of SU(2)-violating operators clearly sat-
isfy the criterion that as SU(2) symmetry is restored,
vEW ⇧ 0, the operator’s coe⇤cient vanishes, and the
operator decouples. 1

Scalar operator: Consider the scalar (or pseudo
scalar) operators

mq

�3
(⌅⌅) (qq) =

mq

�3
(⌅⌅) (qLqR + h.c.) . (3)

This operator is clearly not SU(2)L invariant, as ⌅ and
qR are SU(2)L singlets, while qL is a component (either
uL or dL) of the usual left-handed SM doublet, QL. A
coupling to the Higgs boson has been anticipated by the
factor of mq in the coe⇤cient. Most authors invoke mini-
mal flavor violation to motivate this choice of normaliza-
tion. Although this SU(2)L violating e⇥ective operator
can be a good low energy description of new physics, no-
tice that its coe⇤cient cannot be arbitrarily large as it is
controlled by the Higgs vev. Although formally a dimen-
sion 6 operator, it is competitive only with dimension 7
operators, given its 1/�3 normalization.

Vector operator: Now consider vector (or axial vec-
tor) operators of the form

1

�2
(⌅�µ⌅) (q�µq) =

1

�2
(⌅�µ⌅) (qL�µqL + qR�µqR) .

(4)
These operators respect SU(2)L provided that the co-
e⇤cients of the uL and dL operators are equal2, Any
(uL�µuL) operator that does not have a matching dL
term should be suppressed by two powers of vEW/� (one
for each unmatched uL):

v2EW

�4
(⌅�µ⌅)(uL�µuL). (5)

Including the suppressed coe⇤cient, this SU(2)-violating
operator competes with dimension 8 operators, i.e., while
the SU(2) conserving (axial)vector operators are dimen-
sion 6, SU(2) violating (axial)vector operators compete
with subdominant, higher-order, dimension 8 operators.

Mono-W and SU(2)L invariance.
Issues arise if one tries to use gauge symmetry violating

1 In what follows, we will assume that there is but a single vev,
vEW. If there were further vevs, the good relation mW =
cos �W mZ requires the additional vevs to come from additional
doublet fields, or to be be small if coming from non-doublet fields.
The vevs then add in quadrature to give (2mW /g2)

2. Thus, any
individual vev will o�er an energy-scale below the SM vev. In the
sense that we will argue against larger energy-scales for e�ective
operators, our assumption of a single EW vev is conservative.

2 Isospin violating operators, such as those invoked in [11, 12], can
obviously be crafted from the RH quark fields.

operators at LHC energies. For particular processes, the
lack of gauge invariance can manifest as a violation of
unitarity in high energy scattering. As an example of
a problem encountered with an SU(2)L violating EFT,
consider the following operator:

1

�2
(⌅�µ⌅)

�
u�µu+ ⇤d�µd

⇥
. (6)

This Lagrangian violates SU(2)L, unless ⇤ = 1. The
case of unequal u and d couplings was considered in
Ref. [13], where a very strong constructive(destructive)
“interference e⇥ect” was found for ⇤ = �1(+1), the de-
gree of which depends on the energy scale. The analysis
of Ref. [13] was subsequently repeated by the LHC exper-
imental collaborations ATLAS [14, 15] and CMS [16, 17].
We shall demonstrate that the large cross section en-
hancement for ⇤ ⌃= +1 is in fact due the production of
longitudinally polarizedW ’s as a result of breaking gauge
invariance.
At parton level, the mono-W process is u(p1)d(p2) ⇧

⌅(k1)⌅(k2)W+(q). The relevant diagrams are given in
Fig.1, and the corresponding contributions to the ampli-
tude M ⇥M �⇥⇤�(q) ⇥ (M�

1 +M�
2 )⇥

⇤
�(q) are
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where gW is the weak coupling constant, and ⇥⇤� is the
polarization vector of the W . We note that the W lon-
gitudinal polarization vector at high energy is

⇥L� =
q�
mW

+O
⇤mW

E
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⇤
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s

mW
. (8)

Thus the high energy WL contribution to the usual po-
larization sum,
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, is ⇥L�⇥
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q�q⇥/m2
W ⇤ s/m2

W .
We can verify that the sum of the two amplitudes of

Fig.1 is not gauge invariant unless ⇤ = 1, by observ-
ing that the relevant Ward identity is not satisfied. At
high energy, the Goldstone boson equivalence theorem re-
quires that the amplitude for emission of a longitudinally
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FIG. 1. Contributions to the mono-W process u(p1)d(p2) �
�(k1)�(k2)W

+(q), in the e�ective field theory framework.
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unitarity violation arises

3

polarized WL is equivalent to that for the emission of the
corresponding Goldstone boson. Since the Goldstone bo-
son couples to quarks with strength proportional to their
mass, these terms are close to zero. (See Ref.[18] for a
similar discussion about the related process ⌦⌦⌃ ⇧eW .)
The Ward identity for the longitudinal W at high energy
therefore takes the form

M�⇥L� ⇤
q�
mW

M�(q, ...) = iM( +(q)) ⌥ 0. (9)

For the sum of the mono-W amplitudes of Fig.1 we find

q�M� =
gW
�2

�
v̄(p2) (1� ⌃) �µ

PL 
2
u(p1)

 
[ū(k1)�µv(k2)] ,

(10)
which clearly vanishes only for ⌃ = 1.

The “interference e⇥ect” seen in the mono-W process
is not truly due to constructive/destructive interference
as previously claimed, but is just a manifestation of the

fact that the breaking of electroweak gauge-invariance
has given rise to a WL component. The increased cross
section for ⌃ �= 1 is in fact due to unphysical terms that
grow like s/m2

W , which originate from the +q�q⇥/m2
W

term in the polarization sum. At high energy, these terms
would grow large enough to violate unitarity. But even
at lower energy, their presence may be problematic.
To explicitly demonstrate this behaviour, we now de-

rive an analytic expression for the parton-level mono-W
process du ⌃ ⌦⌦W+. We work in the center-of-mass
frame, and follow the phase space parametrization de-
scribed in Section V of Ref.[19]. We define ⌅ to be the
angle of the W w.r.t. the beam line and x = 2EW /

 
s,

where
 
s is the total invariant mass. For simplicity we

take m⌅ = 0 (the cross section will be approximately in-
dependent of m⌅ for m2

⌅ ⌅ s). We include a factor of
1/3 from averaging over initial state quark colors.
For ⌃ = 1 the di⇥erential cross section is well behaved

and is given by

d2�

dxd cos ⌅
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⇤=1

=
A

3228⌥3�4
�
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+ 16m6

W (cos (2⌅) + 3)
↵
,

If we take the limit mW ⌃ 0, remove the color factor 1/3, and replace gW /
 
2 with the electron charge e, we find

Eq. 11 reproduces the cross section for the e+e� ⌃ ⌦⌦� monophoton process reported by Ref.[19, 20] for m⌅ = 0 and
unpolarized e+e� beams. This provides a useful check for our more complicated mono-W calculation.

For ⌃ �= 1, however, the cross section is not well behaved at high energy. The +q�q⇥/m2
W term in the polarization

sum contributes to the cross section a term

d2�
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which violates unitarity when s⇧ m2
W .

The total cross sections, for m⌅ = 0, are plotted in
Figs(2,3) as a function of

 
s. We also calculate the cross

sections in MadGraph [21], and find the results agree.
For brevity of notation, we have defined �1 and �2 to
be the contributions to the cross section from the �g�⇥
and +q�q⇥/m2

W terms in the polarization sum, respec-
tively. The ⌃ = 0,�1 cross sections grow faster with

 
s

than for ⌃ = 1. At LHC energies the cross sections are
already dominated by the unphysical terms arising from
the longitudinal polarization, unless ⌃ ⌥ 1.

From Renormalizable Models to EFTs.
Let us now consider a renormalizable, gauge invariant,
model of DM interactions, and examine the way in which
unequal couplings to u and d quarks can be obtained.
Consider the case where qq ⌃ ⌦⌦ is mediated by the
exchange of a t-channel scalar. The Lagrangian is given
by

Lint = fQL⇤⌦R + h.c

= fud
�
⇤uuL + ⇤ddL

⇥
⌦R + h.c., (13)

where QL = (uL, dL)T is the quark doublet, ⇤ =
(⇤u, ⇤d)T ⇥ (3, 2, 1/3) is a scalar field that transforms
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FIG. 2. Total parton-level cross sections as a function of en-
ergy, for � = 600 GeV and particular choices of �. Upper:
contribution from the +q�q⇥/m

2
W term in the polarization

sum. The cross section scales simply as (1� �)2. Lower: con-
tribution of the �g�⇥ term in the polarization sum. At LHC
energies the q�q⇥ terms dominates unless � ⇥ 1. (Notice the
di⇥ering vertical scales between the upper and lower panels.)

under the SM gauge group like QL, and f is a coupling
constant. Such couplings are present in supersymmetric
(SUSY) models, with ⇧ identified as a neutralino and ⇥ a
squark doublet, and have been considered as a simplified
model for DM interactions in Refs. [22–25].

If we take the EFT limit, assuming the ⇥ are very
heavy, the lowest order operators are of dimension 6:

1

⇥2
u

(u�u)(⇧�⇧) and
1

⇥2
d

(d�d)(⇧�⇧), (14)

where the suppression scales are ⇥u,d ⌅ m�u,d/f . The
relevant Lorentz structure � is a sum of vector and ax-
ial vector terms as can be seen by Fierz transforming
the t-channel matrix elements obtained from Eq.13 to
s-channel form [26].

The strength of DM interactions with u and d quarks
can di⌅er if the masses of ⇥u and ⇥d are non-degenerate.
However, given that (⇥u, ⇥d) form an electroweak doublet,
their mass splitting must be controlled by vEW. The

⌅=1

⌅=0

⌅=-1

⇥=600 GeV

0 2 4 6 8 10 12 14

10 � 3

10 � 2

10 �1

1

101

10 2

10 3

10 4

10 5

s �TeV ⇥

⇤
�pb⇥

FIG. 3. Total parton-level cross sections for � = 600 GeV, for
particular choices of �. Solid lines are the analytic calculation
and dots are the MadGraph calculation.
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and a perturbative value for ⇤4, ⌅ will not deviate far
from 1. (Negative ⌅ can not be obtained from our renor-
malizable model.) Furthermore, it is clear that SU(2)L
violating e⌅ects enter the EFT at order v2EW /⇥4, i.e., the
same order in ⇥ as a dimension 8 operator.

In the renormalizable theory, the mono-W process
proceeds via the gauge invariant set of diagrams in
Fig.4 3 [28–30]. In the EFT limit, the diagrams in
Fig.4(a) and (b) map onto those in Fig.1(a) and (b) re-
spectively. The diagram in Fig.4(c), in which the W is

3 In the good EW SU(2) limit, the ⇥u and ⇥d are mass degener-
ate, and the massless W± emitted in diagram (c) establishes the
validity of the EW Ward identity [28, 29]. When EW SU(2) is
broken, the ⇥u and ⇥d masses are split, and the new massive-W
longitudinal mode must restore the EW Ward identity by cou-
pling to the ⇥ proportional to �m2

⇤ [27]. This argument provides
an interpretation of the result found earlier in [27] that the in-
ternal longitudinal mode couples proportional to �m2

⇤ . In fact,
in [27] it was shown that this longitudinal W mode will dominate
the W emission probability for some range of model parameters.
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under the SM gauge group like QL, and f is a coupling
constant. Such couplings are present in supersymmetric
(SUSY) models, with ⇧ identified as a neutralino and ⇥ a
squark doublet, and have been considered as a simplified
model for DM interactions in Refs. [22–25].

If we take the EFT limit, assuming the ⇥ are very
heavy, the lowest order operators are of dimension 6:
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relevant Lorentz structure � is a sum of vector and ax-
ial vector terms as can be seen by Fierz transforming
the t-channel matrix elements obtained from Eq.13 to
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The strength of DM interactions with u and d quarks
can di⌅er if the masses of ⇥u and ⇥d are non-degenerate.
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proceeds via the gauge invariant set of diagrams in
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Fig.4(a) and (b) map onto those in Fig.1(a) and (b) re-
spectively. The diagram in Fig.4(c), in which the W is

3 In the good EW SU(2) limit, the ⇥u and ⇥d are mass degener-
ate, and the massless W± emitted in diagram (c) establishes the
validity of the EW Ward identity [28, 29]. When EW SU(2) is
broken, the ⇥u and ⇥d masses are split, and the new massive-W
longitudinal mode must restore the EW Ward identity by cou-
pling to the ⇥ proportional to �m2

⇤ [27]. This argument provides
an interpretation of the result found earlier in [27] that the in-
ternal longitudinal mode couples proportional to �m2

⇤ . In fact,
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under the SM gauge group like QL, and f is a coupling
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from 1. (Negative ⌅ can not be obtained from our renor-
malizable model.) Furthermore, it is clear that SU(2)L
violating e⌅ects enter the EFT at order v2EW /⇥4, i.e., the
same order in ⇥ as a dimension 8 operator.
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proceeds via the gauge invariant set of diagrams in
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Fig.4(a) and (b) map onto those in Fig.1(a) and (b) re-
spectively. The diagram in Fig.4(c), in which the W is

3 In the good EW SU(2) limit, the ⇥u and ⇥d are mass degener-
ate, and the massless W± emitted in diagram (c) establishes the
validity of the EW Ward identity [28, 29]. When EW SU(2) is
broken, the ⇥u and ⇥d masses are split, and the new massive-W
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pling to the ⇥ proportional to �m2

⇤ [27]. This argument provides
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under the SM gauge group like QL, and f is a coupling
constant. Such couplings are present in supersymmetric
(SUSY) models, with ⇧ identified as a neutralino and ⇥ a
squark doublet, and have been considered as a simplified
model for DM interactions in Refs. [22–25].
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malizable model.) Furthermore, it is clear that SU(2)L
violating e⌅ects enter the EFT at order v2EW /⇥4, i.e., the
same order in ⇥ as a dimension 8 operator.
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Fig.4 3 [28–30]. In the EFT limit, the diagrams in
Fig.4(a) and (b) map onto those in Fig.1(a) and (b) re-
spectively. The diagram in Fig.4(c), in which the W is
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ate, and the massless W± emitted in diagram (c) establishes the
validity of the EW Ward identity [28, 29]. When EW SU(2) is
broken, the ⇥u and ⇥d masses are split, and the new massive-W
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FIG. 4. Contributions to the mono-W process u(p1)d(p2) � �(k1)�(k2)W
+(q), in a UV complete model.

radiated from the ⇥, is suppressed by an additional heavy
scalar propagator, and hence appears subdominant to the
ISR diagrams. It enters the EFT as a dimension 8 op-
erator, contributing on an equal footing with the SU(2)
violating contributions of diagrams (a) and (b) [31]. Fi-
nally, note that in the renormalizable theory, in the high
energy limit, WL production arises solely from the am-
plitude of Fig.4(c), and only when �m2

� �= 0.

Conclusion.
An important observation of Ref.[13] is that, of the mono-
X processes, the mono-W is unique in its ability to probe
di⇥erent DM couplings to u and d quarks. This impor-
tant insight is correct. However, we have argued that
the size of any SU(2)L violating di⇥erence of the u and
d quark couplings must be protected by the EW scale,
and therefore cannot be arbitrarily large. SU(2)L vio-
lating operators can be obtained by integrating out the
SM Higgs or by including Higgs vev insertions. There-
fore, they should have coe⇤cients suppressed by powers
of (vEW/�) or (mfermion/�) and thus are of higher or-
der in 1/� than they would naively appear. To include
SU(2) violating e⇥ects in a way that is self consistent
and properly respects the EW Ward identity, one should
use a renormalizable, gauge invariant, model rather than
an EFT, to avoid spurious WL contributions. These ob-
servations will be an important guide to the LHC collab-
orations in the interpretation of their current [14–17] and
forthcoming mono-W dark matter search results, and to
theorists constructing EFTs.
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(c) same dim-8 order as the gauge violating effects and WL only arises for the case of mass 
splitting 

other completions can produce different values of 

Now mono-W proceeds through the gauge invariant diagrams

2

ignore the H contributions to operators, and focus on
the operators proportional to (vEW/�)n. Such terms in
the coe⇤cients of SU(2)-violating operators clearly sat-
isfy the criterion that as SU(2) symmetry is restored,
vEW ⇧ 0, the operator’s coe⇤cient vanishes, and the
operator decouples. 1

Scalar operator: Consider the scalar (or pseudo
scalar) operators

mq

�3
(⌅⌅) (qq) =

mq

�3
(⌅⌅) (qLqR + h.c.) . (3)

This operator is clearly not SU(2)L invariant, as ⌅ and
qR are SU(2)L singlets, while qL is a component (either
uL or dL) of the usual left-handed SM doublet, QL. A
coupling to the Higgs boson has been anticipated by the
factor of mq in the coe⇤cient. Most authors invoke mini-
mal flavor violation to motivate this choice of normaliza-
tion. Although this SU(2)L violating e⇥ective operator
can be a good low energy description of new physics, no-
tice that its coe⇤cient cannot be arbitrarily large as it is
controlled by the Higgs vev. Although formally a dimen-
sion 6 operator, it is competitive only with dimension 7
operators, given its 1/�3 normalization.

Vector operator: Now consider vector (or axial vec-
tor) operators of the form

1

�2
(⌅�µ⌅) (q�µq) =

1

�2
(⌅�µ⌅) (qL�µqL + qR�µqR) .

(4)
These operators respect SU(2)L provided that the co-
e⇤cients of the uL and dL operators are equal2, Any
(uL�µuL) operator that does not have a matching dL
term should be suppressed by two powers of vEW/� (one
for each unmatched uL):

v2EW

�4
(⌅�µ⌅)(uL�µuL). (5)

Including the suppressed coe⇤cient, this SU(2)-violating
operator competes with dimension 8 operators, i.e., while
the SU(2) conserving (axial)vector operators are dimen-
sion 6, SU(2) violating (axial)vector operators compete
with subdominant, higher-order, dimension 8 operators.

Mono-W and SU(2)L invariance.
Issues arise if one tries to use gauge symmetry violating

1 In what follows, we will assume that there is but a single vev,
vEW. If there were further vevs, the good relation mW =
cos �W mZ requires the additional vevs to come from additional
doublet fields, or to be be small if coming from non-doublet fields.
The vevs then add in quadrature to give (2mW /g2)

2. Thus, any
individual vev will o�er an energy-scale below the SM vev. In the
sense that we will argue against larger energy-scales for e�ective
operators, our assumption of a single EW vev is conservative.

2 Isospin violating operators, such as those invoked in [11, 12], can
obviously be crafted from the RH quark fields.

operators at LHC energies. For particular processes, the
lack of gauge invariance can manifest as a violation of
unitarity in high energy scattering. As an example of
a problem encountered with an SU(2)L violating EFT,
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�
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. (6)
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hancement for ⇤ ⌃= +1 is in fact due the production of
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invariance.
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where gW is the weak coupling constant, and ⇥⇤� is the
polarization vector of the W . We note that the W lon-
gitudinal polarization vector at high energy is

⇥L� =
q�
mW

+O
⇤mW

E

⌅
⇤

⌥
s

mW
. (8)

Thus the high energy WL contribution to the usual po-
larization sum,

⌥
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m2
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, is ⇥L�⇥
L �
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q�q⇥/m2
W ⇤ s/m2

W .
We can verify that the sum of the two amplitudes of

Fig.1 is not gauge invariant unless ⇤ = 1, by observ-
ing that the relevant Ward identity is not satisfied. At
high energy, the Goldstone boson equivalence theorem re-
quires that the amplitude for emission of a longitudinally

�

�d

u

W
(a)M1

�

�d

u W

(b)M2

FIG. 1. Contributions to the mono-W process u(p1)d(p2) �
�(k1)�(k2)W

+(q), in the e�ective field theory framework.
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Fig. 14. The SMICA CMB map (with 3 % of the sky replaced by a constrained Gaussian realization).

Fig. 15. Spatial distribution of the noise RMS on a color scale of 25 µK
for the SMICA CMB map. It has been estimated from the noise map
obtained by running SMICA through the half-ring maps and taking the
half-di�erence. The average noise RMS is 17 µK. SMICA does not
produce CMB values in the blanked pixels. They are replaced by a con-
strained Gaussian realization.

for bandpowers at ⌅ < 50, using the cleanest 87 % of the sky. We
supplement this ‘low-⌅’ temperature likelihood with the pixel-
based polarization likelihood at large-scales (⌅ < 23) from the
WMAP 9-year data release (Bennett et al. 2012). These need to
be corrected for the dust contamination, for which we use the
WMAP procedure. However, we have checked that switching
to a correction based on the 353 GHz Planck polarization data,
the parameters extracted from the likelihood are changed by less
than 1⇥.

At smaller scales, 50 < ⌅ < 2500, we compute the power
spectra of the multi-frequency Planck temperature maps, and
their associated covariance matrices, using the 100, 143, and

Fig. 16. Angular spectra for the SMICA CMB products, evaluated over
the confidence mask, and after removing the beam window function:
spectrum of the CMB map (dark blue), spectrum of the noise in that
map from the half-rings (magenta), their di�erence (grey) and a binned
version of it (red).

217 GHz channels, and cross-spectra between these channels11.
Given the limited frequency range used in this part of the analy-
sis, the Galaxy is more conservatively masked to avoid contam-
ination by Galactic dust, retaining 58 % of the sky at 100 GHz,
and 37 % at 143 and 217 GHz.

11 interband calibration uncertainties have been estimated by compar-
ing directly the cross spectra and found to be within 2.4 and 3.4⇥10�3

respectively for 100 and 217 GHz with respect to 143 GHz

25
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Parameter TT+lowP TT+lowP+lensing TT+lowP+BAO TT,TE,EE+lowP
⇤bh2 0.02222 ± 0.00023 0.02226 ± 0.00023 0.02226 ± 0.00020 0.02225 ± 0.00016
⇤ch2 0.1197 ± 0.0022 0.1186 ± 0.0020 0.1190 ± 0.0013 0.1198 ± 0.0015

100�MC 1.04085 ± 0.00047 1.04103 ± 0.00046 1.04095 ± 0.00041 1.04077 ± 0.00032
⇤ 0.078 ± 0.019 0.066 ± 0.016 0.080 ± 0.017 0.079 ± 0.017

ln(1010As) 3.089 ± 0.036 3.062 ± 0.029 3.093 ± 0.034 3.094 ± 0.034
ns 0.9655 ± 0.0062 0.9677 ± 0.0060 0.9673 ± 0.0045 0.9645 ± 0.0049

H0 67.31 ± 0.96 67.81 ± 0.92 67.63 ± 0.57 67.27 ± 0.66
⇤m 0.315 ± 0.013 0.308 ± 0.012 0.3104 ± 0.0076 0.3156 ± 0.0091

Table 3. Confidence limits on the parameters of the base ⇥CDM model, for various combinations of Planck 2015 data, at the 68%
confidence level.

for ns with respect to the nominal mission results is due to sev-
eral improvements in the data processing and likelihood which
are discussed in Sect. 3, including the removal of the 4-K cooler
systematics. For the values of other cosmological parameters in
the base ⇥CDM model, see Table 3. We also provide the results
for the base ⇥CDM model and extended models online.5

When the Planck high-� polarization is combined with tem-
perature, we obtain

ns = 0.9645 ± 0.0049 (68 % CL, Planck TT,TE,EE+lowP),
(15)

together with ⇤ = 0.079 ± 0.017 (68 % CL), which is consis-
tent with the TT+lowP results. The Planck high-� polarization
pulls up ⇤ to a slightly higher value. When the Planck lensing
measurement is added to the temperature data, we obtain

ns = 0.9677 ± 0.0060 (68 % CL, Planck TT+lowP+lensing),
(16)

with ⇤ = 0.066 ± 0.016 (68 % CL). The shift towards slightly
smaller values of the optical depth is driven by a marginal pref-
erence for a smaller primordial amplitude, As, in the Planck
lensing data (Planck Collaboration XV, 2015). Given that the
temperature data provide a sharp constraint on the combination
e�2⇤As, a slightly lower As requires a smaller optical depth to
reionization.

4.2. Viability of the Harrison-Zeldovich spectrum

Even though the estimated scalar spectral index has risen slightly
with respect to the Planck 2013 release, the assumption of
a Harrison-Zeldovich (HZ) scale-invariant spectrum (Harrison,
1970; Peebles & Yu, 1970; Zeldovich, 1972) continues to be
disfavoured (with a modest increase in significance, from 5.1⇥
in 2013 to 5.6⇥ today), because the error bar on ns has de-
creased. The value of ns inferred from the Planck 2015 tem-
perature plus large-scale polarization data lies 5.6 standard de-
viations away from unity (with a corresponding �⌅2 = 29.9),
if one assumes the base ⇥CDM late-time cosmological model.
If we consider more general reionization models, parameterized
by a principal component analysis (Mortonson & Hu, 2008) in-
stead of ⇤ (where reionization is assumed to have occured in-
stantaneously), we find �⌅2 = 14.9 for ns = 1. Previously,
simple one-parameter extensions of the base model, such as
⇥CDM+Ne⌅ (where Ne⌅ is the effective number of neutrino
flavours) or ⇥CDM+YP (where YP is the primordial value of the
helium mass fraction), could nearly reconcile the Planck tem-
perature data with ns = 1. They now lead to �⌅2 = 7.6 and 9.3,
respectively. For any of the cosmological models that we have

5 http://www.cosmos.esa.int/web/planck/pla

considered, the �⌅2 by which the HZ model is penalized with
respect to the tilted model has increased since the 2013 analy-
sis (PCI13) thanks to the constraining power of the full mission
temperature data. Adding Planck high-� polarization data further
disfavours the HZ model: in⇥CDM, the ⌅2 increases by 57.8, for
general reionization we obtain �⌅2 = 41.3, and for ⇥CDM+Ne⌅
and ⇥CDM+YP we find �⌅2 = 22.5 and 24.0, respectively.

4.3. Running of the spectral index

The running of the scalar spectral index is constrained by the
Planck 2015 full mission temperature data to

dns

d ln k
= �0.0084± 0.0082 (68 % CL, Planck TT+lowP) . (17)

The combined constraint including high-� polarization is

dns

d ln k
= �0.0057±0.0071 (68 % CL, Planck TT,TE,EE+lowP) .

(18)
Adding the Planck CMB lensing data to the tempera-
ture data further reduces the central value for the running,
i.e., dns/d ln k = �0.0033 ± 0.0074 (68 % CL, Planck
TT+lowP+lensing).

The central value for the running has decreased in magn-
tude with respect to the Planck 2013 nominal mission (Planck
Collaboration XVI (2014) found dns/d ln k = �0.013 ± 0.009;
see Fig. 4), and the improvement of the maximum likelihood
with respect to a power-law spectrum is smaller, �⌅2 ⇤ �0.8.
Among the different effects contributing to the decrease in the
central value of the running with respect to the Planck 2013 re-
sult, we mention a change in HFI beams at � � 200 (Planck
Collaboration XIII, 2015). Nevertheless, the deficit of power at
low multipoles in the Planck 2015 temperature power spectrum
contributes to a preference for slightly negative values of the run-
ning, but with low statistical significance.

The Planck constraints on ns and dns/d ln k are remarkably
stable against the addition of the BAO likelihood. The combina-
tion with BAO shifts ns to slighly higher values and shrinks its
uncertainty by about 30 % when only high-� temperature is con-
sidered, and by only about 15 % when high-� temperature and
polarization are combined. In slow-roll inflation, the running of
the scalar spectral index is connected to the third derivative of
the potential (Kosowsky & Turner, 1995). As was the case for
the nominal mission results, values of the running compatible
with the Planck 2015 constraints can be obtained in viable infla-
tionary models (Kobayashi & Takahashi, 2011).
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where, as in [35], we have defined the DM spin-dependent
constant,

Cχ ≡
4jχðjχ þ 1Þ

3
: ð13Þ

The SD cross section is often expressed as a function of the
proton-DM zero-momentum-transfer cross section σSDp ,

σSDT ¼ μ2T
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4
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Note that the combination of nuclear responses,
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gives rise to the usual spin-dependent factors.

B. Anapole dark matter

Majorana fermion DM scattering off of nucleons via a
spin-1 mediator that kinetically mixes with the photon
proceeds via the following effective interaction6:

Lanapole
int ¼ fa

M2
χ̄γμγ5χJ EM

μ ; ð17Þ

where

J EM
μ ≡

X

N¼n;p

N̄
!
QN

Kμ

2mN
− ~μN

iσμνqν

2mN

"
N ð18Þ

is the electromagnetic current restricted to nucleons. We
have used the conventions of [34], taking Kμ ¼ kμ þ k0μ

and four-momentum-transfer qμ ¼ p0μ − pμ ¼ kμ − k0μ

with p (p0) the incoming (outgoing) DM four-momentum
and similarly k (k0) the incoming (outgoing) nucleon four-
momentum. We have used ~μ to denote a dimensionless
magnetic moment,

~μ ¼ magnetic moment
nuclear magneton

: ð19Þ

The relevant EM constants are ~μn ¼ −1.9, ~μp ¼ 2.8,
Qp ¼ 1, and Qn ¼ 0.
In the nonrelativistic limit,

Lanapole
int →

2fa
M2

X

N¼n;p

ðQNO8 þ ~μNO9Þ; ð20Þ

where the nonrelativistic operators O8 and O9 are as
defined in [34] and Table II.
Evaluating Eq. (2), taking c8; c9 from Eq. (20), and

substituting the “WIMP form factors” Rk found in [34] and
reproduced in Appendix A, we obtain (for Dirac DM)

6The nonrelativistic reduction for this and other interactions
considered in the paper can be read from Table 1 of [34]. To do
so, one must recall the Gordon identities, ūðp0ÞγμuðpÞ ¼
ūðp0Þððpþp0Þμ

2m þ iσμνðp0−pÞν
2m ÞuðpÞ and ūðp0Þσμνðp0 − pÞνγ5uðpÞ ¼

ūðp0Þðiðpþ p0Þμγ5ÞuðpÞ. Note that signs in Table 1 in v1 of
[34] for the nonrelativistic reduction of relativistic operators with
an odd power of momentum transfer are incorrect by a factor of
−1, because the convention q ¼ p − p0 was used rather than the
stated q ¼ p0 − p convention.
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Figure 3. Axial+Vector(SM)–Axial(DM): Parameter space forbidden by constraints from dilepton
resonance searches from ATLAS (light green, dashed) and Tevatron (dark green, dashed), elec-
troweak precision observables (blue, dotted) and DM overproduction (red, solid) in the mZ� � gAq,l
parameter plane for two exemplary DM masses 100 GeV (left) and 500 GeV (right). In the shaded
region to the left of the vertical grey line the Z �-mass violates the bound from perturbative unitarity
from eq. (2.8).

where Nc = 3 (1) for quarks (leptons). The decay width into DM pairs is

�(Z � ⌅ ⇧⇧) =
mZ�

24⌅
(gADM)2

�
1� 4m2

DM

m2
Z�

⇥3/2

. (4.2)

Consequently, for mDM ⇤ mZ� and gA⇧ = gAq ⇤ gADM the branching ratio into � = e, µ

is given by BR(R ⌅ ��) ⇥ 8(gA⇧ )
2/(gADM)2. For mDM > mZ�/2, on the other hand, the

branching ratio is given by BR(R ⌅ ��) ⇥ 0.08–0.10 depending on the ratio mZ�/mt.

We implement the latest ATLAS dilepton search [61], complemented by a Tevatron

dilepton search [62] for the low mass region, and show the resulting bounds in figure 3.

One can see that the bounds strongly depend on the assumed branching ratio of the Z �.

As a conservative limiting case we show gADM = 1 and mDM = 100 GeV, which leads

to a rather large branching fraction into DM and hence suppressed bounds. The second

benchmark, mDM = 500 GeV, allows for Z � decays to DM only for rather heavy Z �s, leading

to correspondingly more restrictive dilepton constraints. Overall the bounds turn out to be

very stringent and the Z � coupling to leptons and quarks needs to be significantly smaller

than unity for 100 GeV � mZ� � 4 TeV, so that dijet constraints are basically irrelevant

in this case given that gq = gl.

The fact that the SM Higgs is charged also implies potentially large corrections to

electroweak precision observables. In particular we obtain the non-diagonal mass term

�m2 ZµZ �
µ leading to mass mixing between the SM Z and the new Z �. The diagonalisation

required to obtain mass eigenstates is discussed in the appendix. In the absence of kinetic

mixing between the U(1)� and the SM U(1) gauge bosons (⇥ = 0), the resulting e⇥ects
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5 Purely vectorial couplings to SM fermions

Let us now consider the case with purely vectorial couplings on the SM side, i.e. gAq =

gA⌥ = gA⇥ = 0. In this case the SM Higgs does not carry a U(1)� charge and therefore

the charges of quarks and leptons are independent. In particular, it is conceivable that

gVq ⇤ gV⌥ , so that constraints from dilepton resonance searches can be evaded. Also there

can in principle be a flavour dependence of the Z � couplings to quarks. Nevertheless, to

avoid large flavour-changing neutral currents, we will always assume the same coupling for

all quark families in what follows [15]. Finally, in contrast to the case discussed above,

tree-level Z � Z � mass mixing is absent. It therefore seems plausible that the Z � is the

only state coupling to both the visible and the dark sector. Nevertheless, as mentioned

above, potentially important e⇥ects in this scenario can be kinetic mixing of the U(1) gauge

bosons as well as e⇥ects induced by the dark Higgs, which we are going to discuss below.

Let us just mention that all these e⇥ects will also be present in the scenario discussed in the

previous section. They are, however, typically less important than the e⇥ects of tree-level

Z-Z � mixing.

We first consider the e⇥ects of kinetic mixing between the Z � and the SM hypercharge

gauge boson B:

L ⇥� 1

2
sin ⇤F �µ⇥Bµ⇥ , (5.1)

where F �µ⇥ = ⌥µZ �⇥ � ⌥⇥Z �µ and Bµ⇥ = ⌥µB⇥ � ⌥⇥Bµ. A non-zero value of ⇤ leads to

mixing between the Z � and the neutral gauge bosons of the SM (see App. A.1). As in the

case of mass mixing discussed above, there are strong constraints on kinetic mixing from

searches for dilepton resonances and electroweak precision observables.

The dilepton couplings induced via the kinetic mixing parameter ⇤ can be inferred from

the mixing matrices and are given in the appendix, cf. eq. (A.10). The S and T parameters

are given by

�S =4c2WsW⌅(⇤� sW⌅) ,

�T =⌅2
�
m2

Z�

m2
Z

� 2

⇥
+ 2sW⌅⇤ , (5.2)

where for ⇥m2 = 0 the mixing parameter ⌅ is given by ⌅ = m2
ZsW⇤/(m2

Z �m2
Z�) at leading

order. If ⇤ is sizeable, i.e. if mixing is present at tree level, the resulting bounds can be

quite strong. This expectation is confirmed in figure 5. Note that the relic density curves

shown in figure 5 are basically independent of ⇤, because freeze-out is dominated by direct

Z � exchange for the adopted choice of couplings.

While tree-level mixing is tightly constrained, it is reasonable to expect that ⇤ vanishes

at high scales, for example if both U(1)s originate from the same underlying non-Abelian

gauge group, as in Grand Unified Theories. Since quarks carry charge under both U(1)� and

U(1)Y , quark loops will still induce kinetic mixing at lower scales [43], but the magnitude

of ⇤ can be much smaller than what we considered above. The precise magnitude of the

kinetic mixing depends on the underlying theory, but if we assume that ⇤(�) = 0 at some
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In building these simplified models we remain agnostic about the WIMP’s spin, and
consider dark matter spins of 0, 1

2 and 1. We do however only consider renormalizable inter-
actions between quarks and WIMPs. To ensure a stable WIMP, we assume that the WIMP
is either charged under some internal gauge group or a discrete symmetry group (for example
Z2). However, we assume that this gauge charge is not shared by quarks. We will couple
the WIMP to the quarks via a heavy mediator in two distinct ways: charged and uncharged
mediators, each with all possible spins consistent with angular momentum conservation.
The mediator mass is chosen to be the heaviest scale in the problem (and certainly much
greater than the momentum exchange which characterizes the scattering process) so that we
can integrate it out (see appendix B for details). This leads to relativistic e�ective WIMP-
nucleon interactions, whose NR limit can then be examined. In the uncharged mediator case
we will consider mediators that are neutral under all SM and WIMP gauge charges, while
in the charged case, the mediator must have both WIMP and SM gauge charges. Given the
above as a guide, our Lagrangian construction is then constrained only by gauge invariance,
Lorentz invariance, renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians
1. Scalar Dark Matter
We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure sta-

bility, and S† is its Hermitian conjugate. To have renormalizable interactions, the neutral
mediator can only be a scalar or a vector. We denote the scalar mediator by ⇤ and the
vector mediator by Gµ with field strength tensor Gµ� . Unless otherwise noted, all of the
following coupling constants are real and dimensionless.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by

LS⇥q = ⌅µS†⌅µS � m2
SS†S � ⇥S

2 (S†S)2

+1
2⌅µ⇤⌅µ⇤ � 1

2m2
⇥⇤2 � m⇥µ1

3 ⇤3 � µ2
4 ⇤4

+iq̄D/ q � mq q̄q

�g1mSS†S⇤ � g2
2 S†S⇤2 � h1q̄q⇤ � ih2q̄�5q⇤, (19)

11

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is

LSGq = ⇧µS†⇧µS � m2
SS†S � ⇥S

2 (S†S)2

�1
4Gµ�Gµ� + 1

2m2
GGµGµ � ⇥G

4 (GµGµ)2

+iq̄ /Dq � mq q̄q

�g3
2 S†SGµGµ � ig4(S†⇧µS � ⇧µS†S)Gµ

�h3(q̄�µq)Gµ � h4(q̄�µ�5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by ⌅ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (⇤) and vector mediator (Gµ) cases respectively are given below,

L⇤⇥q = i⌅̄ /D⌅ � m⇤⌅̄⌅

+1
2⇧µ⇤⇧µ⇤ � 1

2m2
⇥⇤2 � m⇥µ1

3 ⇤3 � µ2
4 ⇤4

+iq̄D/ q � mq q̄q

�⇥1⇤⌅̄⌅ � i⇥2⇤⌅̄�5⌅ � h1⇤q̄q � ih2⇤q̄�5q, (21)

L⇤Gq = i⌅̄ /D⌅ � m⇤⌅̄⌅

�1
4Gµ�Gµ� + 1

2m2
GGµGµ

+iq̄D/ q � mq q̄q

�⇥3⌅̄�µ⌅Gµ � ⇥4⌅̄�µ�5⌅Gµ

�h3q̄�µqGµ � h4q̄�µ�5qGµ. (22)

3. Spin-1 Dark Matter
If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can

occur via a heavy scalar or a vector particle. For the case of vector mediation, there are

12
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LSD
int ¼ χ̄γμγ5χ

X

N¼n;p

fNSD
Λ2

N̄γμγ5N →
X

N¼n;p

cN4 O4

with cN4 ¼ −
4fNSD
Λ2

; ð11Þ

leading to the cross section

σSDT ¼ μ2T
π

Cχ

Λ4

X

N;N0

fNSDf
N0

SDð ~W
ðN;N0Þ
Σ0 þ ~WðN;N0Þ

Σ″ Þ; ð12Þ

where, as in [35], we have defined the DM spin-dependent
constant,

Cχ ≡
4jχðjχ þ 1Þ

3
: ð13Þ

The SD cross section is often expressed as a function of the
proton-DM zero-momentum-transfer cross section σSDp ,

σSDT ¼ μ2T
μ2p

σSDp
4

3

J þ 1

J

!
hSpiþ

fnSD
fpSD

hSni
"

2
P

N;N0fNSDf
N0

SDð ~W
ðN;N0Þ
Σ0 ðyÞ þ ~WðN;N0Þ

Σ″ ðyÞÞ
P

N;N0fNSDf
N0

SDð ~W
ðN;N0Þ
Σ0 ð0Þ þ ~WðN;N0Þ

Σ″ ð0ÞÞ
; ð14Þ

where

σSDp ¼
μ2p
π

Cχ

Λ4
3ðfpSDÞ2: ð15Þ

Note that the combination of nuclear responses,

X

N;N0

fNSDf
N0

SDð ~W
ðN;N0Þ
Σ0 ð0Þ þ ~WðN;N0Þ

Σ″ ð0ÞÞ ¼ 4
J þ 1

J
ðfpSDhSpiþ fnSDhSniÞ2; ð16Þ

gives rise to the usual spin-dependent factors.

B. Anapole dark matter

Majorana fermion DM scattering off of nucleons via a
spin-1 mediator that kinetically mixes with the photon
proceeds via the following effective interaction6:

Lanapole
int ¼ fa

M2
χ̄γμγ5χJ EM

μ ; ð17Þ

where

J EM
μ ≡

X

N¼n;p

N̄
!
QN

Kμ

2mN
− ~μN

iσμνqν

2mN

"
N ð18Þ

is the electromagnetic current restricted to nucleons. We
have used the conventions of [34], taking Kμ ¼ kμ þ k0μ

and four-momentum-transfer qμ ¼ p0μ − pμ ¼ kμ − k0μ

with p (p0) the incoming (outgoing) DM four-momentum
and similarly k (k0) the incoming (outgoing) nucleon four-
momentum. We have used ~μ to denote a dimensionless
magnetic moment,

~μ ¼ magnetic moment
nuclear magneton

: ð19Þ

The relevant EM constants are ~μn ¼ −1.9, ~μp ¼ 2.8,
Qp ¼ 1, and Qn ¼ 0.
In the nonrelativistic limit,

Lanapole
int →

2fa
M2

X

N¼n;p

ðQNO8 þ ~μNO9Þ; ð20Þ

where the nonrelativistic operators O8 and O9 are as
defined in [34] and Table II.
Evaluating Eq. (2), taking c8; c9 from Eq. (20), and

substituting the “WIMP form factors” Rk found in [34] and
reproduced in Appendix A, we obtain (for Dirac DM)

6The nonrelativistic reduction for this and other interactions
considered in the paper can be read from Table 1 of [34]. To do
so, one must recall the Gordon identities, ūðp0ÞγμuðpÞ ¼
ūðp0Þððpþp0Þμ

2m þ iσμνðp0−pÞν
2m ÞuðpÞ and ūðp0Þσμνðp0 − pÞνγ5uðpÞ ¼

ūðp0Þðiðpþ p0Þμγ5ÞuðpÞ. Note that signs in Table 1 in v1 of
[34] for the nonrelativistic reduction of relativistic operators with
an odd power of momentum transfer are incorrect by a factor of
−1, because the convention q ¼ p − p0 was used rather than the
stated q ¼ p0 − p convention.
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Figure 3. Axial+Vector(SM)–Axial(DM): Parameter space forbidden by constraints from dilepton
resonance searches from ATLAS (light green, dashed) and Tevatron (dark green, dashed), elec-
troweak precision observables (blue, dotted) and DM overproduction (red, solid) in the mZ� � gAq,l
parameter plane for two exemplary DM masses 100 GeV (left) and 500 GeV (right). In the shaded
region to the left of the vertical grey line the Z �-mass violates the bound from perturbative unitarity
from eq. (2.8).

where Nc = 3 (1) for quarks (leptons). The decay width into DM pairs is

�(Z � ⌅ ⇧⇧) =
mZ�

24⌅
(gADM)2

�
1� 4m2

DM

m2
Z�

⇥3/2

. (4.2)

Consequently, for mDM ⇤ mZ� and gA⇧ = gAq ⇤ gADM the branching ratio into � = e, µ

is given by BR(R ⌅ ��) ⇥ 8(gA⇧ )
2/(gADM)2. For mDM > mZ�/2, on the other hand, the

branching ratio is given by BR(R ⌅ ��) ⇥ 0.08–0.10 depending on the ratio mZ�/mt.

We implement the latest ATLAS dilepton search [61], complemented by a Tevatron

dilepton search [62] for the low mass region, and show the resulting bounds in figure 3.

One can see that the bounds strongly depend on the assumed branching ratio of the Z �.

As a conservative limiting case we show gADM = 1 and mDM = 100 GeV, which leads

to a rather large branching fraction into DM and hence suppressed bounds. The second

benchmark, mDM = 500 GeV, allows for Z � decays to DM only for rather heavy Z �s, leading

to correspondingly more restrictive dilepton constraints. Overall the bounds turn out to be

very stringent and the Z � coupling to leptons and quarks needs to be significantly smaller

than unity for 100 GeV � mZ� � 4 TeV, so that dijet constraints are basically irrelevant

in this case given that gq = gl.

The fact that the SM Higgs is charged also implies potentially large corrections to

electroweak precision observables. In particular we obtain the non-diagonal mass term

�m2 ZµZ �
µ leading to mass mixing between the SM Z and the new Z �. The diagonalisation

required to obtain mass eigenstates is discussed in the appendix. In the absence of kinetic

mixing between the U(1)� and the SM U(1) gauge bosons (⇥ = 0), the resulting e⇥ects
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5 Purely vectorial couplings to SM fermions

Let us now consider the case with purely vectorial couplings on the SM side, i.e. gAq =

gA⌥ = gA⇥ = 0. In this case the SM Higgs does not carry a U(1)� charge and therefore

the charges of quarks and leptons are independent. In particular, it is conceivable that

gVq ⇤ gV⌥ , so that constraints from dilepton resonance searches can be evaded. Also there

can in principle be a flavour dependence of the Z � couplings to quarks. Nevertheless, to

avoid large flavour-changing neutral currents, we will always assume the same coupling for

all quark families in what follows [15]. Finally, in contrast to the case discussed above,

tree-level Z � Z � mass mixing is absent. It therefore seems plausible that the Z � is the

only state coupling to both the visible and the dark sector. Nevertheless, as mentioned

above, potentially important e⇥ects in this scenario can be kinetic mixing of the U(1) gauge

bosons as well as e⇥ects induced by the dark Higgs, which we are going to discuss below.

Let us just mention that all these e⇥ects will also be present in the scenario discussed in the

previous section. They are, however, typically less important than the e⇥ects of tree-level

Z-Z � mixing.

We first consider the e⇥ects of kinetic mixing between the Z � and the SM hypercharge

gauge boson B:

L ⇥� 1

2
sin ⇤F �µ⇥Bµ⇥ , (5.1)

where F �µ⇥ = ⌥µZ �⇥ � ⌥⇥Z �µ and Bµ⇥ = ⌥µB⇥ � ⌥⇥Bµ. A non-zero value of ⇤ leads to

mixing between the Z � and the neutral gauge bosons of the SM (see App. A.1). As in the

case of mass mixing discussed above, there are strong constraints on kinetic mixing from

searches for dilepton resonances and electroweak precision observables.

The dilepton couplings induced via the kinetic mixing parameter ⇤ can be inferred from

the mixing matrices and are given in the appendix, cf. eq. (A.10). The S and T parameters

are given by

�S =4c2WsW⌅(⇤� sW⌅) ,

�T =⌅2
�
m2

Z�

m2
Z

� 2

⇥
+ 2sW⌅⇤ , (5.2)

where for ⇥m2 = 0 the mixing parameter ⌅ is given by ⌅ = m2
ZsW⇤/(m2

Z �m2
Z�) at leading

order. If ⇤ is sizeable, i.e. if mixing is present at tree level, the resulting bounds can be

quite strong. This expectation is confirmed in figure 5. Note that the relic density curves

shown in figure 5 are basically independent of ⇤, because freeze-out is dominated by direct

Z � exchange for the adopted choice of couplings.

While tree-level mixing is tightly constrained, it is reasonable to expect that ⇤ vanishes

at high scales, for example if both U(1)s originate from the same underlying non-Abelian

gauge group, as in Grand Unified Theories. Since quarks carry charge under both U(1)� and

U(1)Y , quark loops will still induce kinetic mixing at lower scales [43], but the magnitude

of ⇤ can be much smaller than what we considered above. The precise magnitude of the

kinetic mixing depends on the underlying theory, but if we assume that ⇤(�) = 0 at some
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In building these simplified models we remain agnostic about the WIMP’s spin, and
consider dark matter spins of 0, 1

2 and 1. We do however only consider renormalizable inter-
actions between quarks and WIMPs. To ensure a stable WIMP, we assume that the WIMP
is either charged under some internal gauge group or a discrete symmetry group (for example
Z2). However, we assume that this gauge charge is not shared by quarks. We will couple
the WIMP to the quarks via a heavy mediator in two distinct ways: charged and uncharged
mediators, each with all possible spins consistent with angular momentum conservation.
The mediator mass is chosen to be the heaviest scale in the problem (and certainly much
greater than the momentum exchange which characterizes the scattering process) so that we
can integrate it out (see appendix B for details). This leads to relativistic e�ective WIMP-
nucleon interactions, whose NR limit can then be examined. In the uncharged mediator case
we will consider mediators that are neutral under all SM and WIMP gauge charges, while
in the charged case, the mediator must have both WIMP and SM gauge charges. Given the
above as a guide, our Lagrangian construction is then constrained only by gauge invariance,
Lorentz invariance, renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians
1. Scalar Dark Matter
We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure sta-

bility, and S† is its Hermitian conjugate. To have renormalizable interactions, the neutral
mediator can only be a scalar or a vector. We denote the scalar mediator by ⇤ and the
vector mediator by Gµ with field strength tensor Gµ� . Unless otherwise noted, all of the
following coupling constants are real and dimensionless.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by

LS⇥q = ⌅µS†⌅µS � m2
SS†S � ⇥S

2 (S†S)2

+1
2⌅µ⇤⌅µ⇤ � 1

2m2
⇥⇤2 � m⇥µ1

3 ⇤3 � µ2
4 ⇤4

+iq̄D/ q � mq q̄q

�g1mSS†S⇤ � g2
2 S†S⇤2 � h1q̄q⇤ � ih2q̄�5q⇤, (19)

11

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is

LSGq = ⇧µS†⇧µS � m2
SS†S � ⇥S

2 (S†S)2

�1
4Gµ�Gµ� + 1

2m2
GGµGµ � ⇥G

4 (GµGµ)2

+iq̄ /Dq � mq q̄q

�g3
2 S†SGµGµ � ig4(S†⇧µS � ⇧µS†S)Gµ

�h3(q̄�µq)Gµ � h4(q̄�µ�5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by ⌅ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (⇤) and vector mediator (Gµ) cases respectively are given below,

L⇤⇥q = i⌅̄ /D⌅ � m⇤⌅̄⌅

+1
2⇧µ⇤⇧µ⇤ � 1

2m2
⇥⇤2 � m⇥µ1

3 ⇤3 � µ2
4 ⇤4

+iq̄D/ q � mq q̄q

�⇥1⇤⌅̄⌅ � i⇥2⇤⌅̄�5⌅ � h1⇤q̄q � ih2⇤q̄�5q, (21)

L⇤Gq = i⌅̄ /D⌅ � m⇤⌅̄⌅

�1
4Gµ�Gµ� + 1

2m2
GGµGµ

+iq̄D/ q � mq q̄q

�⇥3⌅̄�µ⌅Gµ � ⇥4⌅̄�µ�5⌅Gµ

�h3q̄�µqGµ � h4q̄�µ�5qGµ. (22)

3. Spin-1 Dark Matter
If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can

occur via a heavy scalar or a vector particle. For the case of vector mediation, there are

12
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LSD
int ¼ χ̄γμγ5χ

X

N¼n;p

fNSD
Λ2

N̄γμγ5N →
X

N¼n;p

cN4 O4

with cN4 ¼ −
4fNSD
Λ2

; ð11Þ

leading to the cross section

σSDT ¼ μ2T
π

Cχ

Λ4

X

N;N0

fNSDf
N0

SDð ~W
ðN;N0Þ
Σ0 þ ~WðN;N0Þ

Σ″ Þ; ð12Þ

where, as in [35], we have defined the DM spin-dependent
constant,

Cχ ≡
4jχðjχ þ 1Þ

3
: ð13Þ

The SD cross section is often expressed as a function of the
proton-DM zero-momentum-transfer cross section σSDp ,

σSDT ¼ μ2T
μ2p

σSDp
4

3

J þ 1

J

!
hSpiþ

fnSD
fpSD

hSni
"

2
P

N;N0fNSDf
N0

SDð ~W
ðN;N0Þ
Σ0 ðyÞ þ ~WðN;N0Þ

Σ″ ðyÞÞ
P

N;N0fNSDf
N0

SDð ~W
ðN;N0Þ
Σ0 ð0Þ þ ~WðN;N0Þ

Σ″ ð0ÞÞ
; ð14Þ

where

σSDp ¼
μ2p
π

Cχ

Λ4
3ðfpSDÞ2: ð15Þ

Note that the combination of nuclear responses,

X

N;N0

fNSDf
N0

SDð ~W
ðN;N0Þ
Σ0 ð0Þ þ ~WðN;N0Þ

Σ″ ð0ÞÞ ¼ 4
J þ 1

J
ðfpSDhSpiþ fnSDhSniÞ2; ð16Þ

gives rise to the usual spin-dependent factors.

B. Anapole dark matter

Majorana fermion DM scattering off of nucleons via a
spin-1 mediator that kinetically mixes with the photon
proceeds via the following effective interaction6:

Lanapole
int ¼ fa

M2
χ̄γμγ5χJ EM

μ ; ð17Þ

where

J EM
μ ≡

X

N¼n;p

N̄
!
QN

Kμ

2mN
− ~μN

iσμνqν

2mN

"
N ð18Þ

is the electromagnetic current restricted to nucleons. We
have used the conventions of [34], taking Kμ ¼ kμ þ k0μ

and four-momentum-transfer qμ ¼ p0μ − pμ ¼ kμ − k0μ

with p (p0) the incoming (outgoing) DM four-momentum
and similarly k (k0) the incoming (outgoing) nucleon four-
momentum. We have used ~μ to denote a dimensionless
magnetic moment,

~μ ¼ magnetic moment
nuclear magneton

: ð19Þ

The relevant EM constants are ~μn ¼ −1.9, ~μp ¼ 2.8,
Qp ¼ 1, and Qn ¼ 0.
In the nonrelativistic limit,

Lanapole
int →

2fa
M2

X

N¼n;p

ðQNO8 þ ~μNO9Þ; ð20Þ

where the nonrelativistic operators O8 and O9 are as
defined in [34] and Table II.
Evaluating Eq. (2), taking c8; c9 from Eq. (20), and

substituting the “WIMP form factors” Rk found in [34] and
reproduced in Appendix A, we obtain (for Dirac DM)

6The nonrelativistic reduction for this and other interactions
considered in the paper can be read from Table 1 of [34]. To do
so, one must recall the Gordon identities, ūðp0ÞγμuðpÞ ¼
ūðp0Þððpþp0Þμ

2m þ iσμνðp0−pÞν
2m ÞuðpÞ and ūðp0Þσμνðp0 − pÞνγ5uðpÞ ¼

ūðp0Þðiðpþ p0Þμγ5ÞuðpÞ. Note that signs in Table 1 in v1 of
[34] for the nonrelativistic reduction of relativistic operators with
an odd power of momentum transfer are incorrect by a factor of
−1, because the convention q ¼ p − p0 was used rather than the
stated q ¼ p0 − p convention.
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Figure 3. Axial+Vector(SM)–Axial(DM): Parameter space forbidden by constraints from dilepton
resonance searches from ATLAS (light green, dashed) and Tevatron (dark green, dashed), elec-
troweak precision observables (blue, dotted) and DM overproduction (red, solid) in the mZ� � gAq,l
parameter plane for two exemplary DM masses 100 GeV (left) and 500 GeV (right). In the shaded
region to the left of the vertical grey line the Z �-mass violates the bound from perturbative unitarity
from eq. (2.8).

where Nc = 3 (1) for quarks (leptons). The decay width into DM pairs is

�(Z � ⌅ ⇧⇧) =
mZ�

24⌅
(gADM)2

�
1� 4m2

DM

m2
Z�

⇥3/2

. (4.2)

Consequently, for mDM ⇤ mZ� and gA⇧ = gAq ⇤ gADM the branching ratio into � = e, µ

is given by BR(R ⌅ ��) ⇥ 8(gA⇧ )
2/(gADM)2. For mDM > mZ�/2, on the other hand, the

branching ratio is given by BR(R ⌅ ��) ⇥ 0.08–0.10 depending on the ratio mZ�/mt.

We implement the latest ATLAS dilepton search [61], complemented by a Tevatron

dilepton search [62] for the low mass region, and show the resulting bounds in figure 3.

One can see that the bounds strongly depend on the assumed branching ratio of the Z �.

As a conservative limiting case we show gADM = 1 and mDM = 100 GeV, which leads

to a rather large branching fraction into DM and hence suppressed bounds. The second

benchmark, mDM = 500 GeV, allows for Z � decays to DM only for rather heavy Z �s, leading

to correspondingly more restrictive dilepton constraints. Overall the bounds turn out to be

very stringent and the Z � coupling to leptons and quarks needs to be significantly smaller

than unity for 100 GeV � mZ� � 4 TeV, so that dijet constraints are basically irrelevant

in this case given that gq = gl.

The fact that the SM Higgs is charged also implies potentially large corrections to

electroweak precision observables. In particular we obtain the non-diagonal mass term

�m2 ZµZ �
µ leading to mass mixing between the SM Z and the new Z �. The diagonalisation

required to obtain mass eigenstates is discussed in the appendix. In the absence of kinetic

mixing between the U(1)� and the SM U(1) gauge bosons (⇥ = 0), the resulting e⇥ects
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5 Purely vectorial couplings to SM fermions

Let us now consider the case with purely vectorial couplings on the SM side, i.e. gAq =

gA⌥ = gA⇥ = 0. In this case the SM Higgs does not carry a U(1)� charge and therefore

the charges of quarks and leptons are independent. In particular, it is conceivable that

gVq ⇤ gV⌥ , so that constraints from dilepton resonance searches can be evaded. Also there

can in principle be a flavour dependence of the Z � couplings to quarks. Nevertheless, to

avoid large flavour-changing neutral currents, we will always assume the same coupling for

all quark families in what follows [15]. Finally, in contrast to the case discussed above,

tree-level Z � Z � mass mixing is absent. It therefore seems plausible that the Z � is the

only state coupling to both the visible and the dark sector. Nevertheless, as mentioned

above, potentially important e⇥ects in this scenario can be kinetic mixing of the U(1) gauge

bosons as well as e⇥ects induced by the dark Higgs, which we are going to discuss below.

Let us just mention that all these e⇥ects will also be present in the scenario discussed in the

previous section. They are, however, typically less important than the e⇥ects of tree-level

Z-Z � mixing.

We first consider the e⇥ects of kinetic mixing between the Z � and the SM hypercharge

gauge boson B:

L ⇥� 1

2
sin ⇤F �µ⇥Bµ⇥ , (5.1)

where F �µ⇥ = ⌥µZ �⇥ � ⌥⇥Z �µ and Bµ⇥ = ⌥µB⇥ � ⌥⇥Bµ. A non-zero value of ⇤ leads to

mixing between the Z � and the neutral gauge bosons of the SM (see App. A.1). As in the

case of mass mixing discussed above, there are strong constraints on kinetic mixing from

searches for dilepton resonances and electroweak precision observables.

The dilepton couplings induced via the kinetic mixing parameter ⇤ can be inferred from

the mixing matrices and are given in the appendix, cf. eq. (A.10). The S and T parameters

are given by

�S =4c2WsW⌅(⇤� sW⌅) ,

�T =⌅2
�
m2

Z�

m2
Z

� 2

⇥
+ 2sW⌅⇤ , (5.2)

where for ⇥m2 = 0 the mixing parameter ⌅ is given by ⌅ = m2
ZsW⇤/(m2

Z �m2
Z�) at leading

order. If ⇤ is sizeable, i.e. if mixing is present at tree level, the resulting bounds can be

quite strong. This expectation is confirmed in figure 5. Note that the relic density curves

shown in figure 5 are basically independent of ⇤, because freeze-out is dominated by direct

Z � exchange for the adopted choice of couplings.

While tree-level mixing is tightly constrained, it is reasonable to expect that ⇤ vanishes

at high scales, for example if both U(1)s originate from the same underlying non-Abelian

gauge group, as in Grand Unified Theories. Since quarks carry charge under both U(1)� and

U(1)Y , quark loops will still induce kinetic mixing at lower scales [43], but the magnitude

of ⇤ can be much smaller than what we considered above. The precise magnitude of the

kinetic mixing depends on the underlying theory, but if we assume that ⇤(�) = 0 at some
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In building these simplified models we remain agnostic about the WIMP’s spin, and
consider dark matter spins of 0, 1

2 and 1. We do however only consider renormalizable inter-
actions between quarks and WIMPs. To ensure a stable WIMP, we assume that the WIMP
is either charged under some internal gauge group or a discrete symmetry group (for example
Z2). However, we assume that this gauge charge is not shared by quarks. We will couple
the WIMP to the quarks via a heavy mediator in two distinct ways: charged and uncharged
mediators, each with all possible spins consistent with angular momentum conservation.
The mediator mass is chosen to be the heaviest scale in the problem (and certainly much
greater than the momentum exchange which characterizes the scattering process) so that we
can integrate it out (see appendix B for details). This leads to relativistic e�ective WIMP-
nucleon interactions, whose NR limit can then be examined. In the uncharged mediator case
we will consider mediators that are neutral under all SM and WIMP gauge charges, while
in the charged case, the mediator must have both WIMP and SM gauge charges. Given the
above as a guide, our Lagrangian construction is then constrained only by gauge invariance,
Lorentz invariance, renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians
1. Scalar Dark Matter
We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure sta-

bility, and S† is its Hermitian conjugate. To have renormalizable interactions, the neutral
mediator can only be a scalar or a vector. We denote the scalar mediator by ⇤ and the
vector mediator by Gµ with field strength tensor Gµ� . Unless otherwise noted, all of the
following coupling constants are real and dimensionless.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by

LS⇥q = ⌅µS†⌅µS � m2
SS†S � ⇥S

2 (S†S)2

+1
2⌅µ⇤⌅µ⇤ � 1

2m2
⇥⇤2 � m⇥µ1

3 ⇤3 � µ2
4 ⇤4

+iq̄D/ q � mq q̄q

�g1mSS†S⇤ � g2
2 S†S⇤2 � h1q̄q⇤ � ih2q̄�5q⇤, (19)

11

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is

LSGq = ⇧µS†⇧µS � m2
SS†S � ⇥S

2 (S†S)2

�1
4Gµ�Gµ� + 1

2m2
GGµGµ � ⇥G

4 (GµGµ)2

+iq̄ /Dq � mq q̄q

�g3
2 S†SGµGµ � ig4(S†⇧µS � ⇧µS†S)Gµ

�h3(q̄�µq)Gµ � h4(q̄�µ�5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by ⌅ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (⇤) and vector mediator (Gµ) cases respectively are given below,

L⇤⇥q = i⌅̄ /D⌅ � m⇤⌅̄⌅

+1
2⇧µ⇤⇧µ⇤ � 1

2m2
⇥⇤2 � m⇥µ1

3 ⇤3 � µ2
4 ⇤4

+iq̄D/ q � mq q̄q

�⇥1⇤⌅̄⌅ � i⇥2⇤⌅̄�5⌅ � h1⇤q̄q � ih2⇤q̄�5q, (21)

L⇤Gq = i⌅̄ /D⌅ � m⇤⌅̄⌅

�1
4Gµ�Gµ� + 1

2m2
GGµGµ

+iq̄D/ q � mq q̄q

�⇥3⌅̄�µ⌅Gµ � ⇥4⌅̄�µ�5⌅Gµ

�h3q̄�µqGµ � h4q̄�µ�5qGµ. (22)

3. Spin-1 Dark Matter
If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can

occur via a heavy scalar or a vector particle. For the case of vector mediation, there are

12

⇥0 = 0.3± 0.1GeV · cm�3 (28)

(29)

�/W/Z (30)

(31)

L Leff (32)

(33)

n⌅ q⌅ (34)

(35)

q⇤ ⇤⌅ (36)

(37)

⌅� nucleus (38)

(39)

⇧1⇧2Z , ⇧3⇧4Z ⌅ ⇧1⇧2⇧3⇧4 (40)

(41)

Xµ (42)
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LSD
int ¼ χ̄γμγ5χ

X

N¼n;p

fNSD
Λ2

N̄γμγ5N →
X

N¼n;p

cN4 O4

with cN4 ¼ −
4fNSD
Λ2

; ð11Þ

leading to the cross section

σSDT ¼ μ2T
π

Cχ

Λ4

X

N;N0

fNSDf
N0

SDð ~W
ðN;N0Þ
Σ0 þ ~WðN;N0Þ

Σ″ Þ; ð12Þ

where, as in [35], we have defined the DM spin-dependent
constant,

Cχ ≡
4jχðjχ þ 1Þ

3
: ð13Þ

The SD cross section is often expressed as a function of the
proton-DM zero-momentum-transfer cross section σSDp ,

σSDT ¼ μ2T
μ2p

σSDp
4

3

J þ 1

J

!
hSpiþ

fnSD
fpSD

hSni
"

2
P

N;N0fNSDf
N0

SDð ~W
ðN;N0Þ
Σ0 ðyÞ þ ~WðN;N0Þ

Σ″ ðyÞÞ
P

N;N0fNSDf
N0

SDð ~W
ðN;N0Þ
Σ0 ð0Þ þ ~WðN;N0Þ

Σ″ ð0ÞÞ
; ð14Þ

where

σSDp ¼
μ2p
π

Cχ

Λ4
3ðfpSDÞ2: ð15Þ

Note that the combination of nuclear responses,

X

N;N0

fNSDf
N0

SDð ~W
ðN;N0Þ
Σ0 ð0Þ þ ~WðN;N0Þ

Σ″ ð0ÞÞ ¼ 4
J þ 1

J
ðfpSDhSpiþ fnSDhSniÞ2; ð16Þ

gives rise to the usual spin-dependent factors.

B. Anapole dark matter

Majorana fermion DM scattering off of nucleons via a
spin-1 mediator that kinetically mixes with the photon
proceeds via the following effective interaction6:

Lanapole
int ¼ fa

M2
χ̄γμγ5χJ EM

μ ; ð17Þ

where

J EM
μ ≡

X

N¼n;p

N̄
!
QN

Kμ

2mN
− ~μN

iσμνqν

2mN

"
N ð18Þ

is the electromagnetic current restricted to nucleons. We
have used the conventions of [34], taking Kμ ¼ kμ þ k0μ

and four-momentum-transfer qμ ¼ p0μ − pμ ¼ kμ − k0μ

with p (p0) the incoming (outgoing) DM four-momentum
and similarly k (k0) the incoming (outgoing) nucleon four-
momentum. We have used ~μ to denote a dimensionless
magnetic moment,

~μ ¼ magnetic moment
nuclear magneton

: ð19Þ

The relevant EM constants are ~μn ¼ −1.9, ~μp ¼ 2.8,
Qp ¼ 1, and Qn ¼ 0.
In the nonrelativistic limit,

Lanapole
int →

2fa
M2

X

N¼n;p

ðQNO8 þ ~μNO9Þ; ð20Þ

where the nonrelativistic operators O8 and O9 are as
defined in [34] and Table II.
Evaluating Eq. (2), taking c8; c9 from Eq. (20), and

substituting the “WIMP form factors” Rk found in [34] and
reproduced in Appendix A, we obtain (for Dirac DM)

6The nonrelativistic reduction for this and other interactions
considered in the paper can be read from Table 1 of [34]. To do
so, one must recall the Gordon identities, ūðp0ÞγμuðpÞ ¼
ūðp0Þððpþp0Þμ

2m þ iσμνðp0−pÞν
2m ÞuðpÞ and ūðp0Þσμνðp0 − pÞνγ5uðpÞ ¼

ūðp0Þðiðpþ p0Þμγ5ÞuðpÞ. Note that signs in Table 1 in v1 of
[34] for the nonrelativistic reduction of relativistic operators with
an odd power of momentum transfer are incorrect by a factor of
−1, because the convention q ¼ p − p0 was used rather than the
stated q ¼ p0 − p convention.
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Figure 3. Axial+Vector(SM)–Axial(DM): Parameter space forbidden by constraints from dilepton
resonance searches from ATLAS (light green, dashed) and Tevatron (dark green, dashed), elec-
troweak precision observables (blue, dotted) and DM overproduction (red, solid) in the mZ� � gAq,l
parameter plane for two exemplary DM masses 100 GeV (left) and 500 GeV (right). In the shaded
region to the left of the vertical grey line the Z �-mass violates the bound from perturbative unitarity
from eq. (2.8).

where Nc = 3 (1) for quarks (leptons). The decay width into DM pairs is

�(Z � ⌅ ⇧⇧) =
mZ�

24⌅
(gADM)2

�
1� 4m2

DM

m2
Z�

⇥3/2

. (4.2)

Consequently, for mDM ⇤ mZ� and gA⇧ = gAq ⇤ gADM the branching ratio into � = e, µ

is given by BR(R ⌅ ��) ⇥ 8(gA⇧ )
2/(gADM)2. For mDM > mZ�/2, on the other hand, the

branching ratio is given by BR(R ⌅ ��) ⇥ 0.08–0.10 depending on the ratio mZ�/mt.

We implement the latest ATLAS dilepton search [61], complemented by a Tevatron

dilepton search [62] for the low mass region, and show the resulting bounds in figure 3.

One can see that the bounds strongly depend on the assumed branching ratio of the Z �.

As a conservative limiting case we show gADM = 1 and mDM = 100 GeV, which leads

to a rather large branching fraction into DM and hence suppressed bounds. The second

benchmark, mDM = 500 GeV, allows for Z � decays to DM only for rather heavy Z �s, leading

to correspondingly more restrictive dilepton constraints. Overall the bounds turn out to be

very stringent and the Z � coupling to leptons and quarks needs to be significantly smaller

than unity for 100 GeV � mZ� � 4 TeV, so that dijet constraints are basically irrelevant

in this case given that gq = gl.

The fact that the SM Higgs is charged also implies potentially large corrections to

electroweak precision observables. In particular we obtain the non-diagonal mass term

�m2 ZµZ �
µ leading to mass mixing between the SM Z and the new Z �. The diagonalisation

required to obtain mass eigenstates is discussed in the appendix. In the absence of kinetic

mixing between the U(1)� and the SM U(1) gauge bosons (⇥ = 0), the resulting e⇥ects
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5 Purely vectorial couplings to SM fermions

Let us now consider the case with purely vectorial couplings on the SM side, i.e. gAq =

gA⌥ = gA⇥ = 0. In this case the SM Higgs does not carry a U(1)� charge and therefore

the charges of quarks and leptons are independent. In particular, it is conceivable that

gVq ⇤ gV⌥ , so that constraints from dilepton resonance searches can be evaded. Also there

can in principle be a flavour dependence of the Z � couplings to quarks. Nevertheless, to

avoid large flavour-changing neutral currents, we will always assume the same coupling for

all quark families in what follows [15]. Finally, in contrast to the case discussed above,

tree-level Z � Z � mass mixing is absent. It therefore seems plausible that the Z � is the

only state coupling to both the visible and the dark sector. Nevertheless, as mentioned

above, potentially important e⇥ects in this scenario can be kinetic mixing of the U(1) gauge

bosons as well as e⇥ects induced by the dark Higgs, which we are going to discuss below.

Let us just mention that all these e⇥ects will also be present in the scenario discussed in the

previous section. They are, however, typically less important than the e⇥ects of tree-level

Z-Z � mixing.

We first consider the e⇥ects of kinetic mixing between the Z � and the SM hypercharge

gauge boson B:

L ⇥� 1

2
sin ⇤F �µ⇥Bµ⇥ , (5.1)

where F �µ⇥ = ⌥µZ �⇥ � ⌥⇥Z �µ and Bµ⇥ = ⌥µB⇥ � ⌥⇥Bµ. A non-zero value of ⇤ leads to

mixing between the Z � and the neutral gauge bosons of the SM (see App. A.1). As in the

case of mass mixing discussed above, there are strong constraints on kinetic mixing from

searches for dilepton resonances and electroweak precision observables.

The dilepton couplings induced via the kinetic mixing parameter ⇤ can be inferred from

the mixing matrices and are given in the appendix, cf. eq. (A.10). The S and T parameters

are given by

�S =4c2WsW⌅(⇤� sW⌅) ,

�T =⌅2
�
m2

Z�

m2
Z

� 2

⇥
+ 2sW⌅⇤ , (5.2)

where for ⇥m2 = 0 the mixing parameter ⌅ is given by ⌅ = m2
ZsW⇤/(m2

Z �m2
Z�) at leading

order. If ⇤ is sizeable, i.e. if mixing is present at tree level, the resulting bounds can be

quite strong. This expectation is confirmed in figure 5. Note that the relic density curves

shown in figure 5 are basically independent of ⇤, because freeze-out is dominated by direct

Z � exchange for the adopted choice of couplings.

While tree-level mixing is tightly constrained, it is reasonable to expect that ⇤ vanishes

at high scales, for example if both U(1)s originate from the same underlying non-Abelian

gauge group, as in Grand Unified Theories. Since quarks carry charge under both U(1)� and

U(1)Y , quark loops will still induce kinetic mixing at lower scales [43], but the magnitude

of ⇤ can be much smaller than what we considered above. The precise magnitude of the

kinetic mixing depends on the underlying theory, but if we assume that ⇤(�) = 0 at some
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In building these simplified models we remain agnostic about the WIMP’s spin, and
consider dark matter spins of 0, 1

2 and 1. We do however only consider renormalizable inter-
actions between quarks and WIMPs. To ensure a stable WIMP, we assume that the WIMP
is either charged under some internal gauge group or a discrete symmetry group (for example
Z2). However, we assume that this gauge charge is not shared by quarks. We will couple
the WIMP to the quarks via a heavy mediator in two distinct ways: charged and uncharged
mediators, each with all possible spins consistent with angular momentum conservation.
The mediator mass is chosen to be the heaviest scale in the problem (and certainly much
greater than the momentum exchange which characterizes the scattering process) so that we
can integrate it out (see appendix B for details). This leads to relativistic e�ective WIMP-
nucleon interactions, whose NR limit can then be examined. In the uncharged mediator case
we will consider mediators that are neutral under all SM and WIMP gauge charges, while
in the charged case, the mediator must have both WIMP and SM gauge charges. Given the
above as a guide, our Lagrangian construction is then constrained only by gauge invariance,
Lorentz invariance, renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians
1. Scalar Dark Matter
We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure sta-

bility, and S† is its Hermitian conjugate. To have renormalizable interactions, the neutral
mediator can only be a scalar or a vector. We denote the scalar mediator by ⇤ and the
vector mediator by Gµ with field strength tensor Gµ� . Unless otherwise noted, all of the
following coupling constants are real and dimensionless.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by

LS⇥q = ⌅µS†⌅µS � m2
SS†S � ⇥S

2 (S†S)2

+1
2⌅µ⇤⌅µ⇤ � 1

2m2
⇥⇤2 � m⇥µ1

3 ⇤3 � µ2
4 ⇤4

+iq̄D/ q � mq q̄q

�g1mSS†S⇤ � g2
2 S†S⇤2 � h1q̄q⇤ � ih2q̄�5q⇤, (19)

11

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is

LSGq = ⇧µS†⇧µS � m2
SS†S � ⇥S

2 (S†S)2

�1
4Gµ�Gµ� + 1

2m2
GGµGµ � ⇥G

4 (GµGµ)2

+iq̄ /Dq � mq q̄q

�g3
2 S†SGµGµ � ig4(S†⇧µS � ⇧µS†S)Gµ

�h3(q̄�µq)Gµ � h4(q̄�µ�5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by ⌅ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (⇤) and vector mediator (Gµ) cases respectively are given below,

L⇤⇥q = i⌅̄ /D⌅ � m⇤⌅̄⌅

+1
2⇧µ⇤⇧µ⇤ � 1

2m2
⇥⇤2 � m⇥µ1

3 ⇤3 � µ2
4 ⇤4

+iq̄D/ q � mq q̄q

�⇥1⇤⌅̄⌅ � i⇥2⇤⌅̄�5⌅ � h1⇤q̄q � ih2⇤q̄�5q, (21)

L⇤Gq = i⌅̄ /D⌅ � m⇤⌅̄⌅

�1
4Gµ�Gµ� + 1

2m2
GGµGµ

+iq̄D/ q � mq q̄q

�⇥3⌅̄�µ⌅Gµ � ⇥4⌅̄�µ�5⌅Gµ

�h3q̄�µqGµ � h4q̄�µ�5qGµ. (22)

3. Spin-1 Dark Matter
If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can

occur via a heavy scalar or a vector particle. For the case of vector mediation, there are
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In building these simplified models we remain agnostic about the WIMP’s spin, and
consider dark matter spins of 0, 1

2 and 1. We do however only consider renormalizable inter-
actions between quarks and WIMPs. To ensure a stable WIMP, we assume that the WIMP
is either charged under some internal gauge group or a discrete symmetry group (for example
Z2). However, we assume that this gauge charge is not shared by quarks. We will couple
the WIMP to the quarks via a heavy mediator in two distinct ways: charged and uncharged
mediators, each with all possible spins consistent with angular momentum conservation.
The mediator mass is chosen to be the heaviest scale in the problem (and certainly much
greater than the momentum exchange which characterizes the scattering process) so that we
can integrate it out (see appendix B for details). This leads to relativistic e�ective WIMP-
nucleon interactions, whose NR limit can then be examined. In the uncharged mediator case
we will consider mediators that are neutral under all SM and WIMP gauge charges, while
in the charged case, the mediator must have both WIMP and SM gauge charges. Given the
above as a guide, our Lagrangian construction is then constrained only by gauge invariance,
Lorentz invariance, renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians
1. Scalar Dark Matter
We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure sta-

bility, and S† is its Hermitian conjugate. To have renormalizable interactions, the neutral
mediator can only be a scalar or a vector. We denote the scalar mediator by ⇤ and the
vector mediator by Gµ with field strength tensor Gµ� . Unless otherwise noted, all of the
following coupling constants are real and dimensionless.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by

LS⇥q = ⌅µS†⌅µS � m2
SS†S � ⇥S

2 (S†S)2

+1
2⌅µ⇤⌅µ⇤ � 1

2m2
⇥⇤2 � m⇥µ1

3 ⇤3 � µ2
4 ⇤4

+iq̄D/ q � mq q̄q

�g1mSS†S⇤ � g2
2 S†S⇤2 � h1q̄q⇤ � ih2q̄�5q⇤, (19)
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where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is

LSGq = ⇧µS†⇧µS � m2
SS†S � ⇥S

2 (S†S)2

�1
4Gµ�Gµ� + 1

2m2
GGµGµ � ⇥G

4 (GµGµ)2

+iq̄ /Dq � mq q̄q

�g3
2 S†SGµGµ � ig4(S†⇧µS � ⇧µS†S)Gµ

�h3(q̄�µq)Gµ � h4(q̄�µ�5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by ⌅ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (⇤) and vector mediator (Gµ) cases respectively are given below,

L⇤⇥q = i⌅̄ /D⌅ � m⇤⌅̄⌅

+1
2⇧µ⇤⇧µ⇤ � 1

2m2
⇥⇤2 � m⇥µ1

3 ⇤3 � µ2
4 ⇤4

+iq̄D/ q � mq q̄q

�⇥1⇤⌅̄⌅ � i⇥2⇤⌅̄�5⌅ � h1⇤q̄q � ih2⇤q̄�5q, (21)

L⇤Gq = i⌅̄ /D⌅ � m⇤⌅̄⌅

�1
4Gµ�Gµ� + 1

2m2
GGµGµ

+iq̄D/ q � mq q̄q

�⇥3⌅̄�µ⌅Gµ � ⇥4⌅̄�µ�5⌅Gµ

�h3q̄�µqGµ � h4q̄�µ�5qGµ. (22)

3. Spin-1 Dark Matter
If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can

occur via a heavy scalar or a vector particle. For the case of vector mediation, there are
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LSD
int ¼ χ̄γμγ5χ

X

N¼n;p

fNSD
Λ2

N̄γμγ5N →
X

N¼n;p

cN4 O4

with cN4 ¼ −
4fNSD
Λ2

; ð11Þ

leading to the cross section

σSDT ¼ μ2T
π

Cχ

Λ4

X

N;N0

fNSDf
N0

SDð ~W
ðN;N0Þ
Σ0 þ ~WðN;N0Þ

Σ″ Þ; ð12Þ

where, as in [35], we have defined the DM spin-dependent
constant,

Cχ ≡
4jχðjχ þ 1Þ

3
: ð13Þ

The SD cross section is often expressed as a function of the
proton-DM zero-momentum-transfer cross section σSDp ,

σSDT ¼ μ2T
μ2p

σSDp
4

3

J þ 1

J

!
hSpiþ

fnSD
fpSD

hSni
"

2
P

N;N0fNSDf
N0

SDð ~W
ðN;N0Þ
Σ0 ðyÞ þ ~WðN;N0Þ

Σ″ ðyÞÞ
P

N;N0fNSDf
N0

SDð ~W
ðN;N0Þ
Σ0 ð0Þ þ ~WðN;N0Þ

Σ″ ð0ÞÞ
; ð14Þ

where

σSDp ¼
μ2p
π

Cχ

Λ4
3ðfpSDÞ2: ð15Þ

Note that the combination of nuclear responses,

X

N;N0

fNSDf
N0

SDð ~W
ðN;N0Þ
Σ0 ð0Þ þ ~WðN;N0Þ

Σ″ ð0ÞÞ ¼ 4
J þ 1

J
ðfpSDhSpiþ fnSDhSniÞ2; ð16Þ

gives rise to the usual spin-dependent factors.

B. Anapole dark matter

Majorana fermion DM scattering off of nucleons via a
spin-1 mediator that kinetically mixes with the photon
proceeds via the following effective interaction6:

Lanapole
int ¼ fa

M2
χ̄γμγ5χJ EM

μ ; ð17Þ

where

J EM
μ ≡

X

N¼n;p

N̄
!
QN

Kμ

2mN
− ~μN

iσμνqν

2mN

"
N ð18Þ

is the electromagnetic current restricted to nucleons. We
have used the conventions of [34], taking Kμ ¼ kμ þ k0μ

and four-momentum-transfer qμ ¼ p0μ − pμ ¼ kμ − k0μ

with p (p0) the incoming (outgoing) DM four-momentum
and similarly k (k0) the incoming (outgoing) nucleon four-
momentum. We have used ~μ to denote a dimensionless
magnetic moment,

~μ ¼ magnetic moment
nuclear magneton

: ð19Þ

The relevant EM constants are ~μn ¼ −1.9, ~μp ¼ 2.8,
Qp ¼ 1, and Qn ¼ 0.
In the nonrelativistic limit,

Lanapole
int →

2fa
M2

X

N¼n;p

ðQNO8 þ ~μNO9Þ; ð20Þ

where the nonrelativistic operators O8 and O9 are as
defined in [34] and Table II.
Evaluating Eq. (2), taking c8; c9 from Eq. (20), and

substituting the “WIMP form factors” Rk found in [34] and
reproduced in Appendix A, we obtain (for Dirac DM)

6The nonrelativistic reduction for this and other interactions
considered in the paper can be read from Table 1 of [34]. To do
so, one must recall the Gordon identities, ūðp0ÞγμuðpÞ ¼
ūðp0Þððpþp0Þμ

2m þ iσμνðp0−pÞν
2m ÞuðpÞ and ūðp0Þσμνðp0 − pÞνγ5uðpÞ ¼

ūðp0Þðiðpþ p0Þμγ5ÞuðpÞ. Note that signs in Table 1 in v1 of
[34] for the nonrelativistic reduction of relativistic operators with
an odd power of momentum transfer are incorrect by a factor of
−1, because the convention q ¼ p − p0 was used rather than the
stated q ¼ p0 − p convention.
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Figure 3. Axial+Vector(SM)–Axial(DM): Parameter space forbidden by constraints from dilepton
resonance searches from ATLAS (light green, dashed) and Tevatron (dark green, dashed), elec-
troweak precision observables (blue, dotted) and DM overproduction (red, solid) in the mZ� � gAq,l
parameter plane for two exemplary DM masses 100 GeV (left) and 500 GeV (right). In the shaded
region to the left of the vertical grey line the Z �-mass violates the bound from perturbative unitarity
from eq. (2.8).

where Nc = 3 (1) for quarks (leptons). The decay width into DM pairs is

�(Z � ⌅ ⇧⇧) =
mZ�

24⌅
(gADM)2

�
1� 4m2

DM

m2
Z�

⇥3/2

. (4.2)

Consequently, for mDM ⇤ mZ� and gA⇧ = gAq ⇤ gADM the branching ratio into � = e, µ

is given by BR(R ⌅ ��) ⇥ 8(gA⇧ )
2/(gADM)2. For mDM > mZ�/2, on the other hand, the

branching ratio is given by BR(R ⌅ ��) ⇥ 0.08–0.10 depending on the ratio mZ�/mt.

We implement the latest ATLAS dilepton search [61], complemented by a Tevatron

dilepton search [62] for the low mass region, and show the resulting bounds in figure 3.

One can see that the bounds strongly depend on the assumed branching ratio of the Z �.

As a conservative limiting case we show gADM = 1 and mDM = 100 GeV, which leads

to a rather large branching fraction into DM and hence suppressed bounds. The second

benchmark, mDM = 500 GeV, allows for Z � decays to DM only for rather heavy Z �s, leading

to correspondingly more restrictive dilepton constraints. Overall the bounds turn out to be

very stringent and the Z � coupling to leptons and quarks needs to be significantly smaller

than unity for 100 GeV � mZ� � 4 TeV, so that dijet constraints are basically irrelevant

in this case given that gq = gl.

The fact that the SM Higgs is charged also implies potentially large corrections to

electroweak precision observables. In particular we obtain the non-diagonal mass term

�m2 ZµZ �
µ leading to mass mixing between the SM Z and the new Z �. The diagonalisation

required to obtain mass eigenstates is discussed in the appendix. In the absence of kinetic

mixing between the U(1)� and the SM U(1) gauge bosons (⇥ = 0), the resulting e⇥ects

– 12 –

5 Purely vectorial couplings to SM fermions

Let us now consider the case with purely vectorial couplings on the SM side, i.e. gAq =

gA⌥ = gA⇥ = 0. In this case the SM Higgs does not carry a U(1)� charge and therefore

the charges of quarks and leptons are independent. In particular, it is conceivable that

gVq ⇤ gV⌥ , so that constraints from dilepton resonance searches can be evaded. Also there

can in principle be a flavour dependence of the Z � couplings to quarks. Nevertheless, to

avoid large flavour-changing neutral currents, we will always assume the same coupling for

all quark families in what follows [15]. Finally, in contrast to the case discussed above,

tree-level Z � Z � mass mixing is absent. It therefore seems plausible that the Z � is the

only state coupling to both the visible and the dark sector. Nevertheless, as mentioned

above, potentially important e⇥ects in this scenario can be kinetic mixing of the U(1) gauge

bosons as well as e⇥ects induced by the dark Higgs, which we are going to discuss below.

Let us just mention that all these e⇥ects will also be present in the scenario discussed in the

previous section. They are, however, typically less important than the e⇥ects of tree-level

Z-Z � mixing.

We first consider the e⇥ects of kinetic mixing between the Z � and the SM hypercharge

gauge boson B:

L ⇥� 1

2
sin ⇤F �µ⇥Bµ⇥ , (5.1)

where F �µ⇥ = ⌥µZ �⇥ � ⌥⇥Z �µ and Bµ⇥ = ⌥µB⇥ � ⌥⇥Bµ. A non-zero value of ⇤ leads to

mixing between the Z � and the neutral gauge bosons of the SM (see App. A.1). As in the

case of mass mixing discussed above, there are strong constraints on kinetic mixing from

searches for dilepton resonances and electroweak precision observables.

The dilepton couplings induced via the kinetic mixing parameter ⇤ can be inferred from

the mixing matrices and are given in the appendix, cf. eq. (A.10). The S and T parameters

are given by

�S =4c2WsW⌅(⇤� sW⌅) ,

�T =⌅2
�
m2

Z�

m2
Z

� 2

⇥
+ 2sW⌅⇤ , (5.2)

where for ⇥m2 = 0 the mixing parameter ⌅ is given by ⌅ = m2
ZsW⇤/(m2

Z �m2
Z�) at leading

order. If ⇤ is sizeable, i.e. if mixing is present at tree level, the resulting bounds can be

quite strong. This expectation is confirmed in figure 5. Note that the relic density curves

shown in figure 5 are basically independent of ⇤, because freeze-out is dominated by direct

Z � exchange for the adopted choice of couplings.

While tree-level mixing is tightly constrained, it is reasonable to expect that ⇤ vanishes

at high scales, for example if both U(1)s originate from the same underlying non-Abelian

gauge group, as in Grand Unified Theories. Since quarks carry charge under both U(1)� and

U(1)Y , quark loops will still induce kinetic mixing at lower scales [43], but the magnitude

of ⇤ can be much smaller than what we considered above. The precise magnitude of the

kinetic mixing depends on the underlying theory, but if we assume that ⇤(�) = 0 at some
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the LHC at 8 TeV and its DM discovery potential at 14 TeV, we aim for a general model-independent characterisation
of dark sectors with as few free parameters as possible, but without resorting to an e⇥ective field theory description.
To achieve this we employ the simplified model approach which provides a microscopic QFT description of a minimal
set of interactions between the Standard Model partons and the dark sector particles. These interactions are mediated
by a complete set of four basic types of messenger fields, i.e. the scalar, pseudo-scalar, vector and axial-vector. One
naturally expects that the FCC should perform significantly better than the LHC for heavy mediators and heavy
dark matter particles, the primary aim of this work is to seek to quantify this improvement. Our work is another
step in the emerging program of DM studies at future colliders in the 100 TeV range, [5–7]. Related studies using
simplified models for constraining dark sectors at the LHC include Refs. [8–16], and we also refer the reader to the
recent summaries [17, 18] and references therein.

In DM searches at hadron colliders, the putative dark particles are pair-produced in collisions of the visible sector
particles – the Standard Model quarks and gluons. In the set-up we study here, there are no direct interactions
between the SM sector and the dark matter particles. Instead these interactions are mediated by an intermediate
degree of freedom – the mediator field. In general, one can expect four types of mediators, scalar S, pseudo-scalar P ,
vector Z ⇥ or axial-vector Z ⇥⇥. The corresponding four classes of simplified models describing elementary interactions
of these four mediators with the SM quarks and with the dark sector fermions ⇥ are

Lscalar ⌅ � 1

2
m2

MEDS
2 � gDMS ⇥̄⇥�

�

q

gqSMS q̄q �mDM⇥̄⇥ , (1)

Lpseudo�scalar ⌅ � 1

2
m2

MEDP
2 � igDMP ⇥̄�5⇥�

�

q

igqSMP q̄�5q �mDM⇥̄⇥ , (2)

Lvector ⌅
1

2
m2

MEDZ
⇥
µZ

⇥µ � gDMZ ⇥
µ⇥̄�

µ⇥�
�

q

gqSMZ ⇥
µq̄�

µq �mDM⇥̄⇥ , (3)

Laxial ⌅
1

2
m2

MEDZ
⇥⇥
µZ

⇥⇥µ � gDMZ ⇥⇥
µ ⇥̄�

µ�5⇥�
�

q

gqSMZ ⇥⇥
µ q̄�

µ�5q �mDM⇥̄⇥ . (4)

The coupling constant gDM characterizes the interactions of the messengers with the dark sector particles, which for
simplicity we take to be Dirac fermions ⇥, ⇥̄, the case of scalar DM particles is a straightforward extension of these
results.

The coupling constants linking the messengers to the SM quarks are collectively described by gqSM,

scalar & pseudo� scalarmessengers : gqSM ⇤ gq yq = gq
mq

v
, (5)

vector & axial� vector messengers : gqSM = gSM . (6)

For scalar and pseudo-scalar messengers the couplings to quarks are taken to be proportional to the corresponding
Higgs Yukawa couplings, yq as in models with minimal flavour violation [19], and we keep the scaling gq flavour-
universal for all quarks. For axial and vector mediators gSM is a gauge coupling in the dark sector which we also take
to be flavour universal. The coupling parameters which we can vary are thus gDM plus either gq or gSM, the latter
choice depending on the messengers.2

In general, the simplified model description of the dark sector is characterised by five parameters: the mediator
mass mMED, the mediator width �MED, the dark particle mass mDM, and the mediator-SM and the mediator-Dark
sector couplings, gSM, gDM. Out of these, the mediator width �MED, does not appear explicitly in the simplified
model Lagrangians (1)-(4) and should be specified separately. �MED accounts for the allowed decay modes of a
given mediator particle into other particles from the visible and the dark sector. In a complete theory, �MED can be
computed from its Lagrangian, but in a simplified model we can instead determine only the so-called minimal width
�MED,min, i.e. the mediator width computed using the mediator interactions with the SM quarks and the ⇥̄, ⇥ DM
particles defined in Eqs. (1)-(4). Importantly �MED,min does not take into account the possibility of the mediator to
decay into e.g. other particles of the dark sector, beyond ⇥̄, ⇥, which would increase the value of �DM. In Ref. [4]
we have investigated the role of �MED as an independent parameter in the simplified models characterisation of dark
sectors by using a simple grid for �DM = {1, 2, 5, 10}⇥ �MED,min.

2 In Ref. [4] we have parametrised gDM for (pseudo-)scalar messengers as gDM = g� mDM/v to look symmetric w.r.t. (5), and have
treated g� as a free parameter. Here we do not impose this requirement and leave gDM as the free parameter.

DM-SM Connections

4

{gDM , gSM ,mDM ,mMED,�} (10)



3

S L J C P

0 0 0 + -

0 1 1 - +

1 0 1 - -

1 1 0,1,2 + +

1 2 1,2,3 - -

1 3 2,3,4 + +

S L J C P

0 0 0 + +

0 1 1 - -

1 0 1 - +

1 1 0,1,2 + -

1 2 1,2,3 - +

2 0 2 + +

2 1 1,2,3 - -

2 2 0,1,2,3,4 + +

2 3 1,2,3,4,5 - -

2 4 2,3,4,5,6 + +

TABLE I. The C and P transformation properties of a fermion/anti-fermion (left) or boson/anti-boson (right) state for given
S, L and J quantum numbers.

bilinear C P J state

ψ̄ψ + + 0 S = 1, L = 1

ıψ̄γ5ψ + - 0 S = 0, L = 0

ψ̄γ0ψ - + 0 none

ψ̄γiψ - - 1 S = 1, L = 0, 2

ψ̄γ0γ5ψ + - 0 S = 0, L = 0

ψ̄γiγ5ψ + + 1 S = 1, L = 1

ψ̄σ0iψ - - 1 S = 1, L = 0, 2

ψ̄σijψ - + 1 S = 0, L = 1

φ†φ + + 0 S = 0, L = 0

ıIm(φ†∂0φ) - + 0 none

ıIm(φ†∂iφ) - - 1 S = 0, L = 1

B†
µB

µ + + 0 S = 0, L = 0; S = 2, L = 2

ıIm(B†
ν∂

0Bν) - + 0 none

ıIm(B†
ν∂

iBν) - - 1 S = 0, L = 1; S = 2, L = 1, 3

ı(B†
iBj −B†

jBi) - + 1 S = 1, L = 0, 2

ı(B†
iB0 −B†

0Bi) - - 1 S = 0, L = 1; S = 2, L = 1, 3

ε0ijkBi∂jBk + - 0 S = 1, L = 1

−ε0ijkB0∂jBk + + 1 S = 2, L = 2

Bν∂νB0 + + 0 S = 0, L = 0; S = 2, L = 2

Bν∂νBi + - 1 S = 1, L = 1

TABLE II. The C, P and J quantum numbers of any state that can be either created or annihilated by the bilinear. For each
possible state, the S and L quantum numbers are also given.

eigenvalues for a fermion/anti-fermion state (left) or boson/anti-boson state (right) in terms of the angular momentum
quantum numbers.
For any bosonic or fermionic bilinear, the transformation of the bilinear under rotations determines the total

angular momentum of the state that this bilinear either creates or annihilates. This information, along with the C
and P quantum numbers of the bilinear, are thus sufficient to determine (from Table I) the spin and orbital angular
momentum of the initial and final state. The S and L quantum numbers of the states created (annihilated) by every
lowest-dimension bilinear are listed in Table II.
We see that the only dark matter bilinears that can couple to an s-wave initial state are ıX̄γ5X , X̄γiX , X̄γ0γ5X ,

X̄σ0iX , φ†φ, B†
µB

µ, ı(B†
iBj − B†

jBi) and Bν∂νB0. Note that the structures ψ̄γ0ψ, ıIm(φ†∂0φ) and ıIm(B†
ν∂

0Bν)
cannot couple to any state and cannot contribute to any non-zero annihilation matrix element.
The Standard Model fermion bilinear must be able to produce a final state with the same J quantum number as
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respectively. In section IV we compile our results. In section V, we conclude with a discussion of interesting features
and deviations from standard lore that arise from the application of our analysis.
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Also from Table X, we see that there are only a few Lorentz structures for the Standard Model coupling such that
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Fermion/anti-fermion

Boson/anti-boson
Initial state DM

DM Annihilation
4

S L J Jz = Sz fermion helicities

0 0 0 0 fL, f̄R; fR, f̄L

1 0 1 1 fR, f̄R
1 0 1 0 fL, f̄R; fR, f̄L
1 0 1 -1 fL, f̄L

0 1 1 0 fL, f̄R; fR, f̄L

1 1 0 0 fL, f̄R; fR, f̄L

1 1 1 1 fR, f̄R
1 1 1 0 -

1 1 1 -1 fL, f̄L

1 2 1 1 fR, f̄R
1 2 1 0 fL, f̄R; fR, f̄L
1 2 1 -1 fL, f̄L

TABLE III. The possible fermion and anti-fermion helicities of a fermion/anti-fermion state with given S, L, J and Jz quantum
numbers. It is assumed that the fermion is travelling on the +z-axis, and the anti-fermion is travelling on the −z-axis. f̄L,R

denotes the CP -conjugate of fL,R (so, for example, f̄L is a right-handed anti-fermion ).

violate either symmetry). Thus, the spin and orbital angular momentum of the final and initial state may be different.
Finally, we address the question of whether or not there is a chirality-suppression (∝ m2

f/m
2
X) of the annihilation

matrix element. This suppression arises if a SM mass insertion is required to produce a final state with the appropriate
spin. An outgoing state of SM fermions f̄f can only be in a Sz = 0 state if the fermion and anti-fermion are from
different Weyl spinors (fL and fR). They are in an Sz = ±1 state if the fermion and anti-fermion are from the same
Weyl spinor. We take the z-axis to lie along the direction of motion of the outgoing fermion and anti-fermion, so
Lz = 0, and Jz = Sz. (Note that for particles moving along the z-axis it is clear that Lz = 0, because Ylm(θ = 0,φ) "= 0
only if m = 0.)
In Table III, we list the possible fermion and anti-fermion helicities for final states with fixed choices of S, L, J

and Jz . We assume that the fermion moves along the +z-axis and the anti-fermion along the −z-axis, and that
the initial state is written in a basis with angular momentum projected along the z-axis. In our notation, f̄L is a
right-handed anti-fermion, the CP -conjugate of fL. For a SM bilinear to produce one of the listed final states, it must
be able to produce a state with appropriate S, L and J quantum numbers. The helicities of the produced fermion
and anti-fermion are then determined by the number of Dirac matrices in the bilinear; a bilinear with an even number
of Dirac matrices will produce a fermion/anti-fermion pair from the same Weyl spinor, while a bilinear with an odd
number of Dirac matrices will produce a pair from different Weyl spinors. If a bilinear does not produce a fermion
and anti-fermion of the needed helicities, then there will be a chirality flip arising from a mass-insertion.
We can now bring together all of the pieces which contribute to an understanding of the annihilation matrix element.

The procedure is as follows:

• For each interaction structure, we find the C and P transformations and J quantum number of the dark matter
bilinear, and from this identify the initial state that can couple to this bilinear; s-wave annihilation is only
permitted if this state has L = 0.

• We then determine if the Standard Model bilinear can create a final state with the same J as the initial state.
If so, the matrix element for annihilation from the initial state to the appropriate final state is non-zero.

• We then check if the matrix element has an additional mf/mX chirality suppression. For each Jz projection of
the final state, we find the helicities of the final state fermion and anti-fermion. If there is no choice of Jz for
which the SM bilinear can produce fermions with the appropriate helicities, then the annihilation cross section
is suppressed by m2

f/m
2
X .

In Appendix B, we list the matrix elements arising from fermion/anti-fermion creation or annihilation, for all choices
of interaction structure. In the interest of generality, the anti-fermion is not assumed to be the anti-particle of the
fermion, and the two particles are allowed to have different masses. These matrix elements can thus be used for the
case of dark matter co-annihilation, or if dark matter annihilates through a flavor-violating process. The standard
case can be obtained by setting the masses of the two particles to be equal.

Final State fermions (...bosons)



chirality suppression

(chirality suppression can be lifted in 
some 2 to 3 processes with IVB)

3

FIG. 1. The t-channel ((a),(c), and (e)) and u-channel ((b), (d) and (f)) Feynman diagrams for χχ → e+νW−. Note that t-
and u-channel amplitudes are simply related by the k1 ↔ k2 interchange symmetry. All fermion momenta in the diagrams flow
with the arrow except p2 and q2, with q1 = p1 +Q, q2 = p2 +Q.

The W boson behaves as a massive transverse photon,
with just two transverse polarizations contributing. As a
consequence, our calculation of W bremsstrahlung must
reduce to the known results for photon bremsstrahlung
in the mW → 0 limit, modulo coupling constants. Below
we will show that this happens.

The thermally-averaged cross section is given by

v dσ =
1

2s

∫

1

4

∑

spin, pol.

|M|2 dLips3 (14)

where the 1
4

arises from averaging over the spins of the

initial χ pair, v =
√

1− 4m2
χ

s is the mean dark matter
velocity, as well as the dark matter single-particle velocity
in the center of mass frame1, and dLipsn represents n-
body Lorentz invariant phase space.

We calculate the cross section for W emission follow-
ing the procedure outlined above, with the integration
over phase space performed according to the method de-
scribed in Ref. [1]. We expand in powers of the DM
velocity, v, keeping only the leading order (v0) contribu-
tion. As expected, we have an unsuppressed cross section
given by

σv #
αW f4

256π2m2
χ

{
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6
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(
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(
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(
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−
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(
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16m4
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+
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(
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(
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(
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(
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}

(15)

1 Informative discussions of the meaning of v are given in [21], and the inclusion of thermal averaging is covered in [22].
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IV. RESULTS

We summarize our results in the following four tables. In Table IV, we list the dependence of the spin-independent
and spin-dependent scattering matrix elements on

−→
S , −→q and v⊥. For each structure, we indicate whether the

momentum or velocity dependence arises from the dark matter or Standard Model bilinear. For interactions structures
that yield several matrix element terms with different kinematic dependence, the kinematic dependence of each
term is listed on a separate line. We also list if each interaction permits s-wave annihilation, and (if so) whether
or not s-wave annihilation is chirality-suppressed. Note that, using Lorentz gauge, one can rewrite Bν∂νBµ as
∂ν(BνBµ) = ∂ν [(1/4)gµνBρBρ+BνBµ(sym)], where “(sym)” means symmetric and traceless in the µν indices. Note
also that, although operator V8 permits annihilation from an s-wave dark matter initial state, the matrix element
nevertheless has an additional v2-suppression which arises because it depends on the time-like component of the
polarization vector, and thus vanishes in the non-relativistic limit.

Name Interaction Structure σSI suppression σSD suppression s-wave?

F1 X̄Xq̄q 1 q2v⊥2 (SM) No

F2 X̄γ5Xq̄q q2 (DM) q2v⊥2 (SM); q2 (DM) Yes

F3 X̄Xq̄γ5q 0 q2 (SM) No

F4 X̄γ5Xq̄γ5q 0 q2 (SM); q2 (DM) Yes

F5 X̄γµXq̄γµq 1 q2v⊥2 (SM) Yes

(vanishes for Majorana X) q2 (SM); q2 or v⊥2 (DM)

F6 X̄γµγ5Xq̄γµq v⊥2 (SM or DM) q2 (SM) No

F7 X̄γµXq̄γµγ
5q q2v⊥2 (SM); q2 (DM) v⊥2 (SM) Yes

(vanishes for Majorana X) v⊥2 or q2 (DM)

F8 X̄γµγ5Xq̄γµγ5q q2v⊥2 (SM) 1 ∝ m2
f/m

2
X

F9 X̄σµνXq̄σµνq q2 (SM); q2 or v⊥2 (DM) 1 Yes

(vanishes for Majorana X) q2v⊥2 (SM)

F10 X̄σµνγ5Xq̄σµνq q2 (SM) v⊥2 (SM) Yes

(vanishes for Majorana X) q2 or v⊥2 (DM)

S1 φ†φq̄q or φ2q̄q 1 q2v⊥2 (SM) Yes

S2 φ†φq̄γ5q or φ2q̄γ5q 0 q2 (SM) Yes

S3 φ†∂µφq̄γ
µq 1 q2v⊥2 (SM) No

q2 (SM); v⊥2 (DM)

S4 φ†∂µφq̄γµγ5q 0 v⊥2 (SM or DM) No

V1 B†
µB

µq̄q or BµB
µq̄q 1 q2v⊥2 (SM) Yes

V2 B†
µB

µq̄γ5q or BµB
µq̄γ5q 0 q2 (SM) Yes

V3 B†
ν∂µB

ν q̄γµq 1 q2v⊥2 (SM) No

q2 (SM); v⊥2 (DM)

V4 B†
ν∂µBν q̄γµγ5q 0 v⊥2 (SM or DM) No

V5 (B†
µBν −B†

νBµ)q̄σ
µνq q2v⊥2 (SM) 1 Yes

V6 (B†
µBν −B†

νBµ)q̄σ
µνγ5q q2 (SM) v⊥2 (SM) Yes

V7 B†
ν∂

νBµq̄γ
µq or Bν∂

νBµq̄γ
µq v⊥2 (SM); q2 (DM) q2 (SM); q2 (DM) No

V8 B†
ν∂

νBµq̄γ
µγ5q or Bν∂

νBµq̄γ
µγ5q q2v⊥2 (SM); q2 (DM) q2 (DM) ∝ m2

f/m
2
X

V9 εµνρσB†
ν∂ρBσ q̄γµq or εµνρσBν∂ρBσ q̄γµq v⊥2 (DM or SM) q2 (SM) No

V10 εµνρσB†
ν∂ρBσ q̄γµγ

5q or εµνρσBν∂ρBσ q̄γµγ
5q q2v⊥2 (SM) 1 No

TABLE IV. The kinematic suppression of the spin-independent and spin-dependent scattering cross sections for all possible
interaction structures. F1-F10 correspond to fermionic dark matter (with F5, F7, F9 and F10 absent for Majorana fermions),
S1-S4 correspond to real or complex scalar dark matter, V1-V10 to real or complex vector dark matter. Each suppression is
labelled to indicate if it arises from the SM or dark matter (DM) bilinear. If a cross section contains several terms with different
kinematic suppressions, each is listed on a separate line. We also list if s-wave annihilation is permitted and unsuppressed, if it
is chirality-suppressed by a factor ∝ m2

f/m
2
X , or if it is not permitted at all; although the interactions are expressed in terms

of quark fields q, by a slight abuse of notation we allow for annihilation to any pair of SM fermions f̄f , each of mass mf .
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W/Z Bremsstrahlung as the Dominant Annihilation Channel for Dark Matter,
Revisited

Nicole F. Bell,1 James B. Dent,2 Ahmad J. Galea,1 Thomas D. Jacques,1 Lawrence M. Krauss,2 and Thomas J. Weiler3

1School of Physics, The University of Melbourne, Victoria 3010, Australia
2Department of Physics and School of Earth and Space Exploration,

Arizona State University, Tempe, AZ 85287-1404, USA
3Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA

We revisit the calculation of electroweak bremsstrahlung contributions to dark matter annihi-
lation. Dark matter annihilation to leptons is necessarily accompanied by electroweak radiative
corrections, in which a W or Z boson is also radiated. Significantly, while many dark matter models
feature a helicity suppressed annihilation rate to fermions, bremsstrahlung process can remove this
helicity suppression such that the branching ratios Br(!νW ), Br(!+!−Z), and Br(ν̄νZ) dominate
over Br(!+!−) and Br(ν̄ν). We find this is most significant in the limit where the dark matter mass is
nearly degenerate with the mass of the boson which mediates the annihilation process. Electroweak
bremsstrahlung has important phenomenological consequences both for the magnitude of the total
dark matter annihilation cross section and for the character of the astrophysical signals for indirect
detection. Given that the W and Z gauge bosons decay dominantly via hadronic channels, it is
impossible to produce final state leptons without accompanying protons, antiprotons, and gamma
rays.
keywords: dark matter annihilation

I. INTRODUCTION

The importance of electroweak radiative corrections to
dark matter annihilation has recently been recognized,
and examined in a number of publications [1–10]. In
a recent paper some of the present authors considered
electroweak bremsstrahlung contributions to dark mat-
ter annihilation, in models in which dark matter an-
nihilation to a fermion-antifermion pair, χχ → f̄ f , is
helicity suppressed [1]. There it was shown that W/Z
bremsstrahlung lifts helicity suppressions, and can there-
fore be the dominant DM annihilation mode. How-
ever, some of the quantitative conclusions of [1] must
be modified, as the explicit cross section calculation in
therein was in error. The purpose of the present pa-
per is to revisit and extend the calculation of the W/Z
bremsstrahlung cross sections, and draw inferences from
the result. The main inference is that the three body final
state processes can still dominate the tree level process
as claimed in [1]. We show herein that the claim finds
support in the region where the parameter µ ≡ m2

η/m
2
χ

is not too far from unity, with mη and mχ being the
mass of the boson which mediates the annihilation pro-
cess and the dark matter mass, respectively. This region
of parameter space is reminiscent of the co-annihilation
region in standard supersymmetric (SUSY) scenarios, al-
though the present work can also be applied to models
which are not in the SUSY framework.

Let us parametrize the dark matter annihilation cross
section in the usual way,

σv = a+ bv2, (1)

where the constant a arises from s-wave annihilation
while the constant b receives contributions from both s-
and p-wave channels. Since the dark matter velocity in

a galactic halo today is v ∼ 10−3c, the p-wave term is
strongly velocity suppressed. In order to have a large an-
nihilation cross section in the Universe today, it is desir-
able to have an unsuppressed a (s-wave) term. However,
the s-wave annihilation of DM to a fermion-antifermion
pair is helicity suppressed in a number of important and
popular models. The most well known example is the
annihilation of supersymmetric neutralinos to a fermion-
antifermion pair. The circumstances under which helicity
supressions do or do not arise were discussed in detail in
Ref. [1].

It has long been know that bremsstrahlung of photons
can lift such a helicity suppression, leading to the re-
sult that the cross section for χχ → f̄fγ can dominate
over that for χχ → f̄ f [11–16]. However, the fact that
radiation of a W or Z gauge boson would also lift a he-
licity suppression had been overlooked until the work of
Refs. [1, 4]. In these scenarios for which the helicity sup-
pression is removed, the dominant annihilation channels
are the set of bremsstralung processes, namely γ, W and
Z bremsstrahlung. (If the dark matter annihilates to col-
ored fermions, radiation of gluons would also contribute).
The phenomenology of W and Z bremsstrahlung is richer
than that for photon bremsstrahlung alone. This is be-
cause the W and Z bosons decay dominantly to hadronic
final states, including antiprotons, for which interesting
cosmic ray bounds exist.

II. EXAMPLE OF SUPPRESSED
ANNIHILATION

To illustrate our arguments, we choose a simple ex-
ample of the class of model under discussion. This is
provided by the leptophilic model proposed in Ref. [17,
18]. Here the DM consists of a gauge-singlet Majorana

this type of analysis has been applied in the simplified model framework for IDD
A. Berlin, D. Hooper, and S.D. McDermott 1404.0022
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FIG. 1: σSI
p as a function of the mass of dark matter for

SFDM for a mixing angle α = 0.2. Upper panel: m2 =
10−2, 1, 10, 50, 70GeV for solid lines from top to bottom.
Lower panel: m2 = 100, 200, 500, 1000GeV for dashed lines
from bottom to top. The balck dotted line is EFT prediction.
Dark-gray and gray region are the exclusion regions of LUX
[15] and projected XENON1T (gray) [16].

Let us compare these results with those obtained in
the EFT:

(Binv
h )EFT =

(

Γinv
h

)

EFT

ΓSM
h +

(

Γinv
h

)

EFT

(15)

(σSI
p )EFT =

m2
r

π

[

λψH mp

Λm2
h

]2

f2
p (16)

where

(Γinv
h )EFT =

1

8π

(

λψHvH
Λ

)2

mh

(

1−
4m2

ψ

m2
h

)3/2

. (17)

Recent analysises of LHC experiments impose a bound
[1, 2] on the branching fraction of SM-like Higgs decay
to invisible particles as [2]

Binv
h < 0.51 at 95%CL (18)

(see also Ref. [13] for more involved analysis in the pres-
ence of extra singlet-like scalar boson that mixes with the
SM Higgs boson). In the renormalizable model described
by Eq. (4), the LHC bound on Binv

h can be translated di-
rectly to a constraint on σSI

p by the relation,

σSI
p = c4αm

4
hF(mψ, {mi}, v)

×
Binv

h ΓSM
h

(

1−Binv
h

)

8m2
r

m5
hβ

3
ψ

(

mp

vH

)2

f2
p (19)

where βψ =
√

1− 4m2
ψ/m

2
h. Here we set B
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simplicity, and denoted Binv
1 as Binv

h . On the other hand,
in the EFT described by Eq. (2) with
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which was used in the analysis’s of ATLAS [1] and CMS
[2]. Now it is clear from Eqs. (19) and (20) that, con-
trary to

(

σSI
p

)

EFT
of EFT, σSI

p of a full theory of Eq. (4)

has additional factors, c4αm
4
hF , which involves two extra

parameters, (α, m2). Note that, in the limit α is very
small so that we can make cosα $ 1, and m2 % m1

so that we can drop 1/m2
2 term in the σSI

p , Eq. (19)
for σSI

p approaches to Eq. (20) for
(

σSI
p

)

EFT
. However,

if one of these two assumptions is not valid, one can-
not make a definitive prediction for the σSI

p . Therefore
the bounds on the σSI

p derived by the ATLAS and the
CMS Collaborations should be taken with caution. Ba-
sically one cannot make model-independent connections
between Binv

h (= Binv
1 ) and σSI

p in the Higgs portal SFDM
model. This is clearly shown in Fig. 1 where colored solid
lines represent the LHC bound on σSI

p of Eq. (7) for var-
ious values for m2. The bound on (σSI

p )EFT of Eq. (16)
was also depicted for comparison. Note that, for low
mψ if m2 < mhcα/

√

1 + c2α, the LHC bound becomes
weaker than the claims made in [1, 2]. Especially, for
m2 ! mhcα/

√

12.3 + c2α, it can not win the direct detec-
tion bound for mψ " 8GeV.

RENORMALIZABLE VDM MODEL

The simplest renormalizable Lagrangian for the Higgs
portal VDM model is given by [14, 18]
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Higgs portal

In this paper we seek to determine the prospects for exclusion or discovery of ⌅ at the

LHC and future colliders when m� > mh/2. For simplicity we focus on
⇥
s = 14 TeV at

the LHC and
⇥
s = 100 TeV at a future pp collider; the sensitivity at lepton colliders was

studied extensively in [14]. Although the possibility of probing Higgs Portal states via an

o�-shell Higgs was identified even before Higgs discovery [8, 10], collider studies to date have

been somewhat limited. In [15] the state of existing limits was established by reinterpretation

of LHC searches for invisible Higgs decays at
⇥
s = 8 TeV in terms of vector boson fusion,

gluon associated production, and Z associated production via an o�-shell Higgs, along with

limited projections for
⇥
s = 14 TeV. Sensitivity to the novel H-Higgsstrahlung mode has

been studied at
⇥
s = 8 & 14 TeV [16], while sensitivity at

⇥
s = 100 TeV has been broached

in a limited study of vector boson fusion production [17]. Further study at
⇥
s = 14 & 100

TeV is strongly motivated, both to help optimize future searches at the LHC and to establish

the physics case for a future hadron collider.

The most promising channel at pp colliders is vector boson fusion (VBF) production of ⌅

pairs via an o�-shell Higgs boson, leading to a signal with two forward jets and missing energy.

Ancillary channels sensitive to the missing energy signal include gluon fusion production (ggH)

with an associated jet, tt̄ associated production (ttH), Z-Higgsstrahlung (ZH), and the novel

H-Higgsstrahlung (HH) channel giving rise to mono-Higgs plus missing energy [16]. Each

has relative virtues. The cross section for ggH production is largest at
⇥
s = 14, 100 TeV but

the additional jet requirement and kinematic separation of signal from background reduces

signal significance. The ttH cross section is significantly smaller but grows substantially at

100 TeV, and the tt̄ + E/T final state has already proven sensitive to invisible decays of the

Higgs boson at 8 TeV [18]. The cross section for ZH production is among the smallest of

the modes and not well separated from the Z + ⇥⇥ backgrounds, rendering it less promising.

The h + E/T signature of HH production is particularly interesting, as it directly probes the

Higgs Portal interaction, but preliminary study at
⇥
s = 8, 14 TeV [16] suggests far less

sensitivity than the VBF mode [15].3 Consequently, the balance of production cross section

and background separation provided by VBF render it the most promising of the channels, but

for completeness in this work we will consider the prospects of VBF, ggH, and ttH searches

at
⇥
s = 14 and 100 TeV.

Note there is also a complementary, indirect means of probing this scenario through its

impact on precision Higgs coupling measurements. The interaction (1.1) leads to shifts in the

Higgs-Z coupling relative to the Standard Model that may be probed through measurements

of the Zh production cross section at future e+e� colliders [19, 20]. Precision on �⇤Zh is ex-

pected to approach the level of � 0.32% at 1⇤ at circular e+e� colliders such as CEPC/TLEP

[21]. A particularly interesting question is whether significant deviations in ⇤Zh at an e+e�

collider may be followed by conclusive evidence for (1.1) at a future pp collider.

Our paper is organized as follows: We begin in Section 2 by reviewing three motivated

3The interpretation of [16] for c� > 1,m� � v is also unclear, as in this regime the mono-Higgs final state

accumulates comparable contributions from both single and double insertions of the Higgs Portal interaction.
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FIG. 1: σSI
p as a function of the mass of dark matter for

SFDM for a mixing angle α = 0.2. Upper panel: m2 =
10−2, 1, 10, 50, 70GeV for solid lines from top to bottom.
Lower panel: m2 = 100, 200, 500, 1000GeV for dashed lines
from bottom to top. The balck dotted line is EFT prediction.
Dark-gray and gray region are the exclusion regions of LUX
[15] and projected XENON1T (gray) [16].

Let us compare these results with those obtained in
the EFT:
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fermion DM with Higgs portal has been constructed in
Ref. [4]:
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Expanding both fields around their VEVs (�H0 =
vH , �S = vs), we can derive the Lagrangian in terms
of h and s. After diagonalization of the mass matrix,
DM ⇤ couples with both H1 and H2.

The interaction Lagrangian of H1 and H2 with the SM
fields and DM ⇤ is given by
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following the convention of Ref. [4]. We identify the ob-
served 125 GeV scalar boson as H1. The mixing between
h and s leads to the universal suppression of the Higgs
signal strengths at the LHC, independent of production

and decay channels [4].
Let us start with the DM-nucleon scattering amplitude

at parton level, ⇤(p) + q(k) ⌃ ⇤(p⇥) + q(k⇥), the parton
level amplitude of which is given by
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where t ⇥ (p⇥ � p)2 is the square of the 4-momentum
transfer to the nucleon, and we took the limit t ⌃ 0 in
the second line, which is a good approximation to the
DM-nucleon scattering. The scale of the dim-7 e⇤ective
operator, mq q̄q⇤⇤, describing the direct detection cross
section for the DM-nucleon scattering is defined in terms
of ⇥dd:
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where ⇥̄dd is derived from ⇥dd in the limit mH2 ⇧ mH1 .
It is important to notice that the amplitude (4) was de-
rived from renormalizable and unitary Lagrangian with
the full SM gauge symmetry, and thus can be a good
starting point for addressing the issue of validity of com-
plementarity.

The amplitude for the monojet + missing ET signature
at hadron colliders is connected to the amplitude (4) by
crossing symmetry s ⌥ t. Comparing with the corre-
sponding amplitude from the EFT approach, we have to
include the following form factor:
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where ŝ ⇥ m2
�� is the square of the invariant mass of the

DM pair. Note that s ⌅ 4m2
� in the physical region for

DM pair creation, and that there is no single constant
scale ⇥col for an e⇤ective operator that characterizes the

qq̄ ⌃ ⇤⇤̄, since ŝ varies in the range of 4m2
� ⇤ ŝ ⇤ s

with
⌦
s being the center-of-mass (CM) energy of the

collider. Also note that we have to include two scalar
propagators with opposite sign in order to respect the
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FIG. 1: σSI
p as a function of the mass of dark matter for

SFDM for a mixing angle α = 0.2. Upper panel: m2 =
10−2, 1, 10, 50, 70GeV for solid lines from top to bottom.
Lower panel: m2 = 100, 200, 500, 1000GeV for dashed lines
from bottom to top. The balck dotted line is EFT prediction.
Dark-gray and gray region are the exclusion regions of LUX
[15] and projected XENON1T (gray) [16].
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Recent analysises of LHC experiments impose a bound
[1, 2] on the branching fraction of SM-like Higgs decay
to invisible particles as [2]
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h < 0.51 at 95%CL (18)

(see also Ref. [13] for more involved analysis in the pres-
ence of extra singlet-like scalar boson that mixes with the
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which was used in the analysis’s of ATLAS [1] and CMS
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p derived by the ATLAS and the
CMS Collaborations should be taken with caution. Ba-
sically one cannot make model-independent connections
between Binv

h (= Binv
1 ) and σSI

p in the Higgs portal SFDM
model. This is clearly shown in Fig. 1 where colored solid
lines represent the LHC bound on σSI

p of Eq. (7) for var-
ious values for m2. The bound on (σSI

p )EFT of Eq. (16)
was also depicted for comparison. Note that, for low
mψ if m2 < mhcα/

√

1 + c2α, the LHC bound becomes
weaker than the claims made in [1, 2]. Especially, for
m2 ! mhcα/

√

12.3 + c2α, it can not win the direct detec-
tion bound for mψ " 8GeV.

RENORMALIZABLE VDM MODEL

The simplest renormalizable Lagrangian for the Higgs
portal VDM model is given by [14, 18]
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Let us compare these results with those obtained in
the EFT:

(Binv
h )EFT =

(

Γinv
h

)

EFT

ΓSM
h +

(

Γinv
h

)

EFT

(15)

(σSI
p )EFT =

m2
r

π

[

λψH mp

Λm2
h

]2

f2
p (16)

where

(Γinv
h )EFT =

1

8π

(

λψHvH
Λ

)2

mh

(

1−
4m2

ψ

m2
h

)3/2

. (17)

Recent analysises of LHC experiments impose a bound
[1, 2] on the branching fraction of SM-like Higgs decay
to invisible particles as [2]

Binv
h < 0.51 at 95%CL (18)

(see also Ref. [13] for more involved analysis in the pres-
ence of extra singlet-like scalar boson that mixes with the
SM Higgs boson). In the renormalizable model described
by Eq. (4), the LHC bound on Binv

h can be translated di-
rectly to a constraint on σSI

p by the relation,

σSI
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×
Binv

h ΓSM
h

(

1−Binv
h

)

8m2
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m5
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mp

vH

)2

f2
p (19)

where βψ =
√

1− 4m2
ψ/m

2
h. Here we set B

nonSM
1 = 0 for

simplicity, and denoted Binv
1 as Binv

h . On the other hand,
in the EFT described by Eq. (2) with
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h

)

EFT
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one finds
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=
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mp

vH

)2

f2
p (20)

which was used in the analysis’s of ATLAS [1] and CMS
[2]. Now it is clear from Eqs. (19) and (20) that, con-
trary to

(

σSI
p

)

EFT
of EFT, σSI

p of a full theory of Eq. (4)

has additional factors, c4αm
4
hF , which involves two extra

parameters, (α, m2). Note that, in the limit α is very
small so that we can make cosα $ 1, and m2 % m1

so that we can drop 1/m2
2 term in the σSI

p , Eq. (19)
for σSI

p approaches to Eq. (20) for
(

σSI
p

)

EFT
. However,

if one of these two assumptions is not valid, one can-
not make a definitive prediction for the σSI

p . Therefore
the bounds on the σSI

p derived by the ATLAS and the
CMS Collaborations should be taken with caution. Ba-
sically one cannot make model-independent connections
between Binv

h (= Binv
1 ) and σSI

p in the Higgs portal SFDM
model. This is clearly shown in Fig. 1 where colored solid
lines represent the LHC bound on σSI

p of Eq. (7) for var-
ious values for m2. The bound on (σSI

p )EFT of Eq. (16)
was also depicted for comparison. Note that, for low
mψ if m2 < mhcα/

√

1 + c2α, the LHC bound becomes
weaker than the claims made in [1, 2]. Especially, for
m2 ! mhcα/

√

12.3 + c2α, it can not win the direct detec-
tion bound for mψ " 8GeV.

RENORMALIZABLE VDM MODEL

The simplest renormalizable Lagrangian for the Higgs
portal VDM model is given by [14, 18]
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Vector mediator
s-channel interactions

2

vEW (8)

2 � 3

Z �
µ

Zµ

q ⇧

�

⇥

g

U(1)�Introduce a new gauge group            with general interactions     

partial wave expansion of the matrix element. In the following we will focus on the J = 0

partial wave, which typically provides the strongest constraint. Since d0µµ� is non-zero only

for µ = µ⇥ = 0, we then obtain from eq. (2.1)

M0
if (s) =

1

64⌃
�if ⇤µ0⇤µ�0

� 1

�1
d cos ⌅Mif (s, cos ⌅) . (2.4)

2.2 Application to a simplified model with a Z ⇥ mediator

Let us consider a simplified model for a spin-1 mediator Z ⇥µ with mass mZ� and a Dirac

DM particle ⌥ with mass mDM.1 The most general coupling structure is captured by the

following Lagrangian:

L = �
⌥

f=q,l,⇥

Z ⇥µ f̄
⇤
gVf ⇥µ + gAf ⇥µ⇥

5
⌅
f � Z ⇥µ ⌥̄

⇤
gVDM⇥µ + gADM⇥µ⇥

5
⌅
⌥ . (2.5)

Although these interactions appear renormalisable, the presence of a massive vector boson

implies that perturbative unitarity may be violated at large energies. In the following, we

will study this issue in detail and derive constraints on the parameter space of the model.

Let us first consider diagrams between 2-fermion states with the Z ⇥ as mediator. The

appropriate propagator for the mediator is

⌃Z ⇥µ(k)Z ⇥⇥(�k)⌥ = 1

k2 �m2
Z�

⇧
gµ⇥ � kµk⇥

m2
Z�

⌃
, (2.6)

where kµ is the momentum of the mediator. For the case of a gauge boson this corresponds

to unitary gauge in which the Goldstone boson has been absorbed. Since we are interested

in the high-energy behaviour of the theory we concentrate on the second term, which

does not vanish in the limit k ⇥ ⇤. This corresponds to restricting to the longitudinal

component of the mediator, Z ⇥
L, which dominates at high energy [47].2 For instance,

considering DM annihilations, we can contract the longitudinal part of the propagator

with the DM current. Making use of k = p1 + p2, where p1 and p2 are the momenta of the

two DM particles in the initial state, leads to a factor

kµv̄(p2)
�
gVDM⇥µ + gADM⇥µ⇥

5
⇥
u(p1) = v̄(p2)

 
gVDM(/p2 + /p1) + gADM(/p2⇥

5 � ⇥5/p1)
⌦
u(p1)

= �2 gADMmDM v̄(p2)⇥
5u(p1) . (2.7)

Hence, the second term in the propagator behaves exactly like a pseudoscalar with mass

mZ� and couplings to DM equal to 2 gADMmDM/mZ� , just like the Goldstone boson present

in Feynman gauge. Note that the term is independent of the vector couplings. The same

1In the case of Majorana DM the vector current vanishes and hence there can only be an axial coupling

on the DM side. We will come back to this case shortly but will consider Dirac DM here to allow for both

vectorial and axial couplings.
2It turns out that for certain processes the transversal part of the propagator leads to a logarithmic

divergence for m2
Z� � s. This divergence is not related to the UV completeness of the theory, but signals

breakdown of perturbativity in the IR, see also [14]. By restricting to the longitudinal components of the

Z� [47] we can avoid the occurence of those IR divergences.
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µ(gVf + gAf �5)f � igSZ
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Figure 2.1: Representative Feynman
diagram showing the pair production
of Dark Matter particles in association
with a parton from the initial state via
a vector or axial-vector mediator. The
cross section and kinematics depend
upon the mediator and Dark Matter
masses, and the mediator couplings to
Dark Matter and quarks respectively:
(Mmed, m⇥, g⇥, gq).

Lvector = gq ⇥
q=u,d,s,c,b,t

Z⇥
µ q̄⇤µq + g⇥Z⇥

µ⇥̄⇤µ⇥ (2.1)

Laxial�vector = gq ⇥
q=u,d,s,c,b,t

Z⇥
µ q̄⇤µ⇤5q + g⇥Z⇥

µ⇥̄⇤µ⇤5⇥. (2.2)

The coupling gq is assumed to be universal to all quarks. It is also
possible to consider other models in which mixed vector and axial-
vector couplings are considered, for instance the couplings to the
quarks are axial-vector whereas those to DM are vector. As men-
tioned in the Introduction, when no additional visible or invisible
decays contribute to the width of the mediator, the minimal width
is fixed by the choices of couplings gq and g⇥. The effect of larger
widths is discussed in Section 2.5.2. For the vector and axial-vector
models, the minimal width is:

�V
min =

g2
⇥ Mmed

12⇧

�
1 +

2m2
⇥

M2
med

⇥
�DM⌃(Mmed � 2m⇥) (2.3)

+ ⇥
q

3g2
qMmed

12⇧

�
1 +

2m2
q

M2
med

⇥
�q⌃(Mmed � 2mq),

�A
min =

g2
⇥ Mmed

12⇧
�3

DM⌃(Mmed � 2m⇥) (2.4)

+ ⇥
q

3g2
qMmed

12⇧
�3

q⌃(Mmed � 2mq) .

⌃(x) denotes the Heaviside step function, and � f =

⇤
1 �

4m2
f

M2
med

is the velocity of the fermion f with mass m f in the mediator
rest frame. Note the color factor 3 in the quark terms. Figure 2.2
shows the minimal width as a function of mediator mass for both
vector and axial-vector mediators assuming the coupling choice
gq = g⇥ = 1. With this choice of the couplings, the dominant con-
tribution to the minimal width comes from the quarks, due to the
combined quark number and color factor enhancement. We specif-
ically assume that the vector mediator does not couple to leptons.
If such a coupling were present, it would have a minor effect in in-
creasing the mediator width, but it would also bring in constraints
from measurements of the Drell-Yan process that would unneces-
sarily restrict the model space.

SM V-V DM
SM A-V DM
SM V-A DM
SM A-A DM
SM mixture DM
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Figure 11. Same as figure 9 but in the presence of vector couplings. The left (right) plot shows
the case where gV � gA (gA � gV ). Note the change of scale in the left figure.

We find that as a result of all of these e⇥ects direct detection is enhanced relative to LHC

searches, although the combined bound is still dominated by the LHC for g = 1.

The sign di⇥erence for isovector couplings will not change LHC cross sections, decay

widths and relic density calculations, all of which are independent of interference e⇥ects.15

However, interference between the individual quark contributions is crucial for direct de-

tection. One can immediately infer from the values for �q(N) given in eq. (3.7) that there is

destructive interference between the up-quark and the down-quark (as well as the strange-

quark) contribution if all couplings have equal signs. For isovector couplings, on the other

hand, the interference is constructive. As a result, this simple modification of the standard

scenario increases the e⇥ective DSP-nucleon coupling by a factor of 3 and hence boosts

direct detection cross sections by an order of magnitude. In spite of this enhancement,

however, we still find LHC searches to more constraining than direct detection even for

isovector couplings.

6.3 Vector couplings

To conclude this section, let us briefly consider non-zero vector couplings gVq and gV� . Fig-

ure 11 (left) shows the combined bounds for gAq = gA� = 0 and gVq = gV� = 1. As expected,

direct detection receives a huge enhancement due to the presence of SI interactions. As

a result, LHC searches are essentially irrelevant in comparison. The only exception is the

parameter region m� � 10 GeV (not shown in figure 11), where direct detection loses

sensitivity. This region, however, is already fully excluded by the combination of monojet

searches and the relic density requirement.

15One notable exception are DM searches in the mono-W channel, where the relative sign between up-

quark and down-quark coupling plays an important role [86]. For isovector couplings, these searches are

expected to give stronger bounds than conventional monojet searches (see e.g. [87]), but a detailed analysis

in the context of our model is beyond the scope of the present work.
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the most stringent ones, ruling out Z ⇥ masses below 2.5 TeV (2.1 TeV) in the left (right)

panel. The bounds from the muon magnetic moment will follow the order as in Fig. 4 since

it is independent of the DM mass.

Similar conclusions are found for m� = 50 and 500 GeV in Figs. 6-7. In Fig. 8, for

m� = 1 TeV, we start seeing some region of the parameter space that reproduces the right

abundance surviving all constraints. Interestingly, the combination of g-2, direct, indirect

and collider data exclude g� < 10�1 in the left panel and g� < 10�2 in the right panel.

Moreover, it allows only heavy mediators. Lastly in Fig. 9 for m� = 5 TeV, we see that

this feature from Fig. 8 continues and now a much larger region obeys all limits.

– 13 –

!
"
#$
%&

'
(
)

!"!

!"#

!"$

!"%

*+$%+,+,"#)

!"&' !"&% !"&$ !"&# !"&! !""

-./

*,0

-12$34

5'
67

8$&
/

29:;:$3<

=>0$?$@AB
7+$?$C$D'(

!
"
#$
%
&
'
(
)

!"!

!"#

!"$

!"%

*+$%+,+,"#)

!"&' !"&% !"&$ !"&# !"&! !""

-./

*,0

-12$34

5
'
67

8$&
/

29:;:$3<

=>
0
$?$@AB

7+$?$C$D'(

"#$,$E'678FG$HFIJK8G*L

C@M$LIJJ6'LL'N

Figure 9. Blue horizontal line is LHC exclusion. Everything below the curve is excluded. Gray
horizontal line is the 1� bound from the g-2. In red, green and pink we show the LUX spin-
independent, Fermi Galactic Center, and XENON spin-dependent limits respectively. The black
curve yields the right abundance. Left: 5 TeV WIMP with Z � ⇥ Z;Right: 5 TeV WIMP with a
Z �-fermions couplings 50% suppressed compared with the SM Z.

In summary, when one properly takes into account dilepton, g-2, direct and indirect

detection data, only heavy mediators (2.1 TeV) o�er a viable Z � DM portal. We emphasize

that we used a generic parametrization of the Z �-fermion couplings and our conclusion are

somewhat general. It would be possible to alleviate those constraints by advocating the

presence of a leptophobic Z � as in [30], or a Majorana DM fermion such as in Ref. [43], or

possibly a pure axial Z �-fermion interactions such as in Ref. [44]. We point out that if one

had used a di�erent parametrization scheme for the Z �-fermion interactions mild changes

are expected and the general statement that Z � portal only allows heavy mediators is still

valid. Obviously, a key assumption made throughout this work pertains to the strength of

the Z �-fermion coupling. Since we have normalized our results in terms of the SM Z coupling

strength, one could evade those limits advocating much more suppressed couplings.

8 Conclusions

Motivated by potentially exciting direct and indirect detection signals, in this work we ex-

ploited DM complementarity in the context of the Z � portal using a generic parametrization

of the Z �-fermion couplings with Dirac DM. We performed a detailed analysis of collider,

direct and indirect DM detection data as well as the muon magnetic moment to outline

the viable vs. excluded region of the parameter space.

A high degree of complementarity is observed at several di�erent levels: The muon

magnetic moment provides complementary limits in the regime of suppressed ⇥ � ⇥ � Z �

couplings, since then only the Z � � µ coupling strength is relevant. Indirect detection

limits, on the other hand, trace back the region of the parameter space that sets the right

abundance, regardless of the coupling strength, and rules out WIMP masses below 15 GeV

(except for some viable parameter space very close to resonance). Since we are using a

generic parametrization of the Z �-fermion interactions, both spin-independent and spin-
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For a non-zero axial coupling of the new vector to fermions
unitarity violation in            scattering will occur unless

J. Shu, 0711.2516

3

L = �
�

q, ,⇥

Z ⇥
µf̄�

µ(gVf + gAf �5)f � igSZ
⇥
µ(S

�⇤µS � S⇤µS�) (9)

⇤
s �

⇤
2⇥m2

Z�

(gAf )
2m⇤

3

L = �
�

q,⌦,⇥

Z ⇥
µf̄�

µ(gVf + gAf �5)f � igSZ
⇥
µ(S

�⇤µS � S⇤µS�) (9)

⇤
s �

⇤
2⇥m2

Z�

(gAf )
2m⇤

Z ⇥
LZ

⇥
L

which will then be the bound on the mass of a dark Higgs which gives the vector 
its mass.  Vector portal becomes vector + Higgs portal.

For fermion scattering one finds the unitarity bounds 

3

L = �
�

q,⌦,⇥

Z ⇥
µf̄�

µ(gVf + gAf �5)f � igSZ
⇥
µ(S

�⇤µS � S⇤µS�) (9)

⇤
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⇤
2⇥m2
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Z ⇥
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⇥
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⇥

⇥
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m⇥
Z

gAf
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where g⇥ is the gauge coupling of the new U(1)⇥. The kinetic term for ⇧ can hence be

written as

Lkin =
1

2
⇧̄(i/⌦ � g⇥ qDM �5 /Z

⇥
)⇧ =

i

2
⇧̄/⌦⇧ � 1

2
gADMZ ⇥µ⇧̄�5�µ⇧ , (3.4)

with gADM ⇥ g⇥qDM. The U(1)⇥ charge forbids a Majorana mass term. Nevertheless, if

the Higgs field S carries charge qS = �2qDM, we can write down the gauge-invariant

combination

Lmass = �1

2
yDM⇧̄(PLS + PRS

�)⇧ . (3.5)

Including the kinetic and potential terms for the Higgs singlet, the full dark Lagrangian

therefore reads

LDM =
i

2
⇧̄/⌦⇧ � 1

2
gADMZ ⇥µ⇧̄�5�µ⇧ � 1

2
yDM⇧̄(PLS + PRS

�)⇧ ,

LS =
�
(⌦µ + i gS Z ⇥µ)S

⇥† �
(⌦µ + i gS Z ⇥

µ)S
⇥
+ µ2

s S
†S � ⇥s

⇤
S†S

⌅2
. (3.6)

Once the Higgs singlet aquires a vacuum expectation value (vev), it will spontaneously

break the U(1)⇥ symmetry, thus giving mass to the Z ⇥ gauge boson and the DM particle.

After symmetry breaking, we obtain the following Lagrangian (defining S = 1/
⇧
2(s+ w)

and using gS ⇥ g⇥qS = �2gADM)

L =
i

2
⇧̄/⌦⇧ � 1

2
gADMZ ⇥µ⇧̄�5�µ⇧ � mDM

2
⇧̄⇧ � yDM

2
⇧
2
s⇧̄⇧

� 1

2
m2

Z� Z ⇥µZ ⇥
µ +

1

2
⌦µs⌦µs� 2(gADM)2 Z ⇥µZ ⇥

µ(s
2 + 2 sw)� µ2

s

2
(s+ w)2 +

⇥s

4
(s+ w)4 ,

(3.7)

with

mDM =
1⇧
2
yDMw , mZ� ⇤ 2gADMw . (3.8)

If the SM Higgs is charged under the U(1)⇥ the Z ⇥ mass will receive an additional contri-

bution from the SM Higgs vev, see eq. (3.19) below. Electroweak precisison data requires

that this contribution is small, and therefore we neglect this term in eq. (3.8) and for the

rest of this subsection. Note that without loss of generality we can choose w and yDM to

be real (ensuring real masses) by absorbing complex phases in the field definitions for S

and ⇧.6

As discussed above, the mass of the additional Higgs particle must satisfy

ms <
⌅m2

Z�

(gADM)2mDM
(3.9)

in order for perturbative unitarity to be satisfied, which when substituting the masses of

the Z ⇥ and DM becomes

ms <
4
⇧
2⌅w

yDM
. (3.10)

6This will no longer be true if we allow for an explicit mass term for �. In this case the relative phase

between yDM and the mass term is physical (see e.g. [55]). Here we do not allow for an explicit mass term

and we assume that the vev of the singlet is the only source of U(1)� symmetry breaking.
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On the SM side, gauge invariance of the Yukawa terms implies the charge 
assignments

Once we include such a new particle coupling to the Z ⇥, however, there are additional

scattering processes such as ss ⇧ ss that need to be taken into account when check-

ing perturbative unitarity [56]. Here we consider the scattering of the states ss/
�
2 and

Z ⇥
LZ

⇥
L/

�
2. In the limit

�
s ⌅ ms ⌅ mZ� , the J = 0 partial wave of the scattering matrix

takes the form [45]

lim⌅
s�⇤

M0
if = �(gADM)2m2

s

8⇥m2
Z�

⇤
3 1

1 3

⌅
. (3.11)

Partial wave unitarity requires the real part of the largest eigenvalue, which corresponds

to the eigenvector (ss+ Z ⇥
LZ

⇥
L)/2, to be smaller than 1/2. We hence obtain the inequality

ms ⇥
�
⇥mZ�

gADM

=
�
4⇥w . (3.12)

This inequality together with eq. (2.8) gives a stronger bound on the Higgs mass than

the one obtained in eq. (2.10). In other words, the bound in (2.10) can never actually be

saturated in this UV completion. We note that eqs. (2.8) and (3.12) can be unified to

�
⇥
mZ�

gADM

⇤ max
⌃
ms,

�
2mDM

⌥
. (3.13)

3.2 Implications for the visible sector

For the discussion above we only needed to consider the DM part of the Lagrangian. Let

us now also look at the coupling to the SM, see e.g. [57]. The interactions between SM

states and the new Z ⇥ gauge boson can be written as

L⇥
SM =

1

2

⌃
(DµH)†(�i g⇥ qH Z ⇥

µH) + h.c.
⌥
+

g⇥2 q2H
2

Z ⇥µZ ⇥
µH

†H

�
⇧

f=q, ,⇥

g⇥ Z ⇥µ �
qfL f̄L�µfL + qfR f̄R�µfR

⇥
, (3.14)

where Dµ denotes the SM covariant derivative. We can now immediately write down a list

of relations between the di�erent charges q required by gauge invariance of the SM Yukawa

terms:7

qH = qqL � quR = qdR � qqL = qeR � q L . (3.15)

After electroweak symmetry breaking, we obtain

L⇥
SM = �1

4

e g⇥ qH
sw cw

(h+ v)2 ZµZ ⇥
µ � 1

2
g⇥2 q2H (h+ v)2 Z ⇥µZ ⇥

µ

�
⇧

f=q,l,⇥

1

2
g⇥Z ⇥µ f̄

�
(qfR + qfL)�µ + (qfR � qfL)�µ�

5
⇥
f . (3.16)

7If right-handed neutrinos exist their charge q�R would be constrained by qH = q⇧L � q�R to allow for a

Yukawa term with the lepton doublet. In the following we assume that if right-handed neutrinos exist they

are heavy enough to decouple from all relevant phenomenology.
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Comparing the second line of eq. (3.16) with eq. (2.5) we can read o� the vector and axial

vector couplings of the fermions:

gVf =
1

2
g⇥(qfR + qfL) , gAf =

1

2
g⇥(qfR � qfL) . (3.17)

It is well known that a U(1)⇥ under which only SM fields are charged is in general

anomalous, unless the SM fields have very specific charges (e.g. U(1)B�L is anomaly free).

The relevant anomaly coe⇤cients can e.g. be found in [57]. The presence of these anomalies

implies that the theory has to include new fermions to cancel the anomalies. While these

fermions can be vectorlike with respect to the SM, they will then need to be chiral with

respect to the U(1)⇥. The mass of the additional fermions is therefore constrained by the

breaking scale of the U(1)⇥. In particular, the bound from eq. (2.8) applies to these fermions

as well and therefore they cannot be decoupled from the low-energy theory.

It is however interesting to note that the anomaly involving two gluons and a Z ⇥ is

proportional to

AggZ� = 3 (2qqL � quR � qdR) , (3.18)

which always vanishes if we restrict the charges based on gauge invariance of the Yukawa

couplings (see eq. (3.15)). This implies that no new coloured states are needed to cancel

the anomalies, greatly reducing the sensitivity of colliders to these new states.8 In any case,

there are many di�erent possibilities for cancelling the anomalies via new fermions. While

the existence of additional fermions will lead to new signatures, a detailed investigation of

these is beyond the scope of this work.

If the SM Higgs is charged under U(1)⇥ (qH ⌅= 0) the mass of the Z ⇥ receives a contri-

bution from both Higgses:

m2
Z� = (g⇥qHv)2 + 4(gADMw)2 , (3.19)

and we obtain the Z � Z ⇥ mixing term

�m2 = �1

4

e g⇥ qH
sW cW

v2 , (3.20)

with sW (cW ) being the sine (cosine) of the Weinberg angle.

As we are going to discuss below, electroweak precision data requires |�m2| ⇥ |mZ �
mZ� | (see also App. A.1). Using mZ = ev/(2sW cW ), g⇥qs = �2gADM, and neglecting order

one factors this requirement implies either g⇥qH ⇥ e or qsw ⇤ v. In the parameter regions

of interest it follows from those conditions that the first term in eq. (3.19) is small and

hence the mass of the Z ⇥ is dominated by the vev of the dark Higgs. Taking into account

eqs. (3.15) and (3.17), the condition |�m2| ⇥ |mZ � mZ� | then implies either small axial

couplings (gAf ⇥ 1) or mZ� ⇤ mZ . We are going to present more quantitative results in

the next section and discuss a number of interesting experimental signatures resulting from

the new interactions due to eq. (3.16).

8This conclusion is in disagreement with the observations made in [37].
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mass mixing                     leads to EWPT constraints

3

L = �
⇥

q,⌦,⇥

Z ⇤
µf̄⇥

µ(gVf + gAf ⇥5)f � igSZ
⇤
µ(S

�⇧µS � S⇧µS�) (9)

⌅
s �

⌅
2⇤m2

Z�

(gAf )
2m⇤

Z ⇤
LZ

⇤
L

mf �
⇤

⇤

2

m⇤
Z

gAf

�(H1 ⇥ ⌅⌅̄)

�(H2 ⇥ XX) = sin2��(H1 ⇥ XX)

����
mH1⇥mH2

Z � Z ⇤

dilepton resonances become constraining
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Figure 4. Axial+Vector(SM)–Axial(DM): Parameter space forbidden by constraints from dilepton
resonance searches (green, dashed) and electroweak precision observables (blue, dotted) in the
mDM � mZ� plane for four di�erent sets of couplings. We also show the regions excluded by DM
overproduction (red), direct detection bounds (purple, dot-dashed) and the parameter space where
perturbative unitarity is violated (grey). For the relic density calculation we have assumed that the
mass of the hidden sector Higgs saturates the unitarity bound.

high. The fact that the relic abundance curve in figure 4 touches the unitarity bound

for high DM masses reflects the well-known unitarity bound on the mass of a thermally

produced DM particle [11].

All in all we find the case with non-vanishing axial couplings on the SM side to be

strongly constrained by dilepton searches as well as electroweak precision observables, im-

plying that in a UV complete model this is where a signal should first be seen. Monojet

and dijet searches as well as direct detection experiments are typically not competitive in

this case. Let us now look at the case where axial couplings to quarks are taken to be zero,

which will turn out to be much less constrained.
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In addition to the e⇥ects of kinetic mixing, we have shown above that for gADM ⇧= 0

the dark sector necessarily contains a new Higgs particle. The presence of this additional

Higgs can change the phenomenology of the model in two important ways. First, loop-

induced couplings of the dark Higgs to SM states may give an important contribution to

direct detection signals. And second, there may be mixing between the SM Higgs and the

dark Higgs, leading to pertinent modifications of the properties of the SM Higgs as well as

opening another portal for DM-SM interactions. We will discuss loop-induced couplings in

this section and then return to a detailed study of the Higgs potential in the next section.

For gAq = gVDM = 0, scattering in direct detection experiments is momentum-suppressed

in the non-relativistic limit and the corresponding event rates are very small. This con-

clusion may change if loop corrections induce unsuppressed scattering [67]. Indeed, at the

one-loop level the dark Higgs can couple to quarks and can therefore mediate unsuppressed

spin-independent interactions. The resulting interaction can be written as L ⌅
�

q mq s q̄q.

After integrating out heavy-quark loops as well as the dark Higgs this interaction leads to

an e⇥ective coupling between DM and nucleons of the form L ⌅ fN mN mDM N̄N ⇤̄⇤,

where mN is the nucleon mass, N = p, n and fN ⇥ 0.3 is the e⇥ective nucleon coupling.

In the non-relativistic limit, the diagram in the left of figure 7 induces the e⇥ective

interaction

Le� ⇤
(gADM)2 (gVq )

2

⇥2

1

m2
s m

2
Z�

�mDM fN mN N̄N ⇤̄⇤ . (5.4)
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Anomalies

3

FIG. 1. The t-channel ((a),(c), and (e)) and u-channel ((b), (d) and (f)) Feynman diagrams for χχ → e+νW−. Note that t-
and u-channel amplitudes are simply related by the k1 ↔ k2 interchange symmetry. All fermion momenta in the diagrams flow
with the arrow except p2 and q2, with q1 = p1 +Q, q2 = p2 +Q.

The W boson behaves as a massive transverse photon,
with just two transverse polarizations contributing. As a
consequence, our calculation of W bremsstrahlung must
reduce to the known results for photon bremsstrahlung
in the mW → 0 limit, modulo coupling constants. Below
we will show that this happens.

The thermally-averaged cross section is given by

v dσ =
1

2s

∫

1

4

∑

spin, pol.

|M|2 dLips3 (14)

where the 1
4

arises from averaging over the spins of the

initial χ pair, v =
√

1− 4m2
χ

s is the mean dark matter
velocity, as well as the dark matter single-particle velocity
in the center of mass frame1, and dLipsn represents n-
body Lorentz invariant phase space.

We calculate the cross section for W emission follow-
ing the procedure outlined above, with the integration
over phase space performed according to the method de-
scribed in Ref. [1]. We expand in powers of the DM
velocity, v, keeping only the leading order (v0) contribu-
tion. As expected, we have an unsuppressed cross section
given by

σv #
αW f4

256π2m2
χ

{

(µ+ 1)

[

π2

6
− ln2

(

2m2
χ(µ+ 1)

4m2
χµ−m2

W

)

− 2Li2

(

2m2
χ(µ+ 1)−m2

W

4m2
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W

)
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(
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W

2m2
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W
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(
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W )
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ln

(
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m2

W

m2
χ(µ+ 1)2

)]

+
(4µ+ 3)

(µ+ 1)
−

m2
W

(

4m2
χ(µ+ 1)(4µ+ 3)− (m2

W − 4m2
χ)(µ− 3)

)

16m4
χ(µ+ 1)2

+
m2

W

(

4m4
χ(µ+ 1)4 − 2m2

Wm2
χ(µ+ 1)(µ+ 3)−m4

W (µ− 1)
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4m4
χ(µ+ 1)3

(
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(
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+ ln
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χ(µ− 1)
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(
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4m4
χ(µ+ 1)3(4m2
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(

m2
χ(µ+ 1)2 −m2

W
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4m6
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2
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}

(15)

1 Informative discussions of the meaning of v are given in [21], and the inclusion of thermal averaging is covered in [22].
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FIG. 1. The t-channel ((a),(c), and (e)) and u-channel ((b), (d) and (f)) Feynman diagrams for χχ → e+νW−. Note that t-
and u-channel amplitudes are simply related by the k1 ↔ k2 interchange symmetry. All fermion momenta in the diagrams flow
with the arrow except p2 and q2, with q1 = p1 +Q, q2 = p2 +Q.

The W boson behaves as a massive transverse photon,
with just two transverse polarizations contributing. As a
consequence, our calculation of W bremsstrahlung must
reduce to the known results for photon bremsstrahlung
in the mW → 0 limit, modulo coupling constants. Below
we will show that this happens.

The thermally-averaged cross section is given by
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where the 1
4

arises from averaging over the spins of the

initial χ pair, v =
√

1− 4m2
χ

s is the mean dark matter
velocity, as well as the dark matter single-particle velocity
in the center of mass frame1, and dLipsn represents n-
body Lorentz invariant phase space.

We calculate the cross section for W emission follow-
ing the procedure outlined above, with the integration
over phase space performed according to the method de-
scribed in Ref. [1]. We expand in powers of the DM
velocity, v, keeping only the leading order (v0) contribu-
tion. As expected, we have an unsuppressed cross section
given by
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1 Informative discussions of the meaning of v are given in [21], and the inclusion of thermal averaging is covered in [22].
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FIG. 1. The t-channel ((a),(c), and (e)) and u-channel ((b), (d) and (f)) Feynman diagrams for χχ → e+νW−. Note that t-
and u-channel amplitudes are simply related by the k1 ↔ k2 interchange symmetry. All fermion momenta in the diagrams flow
with the arrow except p2 and q2, with q1 = p1 +Q, q2 = p2 +Q.

The W boson behaves as a massive transverse photon,
with just two transverse polarizations contributing. As a
consequence, our calculation of W bremsstrahlung must
reduce to the known results for photon bremsstrahlung
in the mW → 0 limit, modulo coupling constants. Below
we will show that this happens.

The thermally-averaged cross section is given by

v dσ =
1
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4

∑

spin, pol.

|M|2 dLips3 (14)

where the 1
4

arises from averaging over the spins of the

initial χ pair, v =
√

1− 4m2
χ

s is the mean dark matter
velocity, as well as the dark matter single-particle velocity
in the center of mass frame1, and dLipsn represents n-
body Lorentz invariant phase space.

We calculate the cross section for W emission follow-
ing the procedure outlined above, with the integration
over phase space performed according to the method de-
scribed in Ref. [1]. We expand in powers of the DM
velocity, v, keeping only the leading order (v0) contribu-
tion. As expected, we have an unsuppressed cross section
given by
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1 Informative discussions of the meaning of v are given in [21], and the inclusion of thermal averaging is covered in [22].
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FIG. 1. The t-channel ((a),(c), and (e)) and u-channel ((b), (d) and (f)) Feynman diagrams for χχ → e+νW−. Note that t-
and u-channel amplitudes are simply related by the k1 ↔ k2 interchange symmetry. All fermion momenta in the diagrams flow
with the arrow except p2 and q2, with q1 = p1 +Q, q2 = p2 +Q.

The W boson behaves as a massive transverse photon,
with just two transverse polarizations contributing. As a
consequence, our calculation of W bremsstrahlung must
reduce to the known results for photon bremsstrahlung
in the mW → 0 limit, modulo coupling constants. Below
we will show that this happens.

The thermally-averaged cross section is given by

v dσ =
1
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4
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|M|2 dLips3 (14)

where the 1
4

arises from averaging over the spins of the

initial χ pair, v =
√

1− 4m2
χ

s is the mean dark matter
velocity, as well as the dark matter single-particle velocity
in the center of mass frame1, and dLipsn represents n-
body Lorentz invariant phase space.

We calculate the cross section for W emission follow-
ing the procedure outlined above, with the integration
over phase space performed according to the method de-
scribed in Ref. [1]. We expand in powers of the DM
velocity, v, keeping only the leading order (v0) contribu-
tion. As expected, we have an unsuppressed cross section
given by
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1 Informative discussions of the meaning of v are given in [21], and the inclusion of thermal averaging is covered in [22].
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FIG. 1. The t-channel ((a),(c), and (e)) and u-channel ((b), (d) and (f)) Feynman diagrams for χχ → e+νW−. Note that t-
and u-channel amplitudes are simply related by the k1 ↔ k2 interchange symmetry. All fermion momenta in the diagrams flow
with the arrow except p2 and q2, with q1 = p1 +Q, q2 = p2 +Q.

The W boson behaves as a massive transverse photon,
with just two transverse polarizations contributing. As a
consequence, our calculation of W bremsstrahlung must
reduce to the known results for photon bremsstrahlung
in the mW → 0 limit, modulo coupling constants. Below
we will show that this happens.

The thermally-averaged cross section is given by

v dσ =
1

2s

∫

1

4

∑

spin, pol.

|M|2 dLips3 (14)

where the 1
4

arises from averaging over the spins of the

initial χ pair, v =
√

1− 4m2
χ

s is the mean dark matter
velocity, as well as the dark matter single-particle velocity
in the center of mass frame1, and dLipsn represents n-
body Lorentz invariant phase space.

We calculate the cross section for W emission follow-
ing the procedure outlined above, with the integration
over phase space performed according to the method de-
scribed in Ref. [1]. We expand in powers of the DM
velocity, v, keeping only the leading order (v0) contribu-
tion. As expected, we have an unsuppressed cross section
given by

σv #
αW f4

256π2m2
χ

{

(µ+ 1)

[

π2

6
− ln2

(

2m2
χ(µ+ 1)

4m2
χµ−m2

W

)

− 2Li2

(

2m2
χ(µ+ 1)−m2

W

4m2
χµ−m2

W

)

+2Li2

(

m2
W

2m2
χ(µ+ 1)

)

− Li2

(

m2
W

m2
χ(µ+ 1)2

)

− 2Li2

(

m2
W (µ− 1)

2(m2
χ(µ+ 1)2 −m2

W )

)

+2 ln

(

4m2
χµ−m2

W

2m2
χ(µ− 1)

)

ln

(

1−
m2

W

2m2
χ(µ+ 1)

)

+ ln

(

m2
W (µ− 1)2

4(m2
χ(µ+ 1)2 −m2

W )

)

ln

(

1−
m2

W

m2
χ(µ+ 1)2

)]

+
(4µ+ 3)

(µ+ 1)
−

m2
W

(

4m2
χ(µ+ 1)(4µ+ 3)− (m2

W − 4m2
χ)(µ− 3)

)

16m4
χ(µ+ 1)2

+
m2

W

(

4m4
χ(µ+ 1)4 − 2m2

Wm2
χ(µ+ 1)(µ+ 3)−m4

W (µ− 1)
)

4m4
χ(µ+ 1)3

(

m2
χ(µ+ 1)2 −m2

W

) ln

(

m2
W

4m2
χ

)

+ ln

(

2m2
χ(µ− 1)

2m2
χ(µ+ 1)−m2

W

)

(µ− 1)
(

2m2
χ(µ+ 1)−m2

W

)

4m4
χ(µ+ 1)3(4m2

χµ−m2
W )

(

m2
χ(µ+ 1)2 −m2

W

)

×
(

4m6
χ(µ+ 1)4(4µ+ 1)−m4

χm
2
W (µ+ 1)2 (3µ(µ+ 6) + 7) + 2m2

χm
4
W (µ(µ+ 4) + 1)−m6

W

)

}

(15)

1 Informative discussions of the meaning of v are given in [21], and the inclusion of thermal averaging is covered in [22].
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FIG. 1. The t-channel ((a),(c), and (e)) and u-channel ((b), (d) and (f)) Feynman diagrams for χχ → e+νW−. Note that t-
and u-channel amplitudes are simply related by the k1 ↔ k2 interchange symmetry. All fermion momenta in the diagrams flow
with the arrow except p2 and q2, with q1 = p1 +Q, q2 = p2 +Q.

The W boson behaves as a massive transverse photon,
with just two transverse polarizations contributing. As a
consequence, our calculation of W bremsstrahlung must
reduce to the known results for photon bremsstrahlung
in the mW → 0 limit, modulo coupling constants. Below
we will show that this happens.

The thermally-averaged cross section is given by

v dσ =
1

2s

∫

1

4

∑

spin, pol.

|M|2 dLips3 (14)

where the 1
4

arises from averaging over the spins of the

initial χ pair, v =
√

1− 4m2
χ

s is the mean dark matter
velocity, as well as the dark matter single-particle velocity
in the center of mass frame1, and dLipsn represents n-
body Lorentz invariant phase space.

We calculate the cross section for W emission follow-
ing the procedure outlined above, with the integration
over phase space performed according to the method de-
scribed in Ref. [1]. We expand in powers of the DM
velocity, v, keeping only the leading order (v0) contribu-
tion. As expected, we have an unsuppressed cross section
given by
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1 Informative discussions of the meaning of v are given in [21], and the inclusion of thermal averaging is covered in [22].
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Anomalies should vanish, or be cancelled, for example by new fermions with               
which are vector-like under the SM and obey the unitarity bound on their masses

B.A. Dobrescu and C. Frugiuele 1404.3947
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Fig. 1. Upper limits on the spin-independent WIMP-nucleon coupling �SI under
the standard assumptions about the Galactic halo described in the text. Most sensi-
tive limits are from cryogenic experiments (solid) CDMS44 (black), EDELWEISS-II45

(medium gray), and CRESST46 (light gray), and two-phase noble experiments (dashed)
XENON1047 (black), ZEPLIN-III48 (medium gray), and WArP49 (light gray). Current
experiments already exclude part of the parameter space of MSSM models (shaded).50

Figure made using the Dark Matter Limit Plotter.51

2.2. The WIMP recoil energy spectrum

It is illuminating to calculate the energy spectrum for the case of zero
momentum-transfer (i.e. taking F 2 ⇥ 1). Furthermore, simply multiplying
this spectrum by the energy dependence of F 2(q), rather than including
the form factor F 2 within the kinematic integral to follow, is convenient
and usually adequate.

The energy spectrum arises due to the familiar kinematics of elastic
scattering. In the center-of-momentum frame, the WIMP scatters o� a nu-
cleus through an angle �, with cos � uniformly distributed between �1 and
1 for the isotropic scattering that occurs with zero-momentum transfer.
If the WIMP’s initial energy in the lab frame Ei = M�v2/2, the nucleus
recoils with energy

ER = Eir
(1� cos �)

2
(6)

Recoil energy O(10keV)

1

HW 1

Ei =
m�v2

2
(1)

Incident energy 
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Fig. 2. Upper limits on the spin-dependent WIMP-neutron coupling �SDn (left) and
the spin-dependent WIMP-proton coupling �SDp (right) under the standard assump-
tions about the Galactic halo described in the text. The most sensitive limits on �SDn

are from the same experiments shown in Fig. 1 (with the same linetypes): XENON1052

(black dashes), ZEPLIN-III53 (medium gray dashes), and CDMS44 (black solid). Note
ZEPLIN-III limits were calculated with a scaling factor 2� smaller than that used for
XENON10. Due to the low intrinsic sensitivity of leading (Xe and Ge) experiments
to spin-dependent interactions on protons, the most sensitive limits on �SDp are from
experiments with only modest sensitivity to spin-independent interactions: PICASSO54

(6-sided stars), COUPP55 (5-pointed stars), KIMS56 (circles), and NAIAD57 (�). Limits
from indirect search experiments SuperKamiokande58 (points) and IceCube31 (dotted)
make additional assumptions about branching fractions to neutrinos. Current exper-
iments do not exclude any part of the parameter space of the same MSSM models
(shaded)50 shown in Fig. 1, despite the fact that the predicted spin-dependent cross sec-
tions are ⇥ 3000� larger than the spin-independent ones. Figure made using the Dark
Matter Limit Plotter.51

(in the lab frame), where

r � 4µ2
A

M�MA
=

4M�MA

(M� +MA)
2 (7)

is a dimensionless parameter related to the reduced mass µA. Note that
r ⇥ 1, with r = 1 only if M� = MA. For this isotropic scattering, the
recoil energy is therefore uniformly distributed between 0–Eir. As shown in
Fig. 3, the di�erential contribution to the di�erential rate for a given initial
WIMP energy

d

�
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dER
(ER)

⇥
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dR(Ei)

Eir
, (8)
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with most of the previous detector development literature,
which has focused on this scenario. In a future work we
will extend this analysis to include the impact of possible
spin dependence (see for example [16–20]) upon the phys-
ics reach of DARWIN and similar detectors.

With respect to the recoil energy ER, the differential rate
per nuclei per unit time is

dR

dER
¼ !"

m"mN

Z
jvj>vmin

jvjfðvÞ d#
dER

d3v; (1)

where!" is the local darkmatter density, andm",mN are the
WIMP and nucleus masses, respectively. The integral aver-
ages over the velocity distribution of WIMPs fðvÞ weighted
by the differential cross section d#

dER
. Kinematically the mini-

mum velocity, vmin , that can contribute to a recoil of energy
ER is [5]

vmin ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ERmN

p
"
ERmN

$"N
þ %

#
; (2)

where $"N is the WIMP-nucleus reduced mass and % is an
inelastic scattering parameter (% ¼ 0 recovers the elastic
case). (We note that inelastic scattering is not a property of
most WIMP models, but this possibility has been raised
[21], and thus we include it here for completeness.) While
we are interested in the energy spectrum of the recoils, the
full rate can be obtained by integrating this over the range
of recoil energies that the detector is sensitive to. The
standard approach is to write the cross section in terms of
the WIMP-nucleon cross section at zero momentum trans-
fer, #0, and the nuclear form factor, F2ðERÞ,

d#

dER
¼ mN

2v2$2
"N

#0F
2ðERÞ: (3)

The WIMP-nucleon cross section can be written in terms

of contributions from neutron and proton scattering, #0 ¼
4$2

"N

& ½Zfp þ ðA& ZÞfn'2, where A and Z are the atomic

mass and number of the detector material, #"n ¼ 4$2
"n

& f2n

and #"p ¼ 4$2
"p

& f2p. Setting the proton and neutron masses
to be equal, an appropriate approximation at the level of
accuracy of relevance here, allows one to write #"n ¼
ðfnfpÞ

2#"p, such that the factor
fn
fp
neatly incorporates isospin

violating interactions. Equation (1) then becomes

dR

dER
¼ #"p

2m"$
2
"p

"
Zþ fn

fp
ðA& ZÞ

#
2
F2ðERÞGðvmin Þ; (4)

where we have defined

Gðvmin Þ ¼ !"

Z
jvj>vmin

fðvÞ
jvj d3v: (5)

Using this formalism, the astrophysical and particle phys-
ics/nuclear physics inputs are each contained in separate
terms, allowing us to examine each in turn.

B. Particle and nuclear physics parameters

1. Isospin and inelasticity

We have assumed here a simple spin-independent
scattering amplitude which means that at low energy the
scattering cross section on a nucleus is a simple constant
times some product of nuclear charges squared. While this
simplifies the analysis greatly there nevertheless remain
two important unknowns related to the specific particle
physics parameters of the WIMP sector. The first involves
the WIMP couplings to different quarks, which at low
energies get translated into possible isospin violations in
the WIMP scattering cross section. The second involves
the (at present, less generic) scenario of excitations in the
WIMP sector, which would produce possible inelasticity in
the WIMP cross section, parametrized by the quantity %
mentioned earlier. When the isospin factor is not unity or
the inelastic parameter is nonzero, the spectrum is modi-
fied, as shown in Fig. 1. The isospin factor only affects the
magnitude of the recoil rate, while the inelastic parameter
severely modifies the shape of the recoil spectrum, as can
be seen from Eq. (4). The result is that experiments
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FIG. 1 (color online). The differential event rate per femtobarn of cross section for various values of the isospin violating factor (left)
and the inelastic parameter (right), for a WIMP with m" ¼ 100 GeV in a xenon target, compared to a benchmark WIMP model with

the same mass (solid line). A Maxwell-Boltzmann phase-space distribution and the Helm form factor have been assumed (see later
sections). Left: From top to bottom, fn=fp ¼ f1:5; 1; 0:5;&1g. Right: From top to bottom, % ¼ f0; 25; 50; 75; 100g keV.
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2. WIMP-nucleus elastic scattering: from model to signal

Understanding experiments designed for direct detection of dark matter
begins with the observables of potential signals. In this section we consider
the observables of any model that predicts standard WIMP-nucleus elastic
scattering (see Neil Weiner’s contribution to these proceedings8 for discus-
sion of more speculative models with non-standard scattering). Following
the reviews by Lewin and Smith,41 and Jungman, Kamionkowski and Gri-
est,5 this section derives how the observed WIMP interaction rate depends
on energy, target, time, and direction.

2.1. Spin-independent and spin-dependent cross sections

Using Fermi’s Golden Rule, we can divide the energy dependence of the dif-
ferential WIMP-nucleon cross section into a term ⇤0WN that is independent
of the momentum transfer and a term F 2(q) (known as the form factor)
containing the entire dependence on the momentum transfer q:

d⇤WN(q)

dq2
=

1

⇥v2
|M|2 =

⇤0WNF 2(q)

4µ2
Av

2
. (1)

Here, v is the velocity of the WIMP in the lab frame, and the WIMP-
nucleus reduced mass µA ⇥ M�MA/(M� + MA) in terms of the WIMP
mass M� and the mass MA of a target nucleus of atomic mass A. Since the
WIMPs are nonrelativistic, the zero-momentum cross section for a WIMP
of arbitrary spin and general Lorentz-invariant WIMP-nucleus cross section
may be written in terms of a spin-independent (mostly scalar) and a spin-
dependent (mostly axial vector) term:

⇤0WN =
4µ2

A

⇥
[Zfp + (A� Z)fn]

2 +
32G2

Fµ
2
A

⇥

J + 1

J
(ap⌅Sp⇧+ an⌅Sn⇧)2 .

(2)
The proof of this claim makes a good exercise for the reader; solution may be
found in Ref. 42. Here fp and fn (ap and an) are e�ective spin-independent
(spin-dependent) couplings of the WIMP to the proton and neutron, respec-
tively. Together with the WIMP mass, M�, these parameters contain all the
particle physics information of the model under consideration. The other
parameters describe the target material: its atomic number Z, total nuclear
spin J , and the expectation values of the proton and neutron spins within
the nucleus ⌅Sp,n⇧ = ⌅N |Sp,n|N⇧. For free nucleons, ⌅Sp⇧ = ⌅Sn⇧= 0.5. Ta-
ble 1 from Ref. 43 lists values of ⌅Sp⇧ and ⌅Sn⇧ for materials commonly
used for dark matter searches, although some are subject to significant
nuclear-physics uncertainties.

WIMP-Nucleus scattering cross-section

1
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m�v2

2
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m�v2esc
2

Emin =
ER

r
(1)

q =
�

2mTER =
�

mTEir(1� cos�)

q

mN
=

⇤
2mTER

m2
N

⇥
⇥

2ERA

mN
� .01

⇤
A � 0.1

⌅n,p =
µ2
n,pf

2
n,p

⇤

formulated in terms of the definition for the scattering cross-section off of a single nucleon

In order to account for any momentum dependence, a form factor is introduced
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It has been shown that the standard approach neglects a large set of possible non-relativistic operators 
beyond the SI/SD ones

There also exist four more nuclear responses that arise in the most general nucleus-WIMP elastic 
scattering as compared to the standard approach

N. Anand, A.L. Fitzpatrick, and W.C. Haxton, Phys.Rev. C89 (2014)

Hermitian vectors are:

i
↵q

mN
, ↵v⇥ = ↵v + ↵q

2µN
, ↵S⇥, ↵SN , (3)

where ↵q = ↵p� � ↵p = ↵k � ↵k� is the momentum transfer, ↵v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and ↵S⇥ and ↵SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by ↵p and ↵p� the
incoming and outgoing WIMP momenta and by ↵k and ↵k� the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
↵q ·↵v⇥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final di�erential WIMP-nucleus cross section.

TABLE I. List of NR e�ective operators described in [53]

O1 1⇥1N

O2 (⌅v⇥)2

O3 i⌅SN · ( ↵q
mN

⇤ ⌅v⇥)

O4 ⌅S⇥ · ⌅SN

O5 i⌅S⇥ · ( ↵q
mN

⇤ ⌅v⇥)

O6 ( ↵q
mN

· ⌅SN )( ↵q
mN

· ⌅S⇥)

O7 ⌅SN · ⌅v⇥

O8 ⌅S⇥ · ⌅v⇥

O9 i⌅S⇥ · (⌅SN ⇤ ↵q
mN

)

O10 i ↵q
mN

· ⌅SN

O11 i ↵q
mN

· ⌅S⇥

O12 ⌅S⇥ · (⌅SN ⇤ ⌅v⇥)

O13 i(⌅S⇥ · ⌅v⇥)( ↵q
mN

· ⌅SN )

O14 i(⌅SN · ⌅v⇥)( ↵q
mN

· ⌅S⇥)

O15 �(⌅S⇥ · ↵q
mN

)
�
(⌅SN ⇤ ⌅v⇥) · ↵q

mN

⇥

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
⇤

�=n,p

15⇤

i=1
c�

i O�
i , (4)
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Spin-independent Spin-dependent

where YJM and  YJLM are spherical harmonics and vector spherical harmonics respectively.
We are only considering elastic transitions, and assuming parity and CP as symmetries of the
nuclear ground state. This eliminates some of the responses, and only M, '��

, 0�
, ↵, 0��

, '̃�

survive. To calculate cross-sections, one needs to square the amplitude, average over initial
spins and sum over final spins. The matrix element squared for the nuclear portion of the
amplitude has been made available by Fitzpatrick et al. [53], and codes have been supplied
to calculate the full amplitude and rate [54].

As we shall describe, in the following analysis we discovered that two additional NR
operators are required to fully describe the scattering of spin-1 WIMPs o⇣ nuclei,

O17 ⇥ i
 q

mN
· S ·  v�,

O18 ⇥ i
 q

mN
· S ·  SN , (18)

where S is the symmetric combination of polarization vectors. Appendix A contains the
details required to include these new operators in the above formalism.

III. SIMPLIFIED MODELS FOR DIRECT DETECTION

From a model building perspective, one would like to know how relevant the novel nuclear
responses are in interpreting direct detection data. Previous work [56] demonstrated that
using only the SI/SD form factors (even with additional momentum dependence taken into
account) can lead one to infer wildly incorrect values of the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level, where
‘simplified model’ means a single WIMP with a single mediator coupling it to the quark
sector. This is useful for two reasons; it allows us to better explore which NR operators
arise from a broad set of UV complete theories, and also make connection with the growing
body of literature which use simplified models for indirect detection and collider searches.

When it comes to interpreting signals, knowing comprehensively how di⇣erent interac-
tions with di⇣erent nuclei arise from di⇣erent UV complete models will allow us to identify
degeneracies between competing models. Further, it can also help optimize target selection
for maximum discrimination of the UV model parameter space.
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A.L. Fitzpatrick, W.C. Haxton, E. Katz, N. Lubbers, and Y. Xu,  1203.3542
A.L. Fitzpatrick, W.C. Haxton, E. Katz, N. Lubbers, and Y. Xu, 1211.2818

3.3 The spin-independent/spin-dependent nuclear form: Allowed limit

The spin-independent/spin-dependent result most often seen in the literature properly accounts for the
momentum transfer in the scattering, but simplifies the WIMP-nucleon operator by assuming it is formed
from a linear combination of O1 and O4, despite any evidence to support such an assumption.

The WIMP-nucleus interaction is written as the sum over WIMP interactions with the bound nucleons,
deriving fromO1 andO2 the WIMP interactions with the respective extended nuclear charge and spin-current
densities

1χρN ("x) = 1χ

A
∑

i=1

(c01 + c11τ3(i))e
−i"q·"xi → cp1 1χ

A
∑

i=1

1 + τ3(i)

2
e−i"q·"xi

"Sχ ·"jN ("x) = "Sχ ·
A
∑

i=1

(c04 + c14τ3(i))
"σ(i)

2
e−i"q·"xi → cp4 "Sχ ·

A
∑

i=1

1 + τ3(i)

2

"σ(i)

2
e−i"q·"xi (27)

where on the right we have again simplified the result by restricting the couplings to protons, to allow
comparisons with Eqs. (23) and (26).

The spin averaged/summed transition probability can be easily evaluated by the spherical harmonic
methods outlined in the Appendix, yielding

1

2jχ + 1

1

2jN + 1

∑

spins

|M|2 = cp 2
1





4π

2jN + 1

∞
∑

J=0,2,...

|〈jN ||
A
∑

i=1

MJ(qxi)
1 + τ3(i)

2
||jN 〉|2





+ cp 2
4

jχ(jχ + 1)

12





4π

2jN + 1

∞
∑

J=1,3,...

(

|〈jN ||
A
∑

i=1

Σ′′
J(qxi)

1 + τ3(i)

2
||jN 〉|2

+ |〈jN ||
A
∑

i=1

Σ′
J(qxi)

1 + τ3(i)

2
||jN 〉|2

)]

≡ cp 2
1 |MN

F ;p(0)|2F
p 2
F (q2) + cp 2

4

jχ(jχ + 1)

12
|MN

GT ;p(0)|2F
p 2
GT (q

2) (28)

Here MJ(qxi) is the charge multipole operator and Σ′′
J(qxi) and Σ′

J (qxi) are the longitudinal and transverse
spin multipole operators of rank J , which are standard in treatments of electroweak nuclear interactions,
and will be defined below. The assumption of nuclear wave functions of good parity and CP restricts the
sums to even and odd J , respectively.

The form factors F p
F (q

2) and F p
GT (q

2) are defined so that F p
F (0) = F p

GT (0) = 1, and can be computed
from a nuclear model

F p 2
F (q2) =

∞
∑

J=0,2,...
|〈jN ||

A
∑

i=1
MJ(qxi)

1+τ3(i)
2 ||jN 〉|2

1
4π |〈jN ||

A
∑

i=1

1+τ3(i)
2 ||jN 〉|2

F p 2
GT (q

2) =

∞
∑

J=1,3,...

(

|〈jN ||
A
∑

i=1
Σ′′

J (qxi)
1+τ3(i)

2 ||jN 〉|2 + |〈jN ||
A
∑

i=1
Σ′

J(qxi)
1+τ3(i)

2 ||jN 〉|2
)

1
4π |〈jN ||

A
∑

i=1

1+τ3(i)
2 σ(i)||jN 〉|2

.

(29)

The spin form factor has the above form because of the identity

"Sχ · "SN ≡ ("Sχ · q̂)("SN · q̂) + ("Sχ × q̂) · ("SN × q̂) (30)

where q̂ is the unit vector along the momentum transfer to the nucleus. Thus the use of O4 implies equal
couplings to the longitudinal and transverse spin operatorsΣ′′

J andΣ′
J , which cannot interfere if one sums over

10



incoming and outgoing WIMP momenta and by ⌥k and ⌥k� the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
⌥q ·⌥v⇥ = 0. Here we will briefly outline the procedure employed in [46] in going from the NR
operators to the final di↵erential WIMP-nucleus cross section.
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)
�
(⌅SN ⇤ ⌅v⇥) · �q

mN

⇥

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
⇤
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i=1
c�

i O�
i , (4)

where the coe�cients c�
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having di↵erent couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
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15⇤

i=1
c⇥

i Oit
⇥ (5)
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There are fifteen combinations of these operators
Spin-independent

Spin-dependent

incoming and outgoing WIMP momenta and by ⌥k and ⌥k� the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
⌥q ·⌥v⇥ = 0. Here we will briefly outline the procedure employed in [46] in going from the NR
operators to the final di↵erential WIMP-nucleus cross section.

TABLE I. List of NR e�ective operators described in [46]

O1 1⇤1N

O2 (⌅v⇥)2

O3 i⌅SN · ( �q
mN

⇤ ⌅v⇥)

O4 ⌅S⇤ · ⌅SN

O5 i⌅S⇤ · ( �q
mN

⇤ ⌅v⇥)

O6 ( �q
mN

· ⌅SN )( �q
mN

· ⌅S⇤)

O7 ⌅SN · ⌅v⇥

O8 ⌅S⇤ · ⌅v⇥

O9 i⌅S⇤ · (⌅SN ⇤ �q
mN

)

O10 i �q
mN

· ⌅SN

O11 i �q
mN

· ⌅S⇤

O12 ⌅S⇤ · (⌅SN ⇤ ⌅v⇥)

O13 i(⌅S⇤ · ⌅v⇥)( �q
mN

· ⌅SN )

O14 i(⌅SN · ⌅v⇥)( �q
mN

· ⌅S⇤)

O15 �(⌅S⇤ · �q
mN

)
�
(⌅SN ⇤ ⌅v⇥) · �q

mN

⇥
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⇤
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where YJM and �YJLM are spherical harmonics and vector spherical harmonics respectively.
We are only considering elastic transitions, and assuming parity and CP as symmetries of the
nuclear ground state. This eliminates some of the responses, and only M, ⇤��

, ⌅�
, �, ⌅��

, ⇤̃�

survive. To calculate cross-sections, one needs to square the amplitude, average over initial
spins and sum over final spins. The matrix element squared for the nuclear portion of the
amplitude has been made available by Fitzpatrick et al. [51], and codes have been supplied
to calculate the full amplitude and rate [52].

As we shall describe, in the following analysis we discovered that two additional NR
operators are required to fully describe the scattering of spin-1 WIMPs o⇥ nuclei,

O17 � i�q

mN
· S · �v�,

O18 � i�q

mN
· S · �SN , (18)

where S is the symmetric combination of polarization vectors. Appendix A contains the
details required to include these new operators in the above formalism.

III. SIMPLIFIED MODELS FOR DIRECT DETECTION

From a model building perspective, one would like to know how relevant the novel nuclear
responses are in interpreting direct detection data. Previous work [54] demonstrated that
using only the SI/SD form factors (even with additional momentum dependence taken into
account) can lead one to infer wildly incorrect values of the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level, where
‘simplified model’ means a single WIMP with a single mediator coupling it to the quark
sector. This is useful for two reasons; it allows us to better explore which NR operators
arise from a broad set of UV complete theories, and also make connection with the growing
body of literature which use simplified models for indirect detection and collider searches.

When it comes to interpreting signals, knowing comprehensively how di⇥erent interac-
tions with di⇥erent nuclei arise from di⇥erent UV complete models will allow us to identify
degeneracies between competing models. Further, it can also help optimize target selection
for maximum discrimination of the UV model parameter space.

10

Two additional non-relativistic 
operators arise in the vector 
dark matter case

Appendix A: Vector Dark Matter

If the WIMP has spin 1, we find two extra operators that haven’t been considered pre-
viously. Specifically, the operators depend on the symmetric combination of polarization
vectors, Sij = 1

2

�
⇥†

i⇥j + ⇥†
j⇥i

⇥
. This necessitates a modification to the WIMP response func-

tions by first modifying the ⌥ coe�cients given in Eq. 13. Based on our non-relativistic
reduction for vector dark matter, the Lagrangian for vector dark matter and the nucleus,
interacting via an uncharged scalar or vector mediator can be written in general as:

Lvector = c1O1 + c4O4 + c5O5 + c8O8 + c9O9 + c10O10 + c11O11 + c14O14 + c17O17 + c18O18

(A1)

where we’ve defined O17 ⌅ i⌫q
mN

· S · ✏v⇤ and O18 ⌅ i⌫q
mN

· S · ✏SN and the ci’s are given in
table IV. To decompose these new operators we replace ✏v⇤ with the target velocity and the
internucleon velocities and sum over nucleons. O17 can then be put into the form

O17 ⌃ i✏q

mN
.S.

⌥

✏v⇤
T e�i⌫q.⌫xi �

A 

i=1

1
2M

⇤
�1

i

⇧�⌦ ie
�i⌫q·⌫xi + e�i⌫q·⌫xi

1
i

�⌃⌦ i

⌅

int

�

. (A2)

O18 can be expanded as

O18 ⌃ 1
2

i✏q

mN
· S · ✏⇤ (A3)

Together, all the terms of Lvector give rise to the following ⌥ factors from Eq. 13,

⌥�
0 = c�

1 + i

⇧
✏q

mN
⇤ ✏v⇤

T

⌃

· ✏S⇥c�
5 + (✏v⇤

T · ✏S⇥)c�
8 + i

⇧
✏q

mN
· ✏S⇥

⌃

c�
11 + i

⇧
✏q

mN
· S · ✏vT

⇤

⌃

c�
17

lA�
0 = �i

⇧
✏q

2mN
· ✏S⇥

⌃

c�
14

✏l�
E = 0 (A4)

✏l�
M = i

⇧
✏q

mN
⇤ ✏S⇥

⌃

c�
5 � ✏S⇥c�

8 � i

⇧
✏q

mN
· S
⌃

c�
17

✏l�
5 = 1

2
✏S⇥c�

4 + i

⇧
✏q

mN
⇤ ✏S⇥

⌃

c�
9 + 1

2

⇧

i
✏q

mN

⌃

c�
10 + 1

2✏v⇤
T

⇧
✏q

2mN
· ✏S⇥

⌃

c�
14 + 1

2

⇧

i
✏q

mN
· S
⌃

c�
18

Based on the ⌥’s above, the coe�cients of the various nuclear responses are found by squaring
the amplitude and then summing over spins. To simplify calculations, we choose a convenient
basis for polarization vectors, ⇥s

i = �s
i . Recall that the spin can then be written as the anti-

symmetric combination iSk = ⇥ijk⇥†
i⇥j. The WIMP responses unique to the vector case are
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TABLE I. Relativistic amplitudes, their nonrelativistic analogs appropriate for evaluation between Paul spinors, the corresponding results
as linear combinations of the Oi , and the transformation properties of the interactions [even (E) or odd (O)] under parity and time reversal.
Bjorken and Drell spinor and γ matrix conventions are used. The scale mM, which appears as an arbitrary normalization below to ensure that
kinematic factors are dimensionless, would usually be known from the context of the theory.

j Lj
int Nonrelativistic reduction

∑
i ciOi P/T

1 χ̄χN̄N 1χ 1N O1 E/E

2 iχ̄χN̄γ 5N i !q
mN

· !SN O10 O/O

3 iχ̄γ 5χN̄N −i !q
mχ

· !Sχ −mN

mχ
O11 O/O

4 χ̄γ 5χN̄γ 5N − !q
mχ

· !Sχ
!q

mN
· !SN −mN

mχ
O6 E/E

5 χ̄γ µχN̄γµN 1χ 1N O1 E/E

6 χ̄γ µχN̄iσµα
qα

mM
N !q 2

2mN mM
1χ 1N + 2

( !q
mχ

× !Sχ + i!v⊥)
·
( !q

mM
× !SN

) !q 2
2mN mM

O1−2 mN
mM

O3

+2
m2

N
mMmχ

(
q2

m2
N

O4−O6

) E/E

7 χ̄γ µχN̄γµγ 5N −2!SN · !v⊥ + 2
mχ

i !Sχ · (!SN × !q) −2O7 + 2 mN

mχ
O9 O/E

8 iχ̄γ µχN̄iσµα
qα

mM
γ 5N 2i !q

mM
· !SN 2 mN

mM
O10 O/O

9 χ̄ iσµν qν

mM
χN̄γµN − !q 2

2mχ mM
1χ 1N − 2

( !q
mN

× !SN + i!v⊥)
·
( !q

mM
× !Sχ

) − !q 2
2mχ mM

O1+ 2mN
mM

O5

−2 mN
mM

(
!q 2

m2
N

O4−O6

) E/E

10 χ̄ iσµν qν

mM
χN̄iσµα

qα

mM
N 4

( !q
mM

× !Sχ

)
·
( !q

mM
× !SN

)
4
( !q 2

m2
M
O4 − m2

N

m2
M
O6

)
E/E

11 χ̄ iσµν qν

mM
χN̄γ µγ 5N 4i

( !q
mM

× !Sχ

)
· !SN 4 mN

mM
O9 O/E

12 iχ̄ iσµν qν

mM
χN̄iσµα

qα

mM
γ 5N −

[
i !q 2

mχ mM
− 4!v⊥ ·

( !q
mM

× !Sχ

)] !q
mM

· !SN −mN

mχ

!q 2

m2
M
O10 − 4 !q 2

m2
M
O12 − 4 m2

N

m2
M
O15 O/O

13 χ̄γ µγ 5χN̄γµN 2!v⊥ · !Sχ + 2i !Sχ ·
(!SN × !q

mN

)
2O8 + 2O9 O/E

14 χ̄γ µγ 5χN̄iσµα
qα

mM
N 4i !Sχ ·

( !q
mM

× !SN

)
−4 mN

mM
O9 O/E

15 χ̄γ µγ 5χN̄γ µγ 5N −4!Sχ · !SN −4O4 E/E

16 iχ̄γ µγ 5χN̄iσµα
qα

mM
γ 5N 4i!v⊥ · !Sχ

!q
mM

· !SN 4 mN

mM
O13 E/O

17 iχ̄ iσµν qν

mM
γ 5χN̄γµN 2i !q

mM
· !Sχ 2 mN

mM
O11 O/O

18 iχ̄ iσµν qν

mM
γ 5χN̄iσµα

qα

mM
N !q

mM
· !Sχ

[
i !q 2

mN mM
− 4!v⊥ ·

( !q
mM

× !SN

)] !q 2

m2
M
O11 + 4 m2

N

m2
M
O15 O/O

19 iχ̄ iσµν qν

mM
γ 5χN̄γµγ 5N −4i !q

mM
· !Sχ !v⊥ · !SN −4 mN

mM
O14 E/O

20 iχ̄ iσµν qν

mM
γ 5χN̄iσµα

qα

mM
γ 5N 4 !q

mM
· !Sχ

!q
mM

· !SN 4 m2
N

m2
M
O6 E/E

As WIMP searches are motivated in part by the “WIMP
miracle”—WIMPs will naturally freeze-out in the early uni-
verse, when their annihilation rate falls behind the expansion
rate, to produce a relic density today consistent with the dark-
matter density—it is convenient to express the coefficients ci

in weak-scale units. O4 is related by an isospin rotation to the
charge-changing weak axial or Gamow-Teller operator of the
standard model,

c4O4t
1 ≡ c4O4τ3 → GF√

2
O4τ±, (19)

where GF ∼ 1.166 × 10−5 GeV−2 is the Fermi constant and
τ± is the isospin raising or lowering operator. GF defines a
standard-model weak interaction mass scale,

mv ≡ 〈v〉 = (2GF )−1/2 = 246.2 GeV, (20)

where 〈v〉 is the Higgs vacuum expectation value. Conse-
quently, it is natural to characterize experimental constraints
on a given ci in terms of this normalization, that is, in terms
of the dimensionless quantity c̃i , where ci = c̃i/m2

v . This

normalization is employed in the Mathematica script discussed
in Appendix B.

B. EFT power counting and !q/mN : Parametric enhancement

The EFT formulation leads to an attractive power counting
that is helpful in understanding the dependence of laboratory
total cross sections on the physically relevant parameters: the
WIMP velocity !v⊥

T , the ratio of the WIMP-nuclear target
reduced mass µT to mN , and the ratio of µT to the inverse
nuclear size. The scaling behavior we discuss in Sec. IV B takes
on a simple form if mN is used to construct the dimensionless
quantity !q/mN , a parameter related to the relative velocities
of nucleons bound in the nucleus, as explained below. The fact
that internucleon velocities are much greater than the WIMP
velocity leads to a parametric enhancement of the certain
“composite operator” contributions to cross sections.

The introduction of the scale mN would be arbitrary if we
limit ourselves to WIMP-nucleon scattering. Any other choice
would simply lead to the same scaling of the total cross section
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In the long wavelength limit these correspond to various physical interpretations

The WIMP-nucleus amplitude, M, can then be succinctly written as

M =
⌦

⇥=0,1
⌅j⇤, M⇤; jN , MN |

↵
l⇥
0S + lA⇥

0 T +⌅l⇥
5 · ⌅P +⌅l⇥

M · Q +⌅l⇥
E · ⌅R

�
t⇥ (i)|j⇤, M⇤; jN , MN⇧.

(14)

By using spherical decomposition, the internal nuclear operators S, T, P, Q and R can be
further rewritten in terms of standard nuclear electroweak responses as follows:

M =
⌦

⇥=0,1
⌅j⇤, M⇤f ; jN , MNf |

⌅
⌦

J=0

�
4⇥(2J + 1)(�i)J

�
l⇥
0MJ0;⇥ � ilA⇥

0
q

mN
⇥̃J0;⇥ (q)

⇥
(15)

+
⌦

J=1

�
2⇥(2J + 1)(�i)J

⌦

�±1
(�1)�

↵
l⇥
5�[�⌅J��;⇥ (q) + i⌅�

J��;⇥ (q)]

�i
q

mN
l⇥
M�[��J��;⇥ (q)] � i

q

mN
l⇥
E�[�⇤̃J��;⇥ (q) + i⇤̃�

J��;⇥ (q)]
⇤

+
⇥⌦

J=0

�
4⇥(2J + 1)(�i)J

�
il⇥

50⌅
��

J0;⇥ (q) + q

mN
l⇥
M0�̃

��

J0;⇥ (q) + q

mN
l⇥
E0⇤̃

��

J0;⇥ (q)
⇥⇧

|j⇤, M⇤i; jN , MNi⇧

Where there is an implicit sum over the nucleons,

OJM ;⇥ (q) ⇤
A⌦

i=1
OJM(q⌅xi)t⇥ (i), (16)

and the various electroweak responses are defined as

MJM(q⌅x) ⇤ jJ(qx)YJM(⇥x)
⌅MM

JL ⇤ jJ(qx)⌅YJLM(⇥x)

�JM ⇤ ⌅MM
JJ(qxi) · 1

q
⌅⌃i

⌅�

JM ⇤ �i

�
1
q

⌅⌃i ⇥ ⌅MM
JJ(q⌅xi)

 

· ⌅⇤(i)

⌅��

JM ⇤
�

1
q

⌅⌃iMJM(q⌅xi)
 

· ⌅⇤(i)

⇤̃�

JM ⇤
⌃

1
q

⌅⌃i ⇥ ⌅MM
JJ(q⌅xi)

⌥

·
⌃

⌅⇤(i) ⇥ 1
q

⌅⌃i

⌥

+ 1
2

⌅MM
JJ(q⌅xi) · ⌅⇤(i)

⇤��

JM ⇤ i

⌃
1
q

⌅⌃iMJM(q⌅xi)
⌥

·
⌃

⌅⇤(i) ⇥ 1
q

⌅⌃i

⌥

⌅JM ⇤ ⌅MM
JJ(q⌅xi) · ⌅⇤(i)

⇥̃JM ⇤ ⇥JM(q⌅xi) + 1
2⌅��

JM(q⌅xi)

⇤̃JM ⇤ ⇤JM(qxi) � 1
2⌅�

JM(qxi)

�̃��

JM ⇤ ���

JM(qxi) � 1
2MJM(qxi) (17)
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Projection Charge/current Operator Even J Odd J
Charge Vector charge MJM E-E O-O
Charge Axial-vector charge Ω̃JM O-E E-O
Longitudinal Spin current Σ′′

JM O-O E-E
Transverse magnetic ” ΣJM E-O O-E
Transverse electric ” Σ′

JM O-O E-E
Longitudinal Convection current ∆̃′′

JM E-O O-E
Transverse magnetic ” ∆JM O-O E-E
Transverse electric ” ∆′

JM E-O O-E
Longitudinal Spin-velocity current Φ′′

JM E-E O-O
Transverse magnetic ” Φ̃JM O-E E-O
Transverse electric ” Φ̃′

JM E-E O-O

Table 2: The parity-time reversal transformation properties for the eleven operators arising in DM particle
scattering off nuclei. The nearly exact parity and CP of nuclear ground states restricts the contributing
multipoles in elastic scattering to those that transform under parity and CP as even-even (E-E): these
are the even multipoles of the vector charge operator MJM and of the longitudinal and transverse electric
projections of the spin-velocity current Φ′′

JM and Φ̃′
JM , and the odd multipoles of the longitudinal and

transverse electric projections of the spin current Σ′′
JM and Σ′

JM and of the transverse magnetic projection
of the convection current ∆JM .

Finally, we average over initial WIMP spins and sum over final spins, as in the nuclear case. The WIMP
tensors involve combinations of 1 and !Sχ. As we sum over all magnetic quantum numbers, the only surviving

terms in the bilinear products of the WIMP tensors must transform as spin scalars, and thus as 1 or as !S 2
χ .

The constant term yields 1. All cross terms linear in !Sχ must vanish. The spin terms must be proportional
to jχ(jχ + 1). The associated coefficients are easily calculated for the various products

1

2jχ + 1

∑

mχi
mχf

〈jχmχi |



























!Sχ|jχmχf
〉 · 〈jχmχf

|!Sχ

!A · !Sχ|jχmχf
〉 〈jχmχf

| !B · !Sχ

!A× !Sχ|jχmχf
〉 · 〈jχmχf

| !B × !Sχ

!A× !Sχ|jχmχf
〉 · 〈jχmχf

|!Sχ



























|jχmχi〉 =























1

!A · !B/3

2 !A · !B/3
0























jχ(jχ + 1) (91)

The results are further simplified because the resulting scalars !A · !B often involve longitudinal and transverse
quantities or !q · !v⊥T , which vanish.

Executing the associated algebra yields the final result given in Eqs. (37) and (38). The transition
probability is expressed as a product of WIMP and nuclear responses functions, where the former isolates
the particle physics in functions that are bilinear in the EFT coefficients, the cis.

A.3 Generalizing the Exchange

Our EFT approach has focused on interactions between the WIMP and nucleus mediated by a heavy ex-
change, so that the interaction is pointlike. However, nothing in the treatment of the WIMP or nuclear
vertices depends on this assumption. We believe the adaptation of this code for cases in which the exchange
is mediated by a photon or other light particle would be very simple. This would, of course, require one
to add the needed momentum-dependent propagator to the code. Once that line is added, however, we see
no reason that subsequent integrations over phase space would present any difficulties: indeed the operator
formalism we employ here is the common formalism for both electron scattering and semi-leptonic weak
interactions. The exchange in the former is a photon, while the latter is treated as a four-fermion interaction
analogous to the WIMP case.
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new types of nuclear responses are excited due to non-
standard interactions between the DM and nuclei, however,
different form factors than the standard spin-independent
and spin-dependent ones should be employed. By selecting
the relevant nonrelativistic building blocks for DM scatter-
ing, Ref. [35] was able to elucidate the relevant nuclear
responses for nonstandard DM interactions; they also
showed how to map their nonrelativistic results onto
relativistic operators.
In particular, Ref. [35] showed that there are six inde-

pendent types of nuclear responses that can be relevant for
DM scattering—rather than just the two (spin-independent
and spin-dependent) standardly considered. These arise
when the relative DM or nucleon velocities or momentum
transfer is intertwined with the DM or nucleon spin in the
underlyingDM-nucleon interaction. These responses, along
with their zero momentum limit, are shown in Table I. To
make contact with more familiar language, the standard
spin-independent nuclear response is M (which closely
mimics the Helm form factor), while the standard spin-
dependent response is Σ0 þ Σ″. There are, however, two
other important responses, as shown in Table I: Δ and Φ″.
These novel responses correspond to a coupling to the
orbital angularmomentumand to the orbital-spin interaction
of the nucleus, respectively. The sixth response, ~Φ0, arising
only in CP nonconserving interactions, does not appear in
any of the models we consider. It is difficult to find a UV
model in which this last response arises [35].
The purpose of the present paper is to assess the impact

of the new nuclear responses on scattering rates by
examining a set of benchmark models motivated by
relativistic operators that can be easily UV completed.
We consider the relativistic operators summarized in
Table II along with their nonrelativistic reductions and
dependence on nuclear responses. We consider anapole,
magnetic dipole, and electric dipole interactions, with

coupling to the electromagnetic (EM) current arising due
to, e.g., kinetic mixing of a dark gauge field with the
Standard Model electromagnetic Uð1Þ. The anapole is
attractive because it is the leading operator through which
Majorana DM can couple to the nucleus through a vector
interaction. The electric and magnetic dipoles couple the
DM spin to the field strength and naturally arise in some
models of composite DM [22,27]. We consider momen-
tum-dependent interactions that can arise, e.g., if the
DM-nucleon interaction is mediated by a pseudoscalar—
perhaps a pseudo-Goldstone boson [24]. We also study a
model sketched in [35], for which the novel spin-and-
angular-momentum-dependent response, Φ″, is important.
A complete catalog of relativistic operators relevant for
scattering, along with their nonrelativistic reductions can be
found in [35] and [34]. See also [33].
The models we consider, besides being well motivated by

UV completions, also encompass the most interesting oper-
ators in terms of probing the new nuclear responses. As we
will see explicitly below, different nuclei can have very
different sensitivity to these new responses. This can already
be seen in the earlier work of [26], which utilized operators in
a relativistic effective field theory. The anapole interaction,
for example, leads to a proton-orbital-angular-momentum
response (Δ), which, because of the stronger Δ response of
sodium than germanium and xenon (see Table IV), can bring
the DAMA region of interest into agreement with the
CoGeNT region of interest, and simultaneously reduce
the tension between DAMA and xenon-target experiments.
In the treatment of [26], the stronger response of sodium is
apparent simply because of its large nuclear magnetic
moment.2 The new responses, as the momentum transfer
drops to zero, also only depend on the spin and orbital angular
momentum of the nucleus, so that the new responses in this
limitwell reproduce the result in [26],whichneglects possible
nonstandardmomentumdependence of the nuclear response.
As the momentum transfer becomes large compared to
inverse nuclear size, this kind of treatment breaks down.
Thus, while this “standard treatment” using operators in

a relativistic effective field theory can work well in the low
momentum transfer limit, the nuclear responses of [35]
must be employed at larger momentum transfer to correctly
model the DM-nucleus interaction. Thus direct detection
rates for weak scale or heavier DM, for which larger
momentum transfer is relevant, can be more affected by the
new nuclear responses than for low-mass DM, where the
effect of the momentum dependence of the new responses
is negligible.
In addition, while the new nuclear responses of [35]

should correctly reproduce macroscopic properties of the
nucleus like its spin and magnetic moment in the momen-
tum transfer q2 → 0 limit, in practice the responses for

TABLE I. Summary of the five nuclear responses relevant for
DM direct detection. We also include the q2 → 0 limit of the
associated response function, 4π

2Jþ1W
ðN;N0Þ
X , for N ¼ N0 ¼ p. The

response functions W are as defined in Eq. (41) of [34].
Responses M and Φ″ can interfere, as can Σ0 and Δ. In the q2 →
0 limit, 4π

2Jþ1W
ðN;N0Þ
ΔΣ0 → −2 Jþ1

3J hLNihSN 0 i. The response entering
into “standard” spin-independent scattering is M while that
entering into standard spin-dependent scattering is Σ″ þ Σ0. As
in [35], we will refer to Δ and Φ″ as “novel” responses.

X 4π
2Jþ1W

ðp;pÞ
X ð0Þ

M spin-independent Z2

Σ″ spin-dependent (longitudinal) 4 Jþ1
3J hSpi2

Σ0 spin-dependent (transverse) 8 Jþ1
3J hSpi2

Δ angular-momentum-dependent 1
2
Jþ1
3J hLpi2

Φ″ angular-momentum-and-spin-dependent ∼h~Sp · ~Lpi2a

aSee Table 1 of [35].
2The magnetic response is a particular combination of orbital

angular momentum and spin responses.
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(35)

(36)

2

with most of the previous detector development literature,
which has focused on this scenario. In a future work we
will extend this analysis to include the impact of possible
spin dependence (see for example [16–20]) upon the phys-
ics reach of DARWIN and similar detectors.

With respect to the recoil energy ER, the differential rate
per nuclei per unit time is

dR

dER
¼ !"

m"mN

Z
jvj>vmin

jvjfðvÞ d#
dER

d3v; (1)

where!" is the local darkmatter density, andm",mN are the
WIMP and nucleus masses, respectively. The integral aver-
ages over the velocity distribution of WIMPs fðvÞ weighted
by the differential cross section d#

dER
. Kinematically the mini-

mum velocity, vmin , that can contribute to a recoil of energy
ER is [5]

vmin ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ERmN

p
"
ERmN

$"N
þ %

#
; (2)

where $"N is the WIMP-nucleus reduced mass and % is an
inelastic scattering parameter (% ¼ 0 recovers the elastic
case). (We note that inelastic scattering is not a property of
most WIMP models, but this possibility has been raised
[21], and thus we include it here for completeness.) While
we are interested in the energy spectrum of the recoils, the
full rate can be obtained by integrating this over the range
of recoil energies that the detector is sensitive to. The
standard approach is to write the cross section in terms of
the WIMP-nucleon cross section at zero momentum trans-
fer, #0, and the nuclear form factor, F2ðERÞ,

d#

dER
¼ mN

2v2$2
"N

#0F
2ðERÞ: (3)

The WIMP-nucleon cross section can be written in terms

of contributions from neutron and proton scattering, #0 ¼
4$2

"N

& ½Zfp þ ðA& ZÞfn'2, where A and Z are the atomic

mass and number of the detector material, #"n ¼ 4$2
"n

& f2n

and #"p ¼ 4$2
"p

& f2p. Setting the proton and neutron masses
to be equal, an appropriate approximation at the level of
accuracy of relevance here, allows one to write #"n ¼
ðfnfpÞ

2#"p, such that the factor
fn
fp
neatly incorporates isospin

violating interactions. Equation (1) then becomes

dR

dER
¼ #"p

2m"$
2
"p

"
Zþ fn

fp
ðA& ZÞ

#
2
F2ðERÞGðvmin Þ; (4)

where we have defined

Gðvmin Þ ¼ !"

Z
jvj>vmin

fðvÞ
jvj d3v: (5)

Using this formalism, the astrophysical and particle phys-
ics/nuclear physics inputs are each contained in separate
terms, allowing us to examine each in turn.

B. Particle and nuclear physics parameters

1. Isospin and inelasticity

We have assumed here a simple spin-independent
scattering amplitude which means that at low energy the
scattering cross section on a nucleus is a simple constant
times some product of nuclear charges squared. While this
simplifies the analysis greatly there nevertheless remain
two important unknowns related to the specific particle
physics parameters of the WIMP sector. The first involves
the WIMP couplings to different quarks, which at low
energies get translated into possible isospin violations in
the WIMP scattering cross section. The second involves
the (at present, less generic) scenario of excitations in the
WIMP sector, which would produce possible inelasticity in
the WIMP cross section, parametrized by the quantity %
mentioned earlier. When the isospin factor is not unity or
the inelastic parameter is nonzero, the spectrum is modi-
fied, as shown in Fig. 1. The isospin factor only affects the
magnitude of the recoil rate, while the inelastic parameter
severely modifies the shape of the recoil spectrum, as can
be seen from Eq. (4). The result is that experiments
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FIG. 1 (color online). The differential event rate per femtobarn of cross section for various values of the isospin violating factor (left)
and the inelastic parameter (right), for a WIMP with m" ¼ 100 GeV in a xenon target, compared to a benchmark WIMP model with

the same mass (solid line). A Maxwell-Boltzmann phase-space distribution and the Helm form factor have been assumed (see later
sections). Left: From top to bottom, fn=fp ¼ f1:5; 1; 0:5;&1g. Right: From top to bottom, % ¼ f0; 25; 50; 75; 100g keV.
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In building these simplified models we remain agnostic about the WIMP’s spin, and
consider dark matter spins of 0, 1

2 and 1. We do however only consider renormalizable inter-
actions between quarks and WIMPs. To ensure a stable WIMP, we assume that the WIMP
is either charged under some internal gauge group or a discrete symmetry group (for example
Z2). However, we assume that this gauge charge is not shared by quarks. We will couple
the WIMP to the quarks via a heavy mediator in two distinct ways: charged and uncharged
mediators, each with all possible spins consistent with angular momentum conservation.
The mediator mass is chosen to be the heaviest scale in the problem (and certainly much
greater than the momentum exchange which characterizes the scattering process) so that we
can integrate it out (see appendix B for details). This leads to relativistic e�ective WIMP-
nucleon interactions, whose NR limit can then be examined. In the uncharged mediator case
we will consider mediators that are neutral under all SM and WIMP gauge charges, while
in the charged case, the mediator must have both WIMP and SM gauge charges. Given the
above as a guide, our Lagrangian construction is then constrained only by gauge invariance,
Lorentz invariance, renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians
1. Scalar Dark Matter
We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure sta-

bility, and S† is its Hermitian conjugate. To have renormalizable interactions, the neutral
mediator can only be a scalar or a vector. We denote the scalar mediator by ⇤ and the
vector mediator by Gµ with field strength tensor Gµ� . Unless otherwise noted, all of the
following coupling constants are real and dimensionless.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by

LS⇥q = ⌅µS†⌅µS � m2
SS†S � ⇥S

2 (S†S)2

+1
2⌅µ⇤⌅µ⇤ � 1

2m2
⇥⇤2 � m⇥µ1

3 ⇤3 � µ2
4 ⇤4

+iq̄D/ q � mq q̄q

�g1mSS†S⇤ � g2
2 S†S⇤2 � h1q̄q⇤ � ih2q̄�5q⇤, (19)

11

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is

LSGq = ⇧µS†⇧µS � m2
SS†S � ⇥S

2 (S†S)2

�1
4Gµ�Gµ� + 1

2m2
GGµGµ � ⇥G

4 (GµGµ)2

+iq̄ /Dq � mq q̄q

�g3
2 S†SGµGµ � ig4(S†⇧µS � ⇧µS†S)Gµ

�h3(q̄�µq)Gµ � h4(q̄�µ�5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by ⌅ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (⇤) and vector mediator (Gµ) cases respectively are given below,

L⇤⇥q = i⌅̄ /D⌅ � m⇤⌅̄⌅

+1
2⇧µ⇤⇧µ⇤ � 1

2m2
⇥⇤2 � m⇥µ1

3 ⇤3 � µ2
4 ⇤4

+iq̄D/ q � mq q̄q

�⇥1⇤⌅̄⌅ � i⇥2⇤⌅̄�5⌅ � h1⇤q̄q � ih2⇤q̄�5q, (21)

L⇤Gq = i⌅̄ /D⌅ � m⇤⌅̄⌅

�1
4Gµ�Gµ� + 1

2m2
GGµGµ

+iq̄D/ q � mq q̄q

�⇥3⌅̄�µ⌅Gµ � ⇥4⌅̄�µ�5⌅Gµ

�h3q̄�µqGµ � h4q̄�µ�5qGµ. (22)

3. Spin-1 Dark Matter
If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can

occur via a heavy scalar or a vector particle. For the case of vector mediation, there are

12
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FIG. 1. The relative strength of event rates for a 50GeV spin-1
2 WIMP in xenon for each of the

non-relativistic operators in table I, where the coe�cients of each operator are set to be equal

to evade the current experimental constraints. For example, a 50 GeV WIMP producing
10 events per tonne per year is su�ciently low to evade the bounds from LUX [21]. For
demonstration purposes we set the couplings to 0.1 (or 0.1i for imaginary) in the various
Lagrangians and find a mediator mass that will produce 10 events/t/y in the signal region
for xenon (5 � 45keV). The calculated masses are given in table V. It is perhaps telling that
the mediator masses span 6 orders of magnitude, from just a few GeV up to a PeV. While
it is unlikely that a full model of thermal relic dark matter could be built around all of
these Lagrangians, it is nevertheless a useful metric to estimate the relative strength of the
di�erent nuclear responses to each of the operators.

In Figs. 2, 3, 4 and 5 we have plotted rates for two common targets. For simplicity and
again for demonstration purposes, we only plot the rates for a single isotope of both ger-
manium and xenon. The choice of isotopes, 73Ge and 131Xe, was made to ensure sensitivity
to spin-dependent responses. As can be seen in the figures, many operators produce rates
with similar recoil energy dependence in the same target, but di�erent nuclei can have very
di�erent responses to the various operators [53]. Thus a complementary choice of nuclear
targets can provide important discriminating information.

To illustrate this discriminating power we plot the ratio of the rates in xenon and ger-
manium in Fig. 5 and 6. We choose to only present ratios for the uncharged mediator
cases of spinor and vector WIMPs since the other cases produce trival results (all operators
being spin independent). To estimate the e�ect astrophysical uncertainties will have on
discriminating between operators, we plot the rate for a range of astrophysical parame-
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FIG. 1. The relative strength of event rates for a 50GeV spin-1
2 WIMP in xenon for each of the

non-relativistic operators in table I, where the coe�cients of each operator are set to be equal

to evade the current experimental constraints. For example, a 50 GeV WIMP producing
10 events per tonne per year is su�ciently low to evade the bounds from LUX [21]. For
demonstration purposes we set the couplings to 0.1 (or 0.1i for imaginary) in the various
Lagrangians and find a mediator mass that will produce 10 events/t/y in the signal region
for xenon (5 � 45keV). The calculated masses are given in table V. It is perhaps telling that
the mediator masses span 6 orders of magnitude, from just a few GeV up to a PeV. While
it is unlikely that a full model of thermal relic dark matter could be built around all of
these Lagrangians, it is nevertheless a useful metric to estimate the relative strength of the
di�erent nuclear responses to each of the operators.

In Figs. 2, 3, 4 and 5 we have plotted rates for two common targets. For simplicity and
again for demonstration purposes, we only plot the rates for a single isotope of both ger-
manium and xenon. The choice of isotopes, 73Ge and 131Xe, was made to ensure sensitivity
to spin-dependent responses. As can be seen in the figures, many operators produce rates
with similar recoil energy dependence in the same target, but di�erent nuclei can have very
di�erent responses to the various operators [53]. Thus a complementary choice of nuclear
targets can provide important discriminating information.

To illustrate this discriminating power we plot the ratio of the rates in xenon and ger-
manium in Fig. 5 and 6. We choose to only present ratios for the uncharged mediator
cases of spinor and vector WIMPs since the other cases produce trival results (all operators
being spin independent). To estimate the e�ect astrophysical uncertainties will have on
discriminating between operators, we plot the rate for a range of astrophysical parame-
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Response of a given operator shown for various target elements
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incoming and outgoing WIMP momenta and by ⌥k and ⌥k� the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
⌥q ·⌥v⇥ = 0. Here we will briefly outline the procedure employed in [46] in going from the NR
operators to the final di↵erential WIMP-nucleus cross section.

TABLE I. List of NR e�ective operators described in [46]

O1 1⇤1N

O2 (⌅v⇥)2

O3 i⌅SN · ( �q
mN

⇤ ⌅v⇥)

O4 ⌅S⇤ · ⌅SN

O5 i⌅S⇤ · ( �q
mN

⇤ ⌅v⇥)

O6 ( �q
mN

· ⌅SN )( �q
mN

· ⌅S⇤)

O7 ⌅SN · ⌅v⇥

O8 ⌅S⇤ · ⌅v⇥

O9 i⌅S⇤ · (⌅SN ⇤ �q
mN

)

O10 i �q
mN

· ⌅SN

O11 i �q
mN

· ⌅S⇤

O12 ⌅S⇤ · (⌅SN ⇤ ⌅v⇥)

O13 i(⌅S⇤ · ⌅v⇥)( �q
mN

· ⌅SN )

O14 i(⌅SN · ⌅v⇥)( �q
mN

· ⌅S⇤)

O15 �(⌅S⇤ · �q
mN

)
�
(⌅SN ⇤ ⌅v⇥) · �q

mN

⇥

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
⇤

�=n,p

15⇤

i=1
c�

i O�
i , (4)

where the coe�cients c�
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having di↵erent couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
⇤

⇥=0,1

15⇤

i=1
c⇥

i Oit
⇥ (5)

6
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handed Weyl spinor. The following Fierz transformation and gamma matrix identites were
useful in the charged mediator cases, (a sign di⇣erence was found in the final identity when
compared with [60]):

(q̄⌅)(⌅̄q) =�1
4
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q̄q⌅̄⌅ + q̄�µq⌅̄�µ⌅ + 1

2 q̄⇤µ⌅q⌅̄⇤µ⌅⌅ � q̄�µ�5q⌅̄�µ�5⌅ + q̄�5q⌅̄�5⌅
⌅

(q̄�5⌅)(⌅̄�5q) =�1
4
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2 q̄⇤µ⌅q⌅̄⇤µ⌅⌅
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(q̄⌅)(⌅̄�5q) =�1
4

⇧
q̄q⌅̄�5⌅ + q̄�5q⌅̄⌅ � q̄�µq⌅̄�µ�5⌅ + q̄�µ�5q⌅̄�µ⌅ + i⇥µ⌅�⇥ q̄⇤µ⌅q⌅̄⇤�⇥⌅

⌃

(q̄�µ⌅)(⌅̄�µq) =�
⇤
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2 q̄�µ�5q⌅̄�µ�5⌅
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(q̄�µ�5⌅)(⌅̄�µ�5q) =�
⇤
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2 q̄�µq⌅̄�µ⌅ � 1
2 q̄�µ�5q⌅̄�µ�5⌅
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⇤
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2 q̄�µ�5q⌅̄�µ⌅

⌅
(B2)

⇤µ⌅�5 = i

2⇥µ⌅⇧⌃⇤⇧⌃ (B3)

All of the following operators are collected in terms of the coe⌘cients of the NR operators,
ci, in tables II,III and IV.

TABLE VII. Non-relativistic reduction of operators for a spin-0 WIMP
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i(S†⇥µS � ⇥µS†S)(q̄�µ�5q) �⇥
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2ig4hN
4
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G

mN
mS
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O10

Charged Spinor Mediator

(S†S)(q̄q) �⇥ y†
1y1�y†

2y2
mQmS

fN
T O1

(S†S)(q̄�5q) �⇥ i
y†

2y1�y†
1y2

mQmS
⌥̃N O10
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A Dark matter response functions

Below, we list the dark matter response functions that appear in Eq. (2.10). The notation is
the same used in the body of the paper. In the figures, for definitiveness we assume j⇥ = 1/2.
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where ↵q = ↵p� � ↵p = ↵k � ↵k� is the momentum transfer, ↵v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and ↵S⇥ and ↵SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by ↵p and ↵p� the
incoming and outgoing WIMP momenta and by ↵k and ↵k� the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
↵q ·↵v⇥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final di�erential WIMP-nucleus cross section.
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Below, we list the dark matter response functions that appear in Eq. (2.10). The notation is
the same used in the body of the paper. In the figures, for definitiveness we assume j⇥ = 1/2.
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where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is

LSGq = ⇧µS†⇧µS � m2
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2 (S†S)2
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�h3(q̄�µq)Gµ � h4(q̄�µ�5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by ⌅ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (⇤) and vector mediator (Gµ) cases respectively are given below,
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3. Spin-1 Dark Matter
If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can

occur via a heavy scalar or a vector particle. For the case of vector mediation, there are
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Hermitian vectors are:

i
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mN
, ↵v⇥ = ↵v + ↵q

2µN
, ↵S⇥, ↵SN , (3)

where ↵q = ↵p� � ↵p = ↵k � ↵k� is the momentum transfer, ↵v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and ↵S⇥ and ↵SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by ↵p and ↵p� the
incoming and outgoing WIMP momenta and by ↵k and ↵k� the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
↵q ·↵v⇥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final di�erential WIMP-nucleus cross section.
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A Dark matter response functions

Below, we list the dark matter response functions that appear in Eq. (2.10). The notation is
the same used in the body of the paper. In the figures, for definitiveness we assume j⇥ = 1/2.
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where ↵q = ↵p� � ↵p = ↵k � ↵k� is the momentum transfer, ↵v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and ↵S⇥ and ↵SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by ↵p and ↵p� the
incoming and outgoing WIMP momenta and by ↵k and ↵k� the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
↵q ·↵v⇥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final di�erential WIMP-nucleus cross section.
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A Dark matter response functions

Below, we list the dark matter response functions that appear in Eq. (2.10). The notation is
the same used in the body of the paper. In the figures, for definitiveness we assume j⇥ = 1/2.
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incoming and outgoing WIMP momenta and by ⌥k and ⌥k� the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
⌥q ·⌥v⇥ = 0. Here we will briefly outline the procedure employed in [46] in going from the NR
operators to the final di↵erential WIMP-nucleus cross section.
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In general one can write down the non-relativistic interaction Lagrangian as
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momenta respectively. Energy-momentum conservation implies the orthogonality condition
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operators to the final di�erential WIMP-nucleus cross section.
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A Dark matter response functions

Below, we list the dark matter response functions that appear in Eq. (2.10). The notation is
the same used in the body of the paper. In the figures, for definitiveness we assume j⇥ = 1/2.
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where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is
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2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by ⌅ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (⇤) and vector mediator (Gµ) cases respectively are given below,
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3. Spin-1 Dark Matter
If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can
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Hermitian vectors are:
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where ↵q = ↵p� � ↵p = ↵k � ↵k� is the momentum transfer, ↵v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and ↵S⇥ and ↵SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by ↵p and ↵p� the
incoming and outgoing WIMP momenta and by ↵k and ↵k� the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
↵q ·↵v⇥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final di�erential WIMP-nucleus cross section.
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A Dark matter response functions

Below, we list the dark matter response functions that appear in Eq. (2.10). The notation is
the same used in the body of the paper. In the figures, for definitiveness we assume j⇥ = 1/2.
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4.4. Future projects and complementarity

Existing results and projected sensitivities for the spin-independent WIMP-nucleon interactions as a
function of the WIMP mass are summarized in Figure 3, adapted from [91]. In spite of observed anomalies
in a handful of experiments, that could be interpreted as due to WIMPs, albeit not consistently, we have
no convincing evidence of a direct detection signal induced by galactic dark matter. Considering LUX’s
lack of a signal in 85.3 live-days�118 kg of liquid xenon target, excluding ⇥33GeV WIMPs with interaction
strengths above 7.6�10�46cm2, it becomes clear that, at the minimum, ton-scale experiments are required
for a discovery above the 5-sigma confidence level (unless the WIMP is lighter than ⇥10GeV, where larger
cross sections are feasible). Several large-scale direct detection experiments are in their planning phase and
will start science runs within this decade.

Figure 3: Summary for spin-independent
WIMP-nucleon scattering results. Existing
limits from the noble gas dark matter ex-
periments ZEPLIN-III [69], XENON10 [71],
XENON100 [75], and LUX [39], along with
projections for DarkSide-50 [85], LUX [39],
DEAP3600 [90], XENON1T, DarkSide G2,
XENONnT (similar sensitivity as the LZ
project [92], see text) and DARWIN [93] are
shown. DARWIN is designed to probe the
entire parameter region for WIMP masses
above �6GeV/c2, until the neutrino back-
ground (yellow region) will start to dominate
the recoil spectrum. Experiments based on the
mK cryogenic technique such as SuperCDMS
[94] and EURECA [95] have access to lower
WIMP masses. Figure adapted from [91].

The next phase in the LUX program, LUX-ZEPLIN (LZ), foresees a 7 t LXe detector in the same SURF
infrastructure, with an additional scintillator veto to suppress the neutron background. Construction is
expected to start in 2014, and operation in 2016, with the goal of reaching a sensitivity of 2�10�48cm2 after
three years of data taking [92]. The upgrade of XENON1T, XENONnT, is to increase the sensitivity by
another order of magnitude, thus also reaching 2�10�48cm2. While much of the XENON1T infrastructure
will be reused, the inner detector will be designed and constructed once XENON1T is taking science data,
with planned operation between 2018-2021. The XMASS collaboration plans a 5 t (1 t fiducial) single-phase
detector after its current phase, with greatly reduced backgrounds and an aimed sensitivity of ⇥10�46cm2.
In its second stage, PandaX will operate a total of 1.5 t LXe as WIMP target, with ⇥1 t xenon in the fiducial
volume. All sub-systems of the existing experiment, with the exception of the central TPC, are designed to
accommodate the larger target mass [83]. The DarkSide collaboration plans a 5 t LAr dual-phase detector,
with 3.3 t as active target mass, in the existing neutron and muon veto at LNGS. The aimed sensitivity is
10�47cm2 [96].

DARk matter WImp search with Noble liquids (DARWIN) is an initiative to build an ultimate, multi-ton
dark matter detector at LNGS [97, 93]. Its primary goal is to probe the spin-independent WIMP-nucleon
cross section down to the 10�49 cm2 region for ⇥50GeV/c2 WIMPs, as shown in Figure 3. It would thus
explore the experimentally accessible parameter space, which will be finally limited by irreducible neutrino
backgrounds. Should WIMPs be discovered by an existing or near-future experiment, DARWIN will measure
WIMP-induced nuclear recoil spectra with high-statistics, constraining the mass and the scattering cross
section of the dark matter particle [98, 99]. Other physics goals of DARWIN are the first real-time detection
of solar pp-neutrinos with high statistics and the search for the neutrinoless double beta decay [27]. The
latter would establish whether the neutrino is its own anti-particle, and can be detected via 136Xe, which
has a natural abundance of 8.9% in xenon.

10

The ultimate reach and extent of direct detection 
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background in direct dark matter detection experiments
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Abstract
Non-relatavistic E⌦ective Field Theory (EFT) provides a well-motivated theoretical framework

for determining nuclear responses to WIMP scattering events in direct dark matter detectors. This

formalism has been recently shown to admit a larger sample of nuclear responses, relative to the

traditional spin-independent/spin-dependent formalism that has been used for phenomenology of

direct dark matter detection. Here we compute the spectra from the di⌦erent WIMP-nucleon

EFT operators, and for each operator determine the WIMP mass and cross section that best

match the predicted solar and atmospheric spectra that results from coherent neutrino-nucleus

interactions. For operators with a WIMP mass and cross section that closely match the neutrino

background, we calculate the detector size at which the neutrino background becomes significant.

For many of the operators, we show that there is no WIMP mass and cross section that mimics the

neutrino backgrounds, implying that these operators can always be distinguished from the neutrino

backgrounds using energy deposition information alone.
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An issue that arises is whether tree level interactions with one type of operator as dominant become 
sub-dominant when loop/running effects are included. Does SD dominate?

Operator Uniqueness
4

(a) Tree level (b) Loop processes

FIG. 1: The tree and loop level contributions to scattering of
Majorana fermions through a Z boson. For all box diagrams,
the crossed box diagram is included in calculations but not
depicted. In the last diagram, a Higgs mediates the scattering
through a Z loop.

The bounds on SI cross sections are currently 5 – 7 or-
ders of magnitude higher than the SD ones, and this looks
to continue to be the case in the future. Therefore if any
of the SD interactions discussed above induce subleading
SI couplings, such an effect could potentially be visible
in a SI experiment. There are two sources for such ef-
fects. First, there are kinematically suppressed contri-
butions of tree level scattering that were ignored above.
These are easily estimated from Tables I–III given earlier.
Second, the tree-level SD interactions can induce SI cou-
plings at loop level. These are not as simple to estimate,
and should be calculated to confirm their effect.
Let us consider a Z (or Z ′ exchange) with a Majo-

rana fermion, as in Fig. 1a. While the dominant contri-
bution comes from Of

8 , also present is Of
6 , the anapole

coupling. We see that this gives rise to a SI interaction
suppressed by v2. Similarly, both the scalar exchange of
Fig. 2a and the equivalent diagram for vector exchange
give an anapole coupling after using Fiertz identities. A
fermion exchange of the same form in the case of vec-
tor DM produces Ov

7 as well as Ov
8 in the chiral limit,

which again mediates a v2 suppressed SI coupling. In all
of these cases, there is a SI scattering cross section no
more than O(106) smaller than the SD one, independent
of any other field content of a model. This means that
such interactions would be seen in SI experiments simul-
taneously or in the next generation of experiements after
they appear in SD ones. Only the pseudoscalar exchanges
evade this, as they lead to no v2 suppressed subleading
contributions to DM-nucleon scattering at all.
All the aforementioned interactions should also be

computed at the one-loop level. While these will be sup-
pressed by loop factors and extra couplings, they may
also generate SI interactions. For large enough couplings,
these loops might even give rise to interactions larger
than the kinematically-suppressed ones discussed above,
and so might be even more readily detectable.
Without making any further assumptions about the

underlying model, we can already identify diagrams
which will produce SI interactions at loop-level. For SD
interactions involving a t-channel exchange, at a mini-
mum, exchanging two mediators in a box diagram will
give rise to a SI interaction. For an s or u-channel pro-
cesses, a SI loop level contribution can come from a loop
with W or Z bosons exchanged between the quarks.

(a) Tree level (b) Loop processes

FIG. 2: The tree and loop level contributions to scattering of
Majorana fermions through a s-channel scalar.

Consider the exchange of a Z with axial couplings to
quarks. (We will discuss the case of a Z ′ shortly.) In
that case, the quark level operator for tree-level scatter-
ing (Fig. 1a) is

g22
2 cos2 θW

T q
3

Q

2

1

m2
Z

χ̄γµγ5χ q̄γµγ
5q , (1)

where Q is the coupling of the DM to the Z. Then the
DM-proton SD cross section generated is (see Apps. A
and B for details)

σχp
SD ≈ (1.5× 10−39 cm2)

(

Q

0.1

)2

, (2)

with the DM-neutron cross sections about 20% smaller.
In this case, two one-loop processes lead to SI effective
interactions: one with two Z exchanges, and a Higgs cou-
pling through a Z loop to the DM (Fig. 1b). We work in
the limit mq # mZ # mDM. (This limit is generally the
one in which the DM has the correct relic abundance in
models where the only coupling of the DM to the quarks
is through electroweak bosons, while foregoing the last
inequality only yields O(1) changes, see Ref. [30].) The
SI contribution to the effective coupling is then [30, 31]1

1

4π

g42 Q
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[

(T q
3 )

2

2m2
Z

+
1

4m2
h

]
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Taking a reference value of mh = 120 GeV, this interac-
tions will induce a SI cross section of

σχN
SI = (4× 10−47 cm2)

(

Q2

0.1

)2

. (4)

Asking that the SD signal be just beyond current SD
experimental bounds implies Q ∼ 0.3, giving a SI cross

1 In deriving this result, along with those following, we have set
several quark operators, such as

mq χ̄χq̄q, χ̄χq̄i/∂q,

4

3mDM

χ̄i∂µγνχ q̄i

(

i∂µγν + ∂νγµ
−

1

2
gµν /∂

)

q,

which all simplify to mq χ̄χ q̄q on shell, but can have different
nuclear matrix elements, to their on-shell value. In fact this
seems to yield a conservative estimate, as out of the nuclear
matrix elements known, the first one has the smallest value (for
a detailed discussion of these issues see Ref. [32]).
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to continue to be the case in the future. Therefore if any
of the SD interactions discussed above induce subleading
SI couplings, such an effect could potentially be visible
in a SI experiment. There are two sources for such ef-
fects. First, there are kinematically suppressed contri-
butions of tree level scattering that were ignored above.
These are easily estimated from Tables I–III given earlier.
Second, the tree-level SD interactions can induce SI cou-
plings at loop level. These are not as simple to estimate,
and should be calculated to confirm their effect.
Let us consider a Z (or Z ′ exchange) with a Majo-

rana fermion, as in Fig. 1a. While the dominant contri-
bution comes from Of

8 , also present is Of
6 , the anapole

coupling. We see that this gives rise to a SI interaction
suppressed by v2. Similarly, both the scalar exchange of
Fig. 2a and the equivalent diagram for vector exchange
give an anapole coupling after using Fiertz identities. A
fermion exchange of the same form in the case of vec-
tor DM produces Ov

7 as well as Ov
8 in the chiral limit,

which again mediates a v2 suppressed SI coupling. In all
of these cases, there is a SI scattering cross section no
more than O(106) smaller than the SD one, independent
of any other field content of a model. This means that
such interactions would be seen in SI experiments simul-
taneously or in the next generation of experiements after
they appear in SD ones. Only the pseudoscalar exchanges
evade this, as they lead to no v2 suppressed subleading
contributions to DM-nucleon scattering at all.
All the aforementioned interactions should also be

computed at the one-loop level. While these will be sup-
pressed by loop factors and extra couplings, they may
also generate SI interactions. For large enough couplings,
these loops might even give rise to interactions larger
than the kinematically-suppressed ones discussed above,
and so might be even more readily detectable.
Without making any further assumptions about the

underlying model, we can already identify diagrams
which will produce SI interactions at loop-level. For SD
interactions involving a t-channel exchange, at a mini-
mum, exchanging two mediators in a box diagram will
give rise to a SI interaction. For an s or u-channel pro-
cesses, a SI loop level contribution can come from a loop
with W or Z bosons exchanged between the quarks.

(a) Tree level (b) Loop processes

FIG. 2: The tree and loop level contributions to scattering of
Majorana fermions through a s-channel scalar.

Consider the exchange of a Z with axial couplings to
quarks. (We will discuss the case of a Z ′ shortly.) In
that case, the quark level operator for tree-level scatter-
ing (Fig. 1a) is

g22
2 cos2 θW

T q
3

Q

2

1

m2
Z

χ̄γµγ5χ q̄γµγ
5q , (1)

where Q is the coupling of the DM to the Z. Then the
DM-proton SD cross section generated is (see Apps. A
and B for details)

σχp
SD ≈ (1.5× 10−39 cm2)

(

Q

0.1

)2

, (2)

with the DM-neutron cross sections about 20% smaller.
In this case, two one-loop processes lead to SI effective
interactions: one with two Z exchanges, and a Higgs cou-
pling through a Z loop to the DM (Fig. 1b). We work in
the limit mq # mZ # mDM. (This limit is generally the
one in which the DM has the correct relic abundance in
models where the only coupling of the DM to the quarks
is through electroweak bosons, while foregoing the last
inequality only yields O(1) changes, see Ref. [30].) The
SI contribution to the effective coupling is then [30, 31]1

1

4π

g42 Q
2

cos4 θW mZ

[

(T q
3 )

2

2m2
Z

+
1

4m2
h

]

mq χ̄χ q̄q . (3)

Taking a reference value of mh = 120 GeV, this interac-
tions will induce a SI cross section of

σχN
SI = (4× 10−47 cm2)

(

Q2

0.1

)2

. (4)

Asking that the SD signal be just beyond current SD
experimental bounds implies Q ∼ 0.3, giving a SI cross

1 In deriving this result, along with those following, we have set
several quark operators, such as

mq χ̄χq̄q, χ̄χq̄i/∂q,

4

3mDM

χ̄i∂µγνχ q̄i

(

i∂µγν + ∂νγµ
−

1

2
gµν /∂

)

q,

which all simplify to mq χ̄χ q̄q on shell, but can have different
nuclear matrix elements, to their on-shell value. In fact this
seems to yield a conservative estimate, as out of the nuclear
matrix elements known, the first one has the smallest value (for
a detailed discussion of these issues see Ref. [32]).

SD SI

Once Higgs and/or Z-mixing arise, SI elastic scattering can be generated, dependent on the DM-
mediator coupling strength.

For vector exchange, the loop induced SI can be competitive, while SD remains dominant for 
pseudoscalar exchange 



For example, beginning with a pure axial-vector exchange (SD and kinematically unsuppressed)
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keep our discussion as general as possible, we will employ an e�ective field theory obtained
by integrating out heavy degrees of freedom above a certain high-energy scale M�. The
resulting e�ective operators can be classified by their behaviour in the non-relativistic limit.
The only four-fermion operators leading to unsuppressed SD interactions are the axialvector
operator OAX and the tensor operator OT [24]. We write these operators as

OAX =
1

M2
�
(⇤̄�µ�5⇤) (q̄�

µ�5q) , OT =
1

M2
�
(⇤̄⇥µ⇥⇤) (q̄⇥

µ⇥ q) , (2.1)

where the quark field q can be of arbitrary flavour and ⇥µ⇥ = i/2(�µ�⇥ � �⇥�µ).
Various other four-fermion operators give interactions which are suppressed in the non-

relativistic limit, either by a factor q2/m2
N ⇥ 1, where q is the momentum transfer in the

low-energy scattering and mN is the mass of the target nucleus, or by a factor v2 ⇥ 1, where
v is the velocity of the DM particle. We shall only consider two of these operators here,
namely the anapole operator OAN [25, 26] and the pseudotensor operator OPT . We define
them as

OAN =
1

M2
�
(⇤̄�µ�5⇤) (q̄�

µq) , OPT =
i

M2
�
(⇤̄⇥µ⇥�5⇤) (q̄⇥

µ⇥ q) . (2.2)

Unsuppressed SI interactions can, on the other hand, be obtained from the scalar operator
OS and the vector operator OV [27], which are of the form

OS =
mq

M3
�
CS (⇤̄⇤) (q̄ q) , OV =

1

M2
�
CV (⇤̄�µ⇤) (q̄�

µq) . (2.3)

Finally, SI scattering can also result from the magnetic and electric dipole-type interac-
tions [28, 29] encoded in

OM =
1

M2
�
CM (⇤̄⇥µ⇥⇤)F

µ⇥ , OE =
i

M2
�
CE (⇤̄⇥µ⇥�5⇤)F

µ⇥ , (2.4)

with Fµ⇥ denoting the regular electromagnetic field strength tensor. The coe⌅cient CM (CE)
can be interpreted as the magnetic (electric) dipole moment of the DM particle in units ofM2

� .
The resulting cross sections for DM-nucleon scattering via photon exchange are enhanced for
small momentum transfer, due to the propagator from the massless mediator.

Even though we employ a low-energy e�ective description in what follows, we should
briefly discuss ultraviolet (UV) completions for the above operators. The operators OAX and
OAN can arise from the s-channel exchange of a heavy spin-1 mediator. Additional operators,
such as OV can be absent either because of a suitable choice of couplings or because the
DM vector current vanishes (for example if the DM particle is a Majorana fermion). For
alternative models that give rise to OAN , we refer to [25, 26]. The operators OT and OPT ,
on the other hand, arise from Fierz rearrangements of e�ective operators like (⇤̄q)(q̄⇤) and
(⇤̄�5q)(q̄�5⇤), which result from integrating out a t-channel mediator (such as the heavy spin-
0 particles present in models of top-flavoured minimal flavour violating DM [30]). In this
case, other e�ective four-fermion operators will be present in the low-energy description. To
study the interplay of di�erent operators is beyond the scope of this paper. For our purposes
it is su⌅cient to note that there are UV completions which induce the operators OAX and
OAN , but not the scalar and vector operators, and UV completions which induce OT and
OPT , but not the electric and magnetic dipole operators.
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The loop process induces a contribution
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Figure 4. One-loop contributions to the DM-quark scattering amplitude induced by the operators
OAX and OAN . The black squares represent operator insertions.

interactions cannot currently probe the allowed parameter region. In fact, even if we neglect
the bounds from the LHC, the accessible parameter region is already excluded by constraints
on the DM magnetic dipole moment unless m� < 5GeV. We do not show the corresponding
plot for the pseudotensor operator, because in this case tree-level scattering is momentum
suppressed and therefore the corresponding bounds from direct detection experiments do not
give any interesting constraint. All relevant bounds for OPT are already shown in Fig. 2.
We note that the e�ective interactions OT and OPT cannot provide an explanation of the
DAMA/LIBRA modulation [4].

To conclude this section, let us consider the contribution of bottom and charm quarks
to DM dipole moments separately. These contributions are suppressed compared to the one
from top quarks because of the smaller quark masses, but they will receive larger logarithmic
corrections. For the tensor operator OT , we find numerically that the resulting bounds on
M� are weaker compared to the ones given in Tab. 1 by a factor of approximately 0.14 for
bottom quarks and a factor of approximately 0.12 for charm quarks. For the pseudotensor
operator OPT , the limits are weaker by a factor of 0.12 and 0.10, respectively. Consequently,
in the latter case both bottom- and charm-quark loops alone lead to bounds that significantly
exceed the constraints from both the LHC and direct detection.

4 Constraints on axialvector and anapole operators

We now turn to the discussion of the axialvector operator OAX and the anapole operator
OAN . In both cases, we consider the one-loop diagrams shown in Fig. 4. As has been observed
previously in the literature [14–17], the matrix element resulting from two insertions of the
operator OAX leads to SI scattering, which can be described by the operator OS defined
in (2.3).2 Assuming for definiteness m� < mt, the induced coe⇤cient reads (see App. A for
details)

CS ⇥ � 1

2�2

m�

M�
ln

M2
�

m2
�
, (4.1)

for q = u, d, s, c, b while for q = t the argument of the logarithm is M2
� /m

2
t . The same leading-

logarithmic result (though with opposite overall sign) holds if one considers two insertions of
OAN instead of OAX . As in the case of (3.1) the large logarithm appearing in (4.1) can be
resummed using RG methods. The e�ect of such a resummation turns out to have a minor
numerical e�ect of 10% or below. Since they do not change our final results qualitatively, we
will ignore RG e�ects in what follows.

2The Feynman diagrams in Fig. 4 also lead to a loop-suppressed contribution to OAX , but a correction to
the vector operator OV is not introduced.
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to the spin-independent operator
The SI scattering cross section for the scalar operator takes the form

⇥SI
N =

f2
N

�

m2
redm

2
N

M6
�

C2
S . (4.2)

The coe⌅cient fN is the e⇥ective DM-nucleon coupling, which is given by

fN ⇥
⌅

q=u,d,s

f (N)
Tq

+
4

27
f (N)
TG

, (4.3)

assuming M� < mt. The light-quark matrix elements f (N)
Tq

can either be determined phe-
nomenologically from baryon masses and meson-baryon scattering data or computed within

lattice QCD. We adopt the values f (N)
Tu

⇥ 0.021 and f (N)
Td

⇥ 0.038 from [17] for up and down

quarks and f (N)
Ts

⇥ 0.013 from [68] for strange quarks. The gluon matrix element is defined

as f (N)
TG

= 1�
⇤

q=u,d,s f
(N)
Tq

. For M� > mt, there is an additional contribution from the top
quark

�fN =
2

27
f (N)
TG

ln
�
M2

� /m
2
t

⇥

ln
�
M2

� /m
2
�

⇥ , (4.4)

which turns out to be numerically subleading. As a result the SI scattering cross section (4.2)
becomes essentially independent of the top-quark contribution and we find fp ⇥ fn ⇥ 0.21.

4.1 Bounds on the new-physics scale

The scattering cross section for SI interactions is strongly constrained by direct detection
experiments (see e.g. [2, 3, 6, 7, 10]). Inserting the bounds on ⇥SI

N into (4.2) one can constrain
CS and therefore, using (4.1), the scaleM� appearing inOAX andOAN . Our results are shown
in Fig. 5. For DM masses between 10GeV and 100GeV, we find bounds in the range of
[60, 125]GeV. For smaller values of m�, the bounds are suppressed due to the multiplicative
factor m� in (4.1), while for larger values the limits worsen because m� approaches M� and
consequently the logarithm in (4.1) tends to zero. In practice, we only show bounds that
satisfy M2

� /m
2
� > 2. Comparing these results to the constraints from LHC searches, we find

that the latter give far superior bounds, requiring M� � 700GeV.
As before we also calculate the thermal-averaged annihilation cross section into quarks.

For the axialvector operator OAX we find that s-wave annihilation into pairs of quarks is
helicity suppressed, so that one has to include the contribution from p-wave annihilation.
Explicitly, we get

aAX =
3

2�M4
�

⌅

f

m2
f

⇧
1� zf , bAX =

3m2
�

2�M4
�

⌅

f

⇧
1� zf

8� 22zf + 17z2f
24 (1� zf )

. (4.5)

In the case of the anapole operator OAN we observe that annihilation can only proceed via
p-wave. The corresponding coe⌅cients are given by

aAN = 0 , bAN =
m2

�

4�M4
�

⌅

f

⇧
1� zf (2 + zf ) . (4.6)

Our results (4.5) and (4.6) agree with those given in [42]. Since annihilation is suppressed
for both operators, M� has to be significantly smaller than for the tensor and pseudotensor
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giving the spin-independent cross-section
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Figure 4. One-loop contributions to the DM-quark scattering amplitude induced by the operators
OAX and OAN . The black squares represent operator insertions.

interactions cannot currently probe the allowed parameter region. In fact, even if we neglect
the bounds from the LHC, the accessible parameter region is already excluded by constraints
on the DM magnetic dipole moment unless m� < 5GeV. We do not show the corresponding
plot for the pseudotensor operator, because in this case tree-level scattering is momentum
suppressed and therefore the corresponding bounds from direct detection experiments do not
give any interesting constraint. All relevant bounds for OPT are already shown in Fig. 2.
We note that the e�ective interactions OT and OPT cannot provide an explanation of the
DAMA/LIBRA modulation [4].

To conclude this section, let us consider the contribution of bottom and charm quarks
to DM dipole moments separately. These contributions are suppressed compared to the one
from top quarks because of the smaller quark masses, but they will receive larger logarithmic
corrections. For the tensor operator OT , we find numerically that the resulting bounds on
M� are weaker compared to the ones given in Tab. 1 by a factor of approximately 0.14 for
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OAN . In both cases, we consider the one-loop diagrams shown in Fig. 4. As has been observed
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Figure 1. E�ective Field Theories used in this work. The fields mediating DM interactions with
the SM are integrated out at the scale �. The operators of the SM� EFT are evolved down to
the EWSB scale, where electroweak states are integrated out. There a matching onto the EMSM�

EFT is performed. Finally, the operators are evolved down to the nuclear scale probed by direct
searches.

models where loop e�ects are the dominant contribution.
The only DM interactions at the nuclear scale relevant for direct detection involve

the u, d, s quarks, gluons and photons. However, many motivated models have mediator
fields coupling the DM particle to heavy SM states and/or leptons. In these cases the
main contribution to direct detection rates comes from loop e�ects. Furthermore, di�erent
light quarks couplings yield direct detection cross sections which could di�er by orders of
magnitude, as Goodman and Witten showed in their seminal paper [72]. If the mediator
fields induce suppressed couplings to light quarks (e.g. DM velocity-suppressed and/or spin-
dependent interactions), loop-induced couplings to non-suppressed operators are again the
dominant contribution. The best current experimental limits come from XENON100 [73]
and LUX [74], and will be significantly improved soon by SCDMS, XENON1T, DARKSIDE
G2 and LZ (see for example Ref. [75]). They rule out electroweak processes with Z boson
exchange by orders of magnitude, and are therefore powerful enough to put constraints even
on loop-induced processes.

The paper is structured as follows. The bases of independent operators for both the
EFTs in Fig. 1 as well as matching conditions at the EWSB scale are discussed in Sec. 2.
The RGE equations in both EFTs are presented in Sec. 3, with details on loop calculations
contained in App. B. The reader only interested in our results, not in their derivation,
can safely jump from Sec. 2 to Sec. 4, where we present the applications of our results to
spin-independent searches. Consistently with the spirit of this work, we focus on examples
where the DM has either suppressed couplings to light quarks or couplings only to heavy
SM states. In these cases our loop e�ects are the main contribution to spin-independent
direct detection rates. In App. D we give a straightforward recipe that allows one to apply
our results and constrain UV complete fermion WIMP models that give rise to dimension
6 e�ective operators. Sec. 5 contains our conclusions.

2 The E�ective Theories for Singlet Fermion Dark Matter

Our conceptual starting point is a renormalizable model for a fermion DM field � that is a
SM gauge singlet. Interactions between � and the SM degrees of freedom ⇥SM are due to
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In order to fully exploit complementarity between direct detection and collider searches, one 
needs to properly connect the scale of the mediator mass to the nuclear scale

Integrate out 
Evolve

Integrate out 
Match

Evolve

the exchange of mediator fields ⇥. The typical mass of the ⇥’s is assumed to be greater than
the Fermi scale, and at such scales the full SM gauge symmetry SU(3)c ⇥SU(2)L ⇥U(1)Y
is unbroken. The Lagrangian of the UV complete model schematically reads

LUV = LSM + ⌅(i/⌃ �m⇤)⌅+ Lmed(⇧SM,⌅,⇥) . (2.1)

Integrating out the mediators at the scale � generates what we call SM⇤ EFT, containing
only ⌅ and the whole SM field content as its degrees of freedom. Many explicit realizations
for LUV exist in the literature, and they can all be matched onto the SM⇤ EFT at the
cuto� scale �. The regime of validity of this EFT extends all the way down to the EWSB
scale, where the heavy EW states (W , Z, h and t-quark) have to be integrated out and
the residual gauge symmetry is SU(3)c ⇥ U(1)em. For this reason we employ a di�erent
EFT below the EWSB scale, with only a SU(3)c ⇥ U(1)em gauge symmetry and 5 quark
flavors, which we call EMSM⇤ EFT (where EMSM stands for SM with only electromagnetic
interactions). In the remaining part of this Section we give a basis of independent operators
for both EFTs up to mass dimension 6, as well as a prescription for how to match SM⇤

EFT onto EMSM⇤ EFT at the EWSB scale.

2.1 SM⇤ E�ective Theory

Right below the mediator scale � all the SM degrees of freedom are in the spectrum, and
the SU(3)c ⇥SU(2)L ⇥U(1)Y SM gauge group is unbroken. Integrating out the mediators
⇥ in Eq. (2.1) generates an infinite tower of higher dimensional operators

LSM� = LSM + ⌅
�
i/⌃ �m⇤

⇥
⌅+

⇧

d>4

⇧

�

c(d)�

�d�4
O(d)

� . (2.2)

Our conventions for the SM Lagrangian LSM are summarized in App. A. In particular, since
SM fermions are in a chiral representation of the gauge group, we use the matter fields

FSM =
⌃
q(i)L , u(i)R , d(i)R , l(i)L , e(i)R , H

⌥
. (2.3)

The index i runs over the three di�erent SM fermion generations, and the gauge quantum
numbers are assigned as in Table 1. The index � runs over all gauge invariant operators
of a given dimension d, with the dimensionless Wilson coe⇥cients c(d)� encoding unresolved
dynamics. These coe⇥cients are renormalization-scale dependent, and we will quantify this
dependence in the next Section.

Without the need of specifying the responsible symmetry, we make sure the DM field
is stable by requiring that every operator contains at least two ⌅ fields. As an example,
if DM is stabilized by a Z2 symmetry, only operators with an even number of ⌅ fields are
allowed. Furthermore, our focus is on DM elastic scattering o� target nuclei, thus we only
need to consider operators with two DM fields. In our study we adopt the following basis
of DM bilinears O�⇤

1

O�⇤ =
⇤
⌅⌅ , ⌅⇥5⌅ , ⌅⇥µ⌅ , ⌅⇥µ⇥5⌅ , ⌅⇤µ⇥⌅

⌅
. (2.4)

1For e�ective operators up to dimension 6 and neglecting velocity suppressed e�ects this is a complete
basis.
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Another example of mixing was obtained for the Higgs portal interaction
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radiation would lead to a mono-jet plus missing energy signal. Given the sizable SM model

backgrounds, we expect the reach in both of these channels to be fairly limited. Of course,

the Higgs can be on-shell if 2M < mh, but this scenario is already strongly constrained by

limits to Higgs invisible decay signals. In the future, we expect the Higgs invisible decay

limits to continue to provide stronger limits in this regime than the collider direct search.

The rest of the paper is organized as following. In section 2, we carry out the chiral

rotation and present our parameterization of the model parameters. In section 3, we

present our analytic calculation of the annihilation cross section, and examine the validity

of our truncation of the EFT expansion. Our calculation of the limits from Higgs decay,

relic abundance, and direct detection are presented in section 4, section 5, and section 6,

respectively. Finally, we combine all the constraints and present the remaining parameter

space in section 7, before concluding in section 8. Appendix A contains discussion of some

selected results presented in a fashion complementary to the main text.

2 The E�ective Field Theory

We consider a convenient parametrization of the e⇥ective pre-EWSB mass-eigenstate La-

grangian coupling mixing scalar and pseudoscalar SM-singlet fermionic DM operators to

the SM via the Higgs portal H†H:1,2

L = LSM + ⇤̄
�
i/⌅ �M0

⇥
⇤+ ��1

⇤
cos ⇥ ⇤̄⇤+ sin ⇥ ⇤̄i�5⇤

⌅
H†H . (2.1)

As the couplings break chiral symmetry independently of the mass term, one would

expect M0 to be at least of order �, and since we are assuming that the non-SM operators

in (2.1) do not participate in EWSB, one also expects M0 and � are greater than the weak

scale, although we will allow M0 < ⇤v⌅ in this work.

After EWSB the Higgs field develops a vacuum expectation value ⇤v⌅ and the Higgs-

field content becomes (in the unitary gauge with ⇤v⌅ = 246 GeV)

H†H �⇥ ⇤v⌅2

2
+ ⇤v⌅h+

h2

2
. (2.2)

The Lagrangian then becomes

L = LSM + ⇤̄i/⌅⇤�
⇧
M0⇤̄⇤� ⇤v⌅2

2�

⇤
cos ⇥ ⇤̄⇤+ sin ⇥ ⇤̄i�5⇤

⌅⌃

+ ��1

⇤
cos ⇥ ⇤̄⇤+ sin ⇥ ⇤̄i�5⇤

⌅⇤
⇤v⌅h+

1

2
h2

⌅
. (2.3)

1Unless explicitly stated, we will consider the DM field ⇥ to be a Dirac fermion and point out di⇥erences

for the Majorana fermion case.
2The parametrization in terms of � and � is convenient for a numerical scan of the parameter space,

but we should caution the reader that the “EFT suppression” scale � in this parametrization is only

approximately the scale of new physics: the scalar (CP-conserving) and pseudoscalar (CP-violating) oper-

ators can logically have di⇥erent new physics scales associated with them and this gets mixed up in our

parametrization. This issue should be borne in mind when judging issues of perturbative unitarity.
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If we were to assume instead that the DM is Majorana, we would insert the conventional

factor of 1/2 in front of every fermionic bilinear; the subsequent analysis of the Lagrangian

is then unchanged from the Dirac case, modulo possible initial or final state symmetry

factors in computing amplitudes.

If sin ⇤ ⌅= 0, after EWSB it is necessary to perform a chiral rotation and field redefinition

to have a properly defined field with a real mass

⌃ ⇥ exp (i⇥5 �/2)⌃ ⇤ ⌃̄ ⇥ ⌃̄ exp (i⇥5 �/2) . (2.4)

Note that a chiral rotation by � = ⇧ would change the sign of the mass term in (2.3) and

also change the sign of the interaction terms. We can thus without loss of generality take

M0 > 0, so long as we preserve the relative signs between the mass term and the interaction

terms.3

After chiral rotation and field redefinition, we demand that the coe⇥cient of ⌃̄i⇥5⌃

vanish in order to go to the real mass basis; this determines the proper chiral rotation and

gives the mass of the field after EWSB in terms of the Lagrangian parameters (we define

the mass after EWSB, M , as the coe⇥cient of �⌃̄⌃ in the rotated field variables). The

requisite rotation is:

tan� =

⇤
⇧v⌃2

2�
sin ⇤

⌅ ⇤
M0 �

⇧v⌃2

2�
cos ⇤

⌅�1

. (2.5)

This of course determines sin2 � and cos2 �, but not the (common) sign of cos� and sin�:

cos2 � =

�
M0 �

⇧v⌃2

2�
cos ⇤

⇥2

�
M0 �

⇧v⌃2

2�
cos ⇤

⇥2

+

�
⇧v⌃2

2�

⇥2

sin2 ⇤

and (2.6)

sin2 � =

�
⇧v⌃2

2�

⇥2

sin2 ⇤

�
M0 �

⇧v⌃2

2�
cos ⇤

⇥2

+

�
⇧v⌃2

2�

⇥2

sin2 ⇤

. (2.7)

Using this rotation angle, the mass becomes

M = ±

⇧�
M0 �

⇧v⌃2

2�
cos ⇤

⇥2

+

�
⇧v⌃2

2�

⇥2

sin2 ⇤ . (2.8)

The signs of M , cos�, and sin� are common; we choose the common sign to be “+” for

M , cos� = +
⌥
cos2 �, and sin� = +

⌥
sin2 �. With this choice the Lagrangian becomes4

L = LSM + ⌃̄i/⌥⌃� ⌃̄M⌃+ ��1

�
⇧v⌃h+

1

2
h2

⇥⇤
cos ⌅ ⌃̄⌃+ sin ⌅ ⌃̄i⇥5⌃

⌅
, (2.9)

3In our parametrization this sign can be absorbed by a redefinition ⇥ � ⇥+ ⇤ leading back to the same

form. Thus, by suitable choice of the quadrant in which ⇥ lies, the form (2.3) is completely general with

M0 > 0.
4If we had chosen the opposite signs for M , cos�, and sin�, we could perform a further chiral rotation

by ⇤ and field definition to recover the sign conventions in (2.9).
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After EWSB:

A chiral rotation and field redefinition is needed for a real mass

1. sin ⇥ = 0, cos ⇥ = ±1: This would be a pure scalar interaction before EWSB. Af-

ter EWSB the interaction term is ± ��1 ⌅̄⌅
�
⌃v⌥h+ h2/2

⇥
and the mass is M =⇤⇤⇤M0 ⇥ ⌃v⌥2/2�

⇤⇤⇤. Thus, a pure scalar interaction before EWSB will remain a pure

scalar interaction with no admixture of pseudoscalar interactions. However, note

that the mass M is in general di⇥erent from M0.

2. cos ⇥ = 0, sin ⇥ = ±1: This would be a pure pseudoscalar interaction before EWSB.

After EWSB the interaction term is

��1

�

�⌦�
⌃v⌥2

2�M
⌅̄⌅±

⌘⇣⇣✏1�
⌃

⌃v⌥2

2�M

⌥2

⌅̄i�5⌅

 

�↵
�
⌃v⌥h+ h2/2

⇥
,

and in both cases M =

�

M2
0 +

⌅
⌃v⌥2

2�

⇧2

> ⌃v⌥2/2�. Even if the Higgs portal

coupling is purely pseudoscalar in the EW-symmetric Lagrangian, after EWSB a

scalar term proportional to ⌃v⌥2/2�M is generated.

3. M0 = 0 (or more generally, M0 ⇧ ⌃v⌥2/2�): In this case M = ⌃v⌥2/2�. If

M0 = 0, then cos ⇤ = �1 and sin ⇤ = 0, and the interaction term is purely scalar:

L ⌅ ���1
�
vh+ h2/2

⇥
⌅̄⌅. The chiral rotation that resulted in a real mass term

transforms the interaction into a purely scalar interaction irrespective of the value of

⇥. The only two parameters in this limit are M and �; one of the parameters may

be set by the requirement that freeze out results in the correct relic abundance.

Whether scalar, pseudoscalar, or a combination of both, the nature of the interactions

is of great importance: annihilation through a pure scalar interaction (sin ⇤ = 0) is velocity

suppressed, while elastic scattering of WIMPs with nucleons through a pure pseudoscalar

interaction (cos ⇤ = 0) is velocity suppressed.9 If both interactions are present, then the

(non-velocity-suppressed) interaction most important for direct detection (scalar) may not

be the same as the (non-velocity-suppressed) interaction most important for determining

the relic abundance (pseudoscalar).

We note finally that the form of the Lagrangian in terms of the chirally rotated field

variables is only appropriate to use ‘below’ the electroweak phase transition. We restrict

ourselves to considering DM lighter than 3 TeV where direct detection constraints from

LUX [29] are available, so this condition is always satisfied since such DM decouples at

T � O(200) GeV (the freeze-out temperature TF ⇤ M/xF with xF ⇤ 20�25 [36]). ‘Above’

the phase transition, the unrotated form should be used in the freeze-out computation,

while the rotated form would be relevant to compute all present-day low-energy observables:

we do not explore this regime further in this paper.

9Strictly speaking, the interaction is momentum-transfer suppressed, but for elastic scattering this leads

to velocity suppression.
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Figure 6. These colormaps represent interpolated values of ⌅�N
SI /⌅LUX

95% CL UL, with the solid black
line showing the equality of the computed cross section and the LUX limit [29] (note that 95% CL
UL from LUX are only available up to 2 TeV from DMTools [57]; we have extrapolated the limit
linearly up to 3 TeV — this is justified since the limit ⇥ 1/nDM ⇥ M and since in the data the
limit is already scaling approximately linearly in this region). Redder points “above” the black line
are excluded, bluer points “below” the black line are allowed. For reference, the dashed black line
is the cognate of the solid black line, except for the 90% CL UL from LUX: it shows the equality
of the computed cross-section and this limit; no other 90% CL UL contours are shown (90% CL
UL are available up to 3 TeV). Note that the mass region near M ⇤ mh/2 is allowed for any value
of ⇥: this is the resonant Higgs portal scenario [18]. The singly hatched region is where � < ⌅v⇧.
The doubly hatched region at low mass is where no � value can be found to obtain the correct relic
density.

�� ⇥ 220 km/s in the earth rest-frame; a proper treatment would require an averaging over

the DM velocity distribution already in the extraction of the cross-section exclusion bound

from LUX data, and not a posteriori once a bound is extracted, as there are additional

velocity-dependent factors which enter the conversion from the di⇥erential recoil rate in

the detector to a cross-section bound (see e.g. ref. [56]).

The total cross-section is

⌅�N
SI =

⌅|M|⇧
16⇤(M +MN )2

=
1

⇤

⇤
µ�N

m2
h

⌅2⇤fN
�

⌅2 ⇧
cos2 ⇥ +

1

2

�µ�N

M

⇥2
�2�

⌃
(6.4)

= 4.7� 10�38cm2

⇤
M

�

⌅2⇤ 1 GeV

0.94 GeV +M

⌅2 ⇧
cos2 ⇥ +

1

2

�µ�N

M

⇥2
�2�

⌃
. (6.5)

We will compare this to the latest LUX upper limits [29] on the spin-independent

WIMP-nucleon cross-section as supplied in numerical form by DMTools [57]. Results are

shown in figure 6 for both Dirac and Majorana DM.

7 Combined Limits

The combined limits are shown in figure 7 for Dirac and Majorana DM. The inserts are

regions where cos2 ⇥ is very close to zero and the EFT DM–Higgs coupling is nearly com-
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i
R O(i)

�e ⇥�µ⇥ eiR�µe
i
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O(i)
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i
R

Table 3. Basis of dimension 6 operators for the SM� EFT. The first two columns have three
di�erent replicas, corresponding to the SM generations. We consider a generic ⇥�µ⇥, which can be
either a vector (�µ = �µ) or an axial (�µ = �µ�5) DM current or any linear combination of them.

where we do not assume any flavor violation The index i runs over the three di�erent
fermion generations, thus the above vector has 5 ⇥ 3 + 1 = 16 components. The double-
arrow derivative entering the Higgs current reads

H†⌅⇧D µH ⇤ H†(DµH)� (DµH
†)H , (2.8)

with the covariant derivative defined as in Eq. (A.3) of App. A.

Lorentz invariant operators can be obtained by contracting the currents in Eq. (2.7)
with a DM current ⇥�µ⇥, where both vector �µ = �µ and axial �µ = �µ�5 currents are
possible. This gives a total of 16 ⇥ 2 = 32 independent operators. However, since ⇥ is
a singlet, the DM current ⇥�µ⇥ is invariant under RG evolution, thus we can study two
16-dimensional sectors separately. The basis for dimension 6 operators with a specific DM
current ⇥�µ⇥ is shown in Table 3. For future convenience, we introduce a 16-dimensional
vector of Wilson coe⇥cients

CT
SM�

⇤
�
c(1)�q c(1)�u c(1)�d c(1)�l c(1)�e c(2)�q c(2)�u c(2)�d c(2)�l c(2)�e c(3)�q c(3)�u c(3)�d c(3)�l c(3)�e c�H

⇥
, (2.9)

where c� is associated with the operator O� in Table 3. The solid double line divides DM
interactions with the Higgs from the ones with SM fermions. The solid single lines divide
di�erent SM generations and within each generation quarks and leptons are divided by a
dashed line.

We stress that the dimension 6 operator

O�B = g�
cB
⇥2

⇥�µ⇥ ⇤⇥B⇥µ (2.10)

does not need to be included in our list since it can be expressed as a linear combination
of the ones listed in Table 3 by using classical equation of motion [94] for the hypercharge
field strength (see Eq. (A.10)). More specifically, the e�ect of this operator can be absorbed
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Wilson coefficients are evolved

�L,R �L,R�L,R
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�L,R�L,R �L,R�L,R �L,R�L,R

Figure 2. External legs corrections for SM fermions.

H H HH HHH

Wi,B Wi,B �L,R

�L,R

Figure 3. External legs for SM Higgs.

3 Renormalization Group Evolution

We present the complete one-loop RG equations in both EFTs. Here, we only show Feynman
diagrams and quote final results. Regularization and renormalization at one loop in both
EFTs are detailedly discussed in App.B. As explained in the previous Section, no interesting
loop e�ect takes place among the dimension 5 operators, besides the well known heavy quark
threshold contribution from the Higgs portal [81]. Thus we focus on dimension 6 operators.

3.1 From the messenger scale to the EWSB scale

The evolution of the Wilson coe⇥cients in Eq. (2.9) is described by the di�erential equation

d CSM�

d lnµ
= �SM�CSM� , (3.1)

where µ is the renormalization scale and �SM� is the anomalous dimension matrix. Our
goal here is to fill out the 16� 16 = 256 entries of the matrix �SM� .

We start our one-loop analysis in this theory by considering external legs corrections.
Since the DM field is a gauge singlet, these contributions only involve SM fields and inter-
actions. We perform the field renormalizations

⇥i ⇥ Z1/2
�i

⇥i , H ⇥ Z1/2
H H , (3.2)

where ⇥i is any SM fermion, and we do it in such a way to subtract the infinite part from
the residue of each one-loop propagator. There are only two possible sources for this e�ect,
which are gauge and Yukawa interactions. As is well know, the Higgs quartic coupling does
not induce a one-loop contribution to the wave-function renormalization. The relevant
Feynman diagrams are shown in Figs. 2 and 3 for fermion and Higgs fields, respectively.

When considering vertex corrections, one still has to deal only with these two inter-
actions. We organize the presentation by fixing the external legs of a specific amplitude,
and then identifying all the possible one-loop contributions. In other words, we fix a given
e�ective operator from the ones in Table 6 and then look for operators mixing into it.
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Symbol Operator

OMF ⌅⇤µ�⌅Fµ�

OEF ⌅⇤µ�⌅ ⇥µ�⇥⇤F ⇥⇤

Table 5. Basis of dimension 5 operators for the EMSM� E�ective Theory.

Symbol Operator Symbol Operator Symbol Operator

O(i)
�V u ⌅�µ⌅ui�µui O(i)

�V d ⌅�µ⌅ di�µdi O(i)
�V e ⌅�µ⌅ ei�µei

O(i)
�Au ⌅�µ⌅ui�µ�5ui O(i)

�Ad ⌅�µ⌅ di�µ�5di O(i)
�Ae ⌅�µ⌅ ei�µ�5ei

Table 6. Basis of dimension 6 operators for the EMSM� E�ective Theory. Each operator has
three di�erent replicas, corresponding to the three SM generations. The DM bilinear can have both
vector or axial currents, namely � = {V,A}, where V µ = �µ and Aµ = �µ�5.

The top quark is not in the spectrum, thus we count 6⇥ 3� 2 = 16 independent currents.
Also in this case they can be contracted with either a vector or an axial DM current, giving
a total of 32 independent operators. Each 16 dimensional sector shown in Table 6 can be
studied separately. In analogy to Eq. (2.9), we define the vector

CT
EMSM�

=
�
c(1)�V u c(1)�V d c(2)�V u c(2)�V d c(3)�V d c(1)�V e c(2)�V e c(3)�V e c(1)�Au c(1)�Ad c(2)�Au c(2)�Ad c(3)�Ad c(1)�Ae c(2)�Ae c(3)�Ae

⇥
.

(2.22)
Here, the solid double line is used to divide DM couplings to a vector or an axial SM current,
whereas single solid lines divide quarks from leptons.

The redundant dimension 6 operator in this case is

O�F = e
cF
⇥2

⌅�µ⌅ ⇧�F�µ . (2.23)

Equations of motion for the electromagnetic field strength (see Eq. (A.12)) translates this
operator into a linear combination of the ones listed in Table 6, which equivalently amounts
to this shift of the Wilson coe⇥cients for the operators with SM vector currents

c(i)�V u ⇤ c(i)�V u � e2QucF , (2.24)

c(i)�V d ⇤ c(i)�V d � e2QdcF , (2.25)

c(i)�V e ⇤ c(i)�V e � e2QecF . (2.26)

The operators with SM axial currents are not a�ected, since the photon only couples to
vector currents.

2.3 Matching the two EFTs at the EWSB scale

We conclude this Section by giving matching conditions between the two theories, namely
the relations between the Wilson coe⇥cients in Eq. (2.22) and those in Eq. (2.9), both
evaluated at the EWSB scale, which is smaller than ⇥ in this setup. As we will see shortly,
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Figure 7. Vertex corrections in the EMSM� EFT induced by SM four-fermion interactions.
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⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

,

(3.5)
with the hypercharges as in Eq. (B.7).

3.2 From the EWSB scale to the nuclear scale

The Wilson coe⇥cients given in Eq. (2.22) for the EFT below the EWSB scale evolve
according to

d CEMSM�

d lnµ
= �EMSM�CEMSM� . (3.6)

We now discuss how to obtain the 16 � 16 anomalous dimension matrix �EMSM� . The
external leg corrections only come from the gauge sector. For strong interactions they are
identical to the ones in the SM� EFT, and for electromagnetic interactions they can be
easily obtained from the analogous hypercharge diagrams. Their e�ect is again to cancel
out against the associated vertex corrections.

Also in this case there are two classes of vertex corrections. The first ones are due
to the SM four-fermion interactions, in the way we show in Fig. 7. This diagram in the
EMSM� EFT is the analogous of the correction to cH discussed in the SM� EFT, but the Z

boson is integrated out in this phase of the theory. Despite the fact that these diagrams are
suppressed by the Fermi constant, we keep them to be consistent with the analysis above
the EWSB scale, since their contribution is proportional to GF m2

⇥ ⇥ ⇥2
⇥.

The second e�ect is the radiative correction to the Wilson coe⇥cient cF of the redun-
dant operator in Eq. (2.23). The diagrams are analogous to the fermion loop in Fig. 6, but
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Arrive at Wilson coefficients at the nuclear scale

4 Applications to Spin-Independent Searches

In Sec. 3 we presented the full 16⇥16 anomalous dimension matrices describing the one-loop
RG evolution for dimension 6 operators above and below the EWSB scale. As promised
in the introduction, these details can be skipped by a reader only interested in our final
results. For the benefit of such a reader, we now briefly summarize the RG procedure.

The boundary conditions for the RG system are the SM� EFT Wilson coe⇥cients at
the cuto� �. In a generic UV complete model with mediators heavier than the weak scale,
they are obtained by integrating out the mediator fields. Then we evolve them down to the
EWSB scale, which we take equal to the Z boson mass. It is convenient to introduce the
following dimensionless variable related to the renormalization scale µ,

t ⇤ ln

⇥
µ

mZ

⇤
. (4.1)

In this notation the matching is performed at t = 0, whereas the Wilson coe⇥cient c� are
specified at the cuto� scale, t� = ln [�/mZ ]. The RG evolution in the SM� EFT is obtained
by solving the system of di�erential equations

d CSM�

dt
= �SM�CSM� , 0 ⌅ t ⌅ t� , (4.2)

CSM�(t�) = c� , (4.3)

with the Wilson coe⇥cients vector CSM� defined in Eq. (2.9), and the explicitly expression
for the anomalous dimension matrix �SM� given in Sec. 3.1. Once at t = 0, we perform the
matching between the two theories as described in Sec. 2.3. The subsequent RG evolution
for the Wilson coe⇥cients CEMSM� defined in Eq. (2.22) is described by

d CEMSM�

dt
= �EMSM�CEMSM� , tN ⌅ t ⌅ 0 , (4.4)

with the explicit �EMSM� given in Sec. 3.2 and tN = ln [1GeV/mZ ] ⇧ �4.51. The outcome
of this three-step procedure is the array of Wilson coe⇥cients at the nuclear scale cN . We
only perform linear operations on the Wilson coe⇥cients, therefore we have

cN = U�c� . (4.5)

The �-dependent evolution matrix U� is derived in App. C and for a user-friendly recipe
we refer to App. D.

The rest of this Section is devoted to applying Eq. (4.5) to limits from direct detection
experiments. We focus on spin-independent searches, since they have much stronger bounds,
and this has two implications. First, we need to consider e�ective operators with DM vector
currents ⌅�µ⌅. For pure elastic scattering this operator is non vanishing only for Dirac
fermions, but our results are also valid for inelastic scattering of two splitted Majorana
states [95]. Second, matrix elements of SM fermion currents have only contributions from
valence quarks in the target nuclei, therefore the direct detection cross section at zero
momentum transfer and low DM velocities reads

⇤SI
N =

m2
�m

2
N

(m� +mN )2 ⇥�4

���c(1)V V u(A+ Z) + c(1)V V d(2A� Z)
���
2
. (4.6)
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Figure 8. Experimental limits from direct detection for the D5 and D7 operators. In the top-left
(right) panel we consider only D5 (D7) switched on at the scale �, and plot the lower bounds
on � from XENON100 (solid, red) [73] and LUX (solid, blue) [74], as well as projected limits
from SCDMS (dot-dashed, green), XENON1T (dot-dashed, purple), DARKSIDE G2 (dot-dashed,
magenta), LZ (dot-dashed, brown) [75]. The dotted orange line gives the correct thermal relic
density. In the bottom panel we fix m� and plot the region allowed by LUX in the (cD5, cD7) plane
for three di�erent values of �. The faded bands, which only constrain the vector coupling cD5,
show the limits which would be obtained ignoring our analysis. We also plot the thermal relic lines
whenever they are in the parameter space region under consideration.

The top-right panel of Fig. 8 shows the analogous case where only D7 is switched on
at the scale �, with cD7 = 1. The limits on � are weaker than the case of D5, but still in
the multi-TeV region [68]. For both D5 and D7 we also plot the line that gives a correct
thermal relic density, obtained using the annihilation cross section in Ref. [98]. Current
limits exclude thermal relics with mass m� � 3TeV for D5, with a potential of excluding
DM masses of the order of 10TeV by forthcoming experiments. The weaker limits for D7
are still in the range m� � 200GeV, which can be improved to reach TeV masses in the
future.

Both upper panels are for either c5 or c7 equal to 1. To relax this assumption one cannot
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Here, c(1)V V u and c(1)V V d are the first two component of the vector defined in Eq. (2.22),
whereas A, Z and mN are the mass number, atomic number and mass of the target nucleus
N , respectively.

In what follows, we consider specific choices of Wilson coe⇥cients c� at the cuto� scale
and we evolve them down to the nuclear scale as in Eq. (4.5). The running of the Yukawa
couplings above the EWSB scale is performed according to Ref. [96] and of the quark masses
below mZ using the results in Ref. [97]. We compare the predicted rate as in Eq. (4.6) to
the experimental limits, and extract bounds on the Wilson coe⇥cients. Our results are
model independent, in the sense that every UV complete model generating that specific set
c� when matched on the SM� is subject to our constraints.

4.1 D5 and D7 operators

The connection between di�erent DM negative searches is often expressed in terms of limits
on the coe⇥cients for the e�ective operators introduced in Ref. [25]. For a vector current
of a fermion WIMP, the relevant operators involving quarks are

LD5 =
cD5

�2
⇥�µ⇥

⌅
⌃

i

ui�µu
i +

⌃

i

di�µd
i

⇧
, (4.7)

LD7 =
cD7

�2
⇥�µ⇥

⌅
⌃

i

ui�µ�5u
i +

⌃

i

di�µ�5d
i

⇧
. (4.8)

We now connect this description to the notation used in this paper, and explore the conse-
quences of connecting EFT scales.

Keeping the complementarity among di�erent searches in mind (e.g. between collider
and direct searches as in Ref. [25]), we take the operators in Eqs. (4.7) and (4.8) as defined
at the EFT cuto� �. In other words these are operators in the SM� EFT. Considering
flavor universal coupling to SM quarks, D5 and D7 are reproduced by this set of Wilson
coe⇥cients

cT�
��
D5,D7

=
⇥
cL cR cR 0 0 cL cR cR 0 0 cL cR cR 0 0 0

⇤
, (4.9)

where

cD5 =
cL + cR

2
, (4.10)

cD7 =
�cL + cR

2
. (4.11)

Our results are shown in the four panels of Fig. 8. In the top-left panel we consider
the case where only D5 is switched on, and plot current and projected experimental limits
in the (m�,�) plane for cD5 = 1. As is well known, quite high scales for the mediator
masses are necessary to be consistent with experimental exclusion bounds. We gain valuable
information from this plot: given the extremely strong constraints on this operator, we are
still likely to get useful limits on the scale � in other cases where the dominant contribution
to direct detection rates is via D5 generated by SM loop e�ects. We deal with these cases
in the next subsections, but we first complete the discussion of the (D5, D7) set.
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Figure 9. Same as Fig. 8 but for DM vector current interactions with heavy quarks.

to vector currents. In the bottom-right panel we consider isospin violation by coupling the
DM only to right handed quarks (i.e. cQ = 0) and identifying the allowed region in the
(cU , cD) plane. The bands are close to the vertical line going through cU = 0, since the
e�ect is driven by the top Yukawa.

4.3 Leptophilic Dark Matter

Another interesting possibility are leptophilic DM models

cT�
��
Leptoph.

=
⇥
0 0 0 cl ce 0 0 0 cl ce 0 0 0 cl ce 0

⇤
, (4.13)

where for simplicity we consider flavor universal coupling to leptons. In such models there
are many sources of couplings to light quarks currents. The Yukawa coupling of the �

induces a mixing into the Higgs current, which in turn leads to a coupling to light quarks
when the Z is integrated out. Hypercharge (electromagnetic) interactions above (below)
the EWSB scale also induce mixing onto light quark currents.
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Leading order QCD loop effects on the Wilson coefficients for colored mediator exchanges have been 
calculated for Majorana, scalar, and real vector boson dark matter

J. Hisano, R. Nagai, and N. Nagata, JHEP 1505 (2015), arXiv:1502.02244
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Figure 8: (a) Each contribution to the WIMP-proton e�ective coupling fp as functions
of the mediator mass M�q. DM model adopted here is the same as Fig. 7. Upper red
(lower blue) line shows the contribution of the scalar-type (twist-2-type) operators. For
the twist-2 contribution, solid and dashed lines show the results with and without the
renormalization e�ects, respectively. (b) WIMP-proton scattering cross section ⇥p as a
function of M�q. Solid and dashed lines show the results with and without the renormal-
ization e�ects, respectively. In both plots, WIMP mass is set to be M = 200 GeV.

6 Conclusion and discussion

So far we have discussed a way of evaluating the WIMP-nucleon scattering cross section
at the leading order in �s based on the e�ective theoretical approach. We have considered
a Majorana fermion, real scalar and vector bosons, and presented formulation for each
case. Further, using a particular example with a Majorana fermion, we have shown
that the renormalization e�ects may change the twist-2 contribution by more than 50%
when the colored mediators are much heavier than the electroweak scale, which results in
modification to the WIMP-nucleon scattering cross section by O(10)%.

As shown in Fig. 7, the calculation of the twist-2 contribution su�ers from O(10)%
uncertainty due to the perturbation in �s. It is possible to reduce the uncertainty by
going beyond the leading-order calculation. In fact, we have already had the higher-order
results for the RGEs and the matching conditions at each quark threshold, as commented
in Sec. 2.4. To complete the next-to-leading order computation, however, we further need
the higher-order matching conditions between the full and e�ective theories at the input
scale. We defer the calculation as future work. In addition, we expect that future lattice
QCD simulations will much improve the determination of the quark content in nucleon.
These two developments will enable us to evaluate the WIMP-nucleon scattering cross
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of the mediator mass M�q. DM model adopted here is the same as Fig. 7. Upper red
(lower blue) line shows the contribution of the scalar-type (twist-2-type) operators. For
the twist-2 contribution, solid and dashed lines show the results with and without the
renormalization e�ects, respectively. (b) WIMP-proton scattering cross section ⇥p as a
function of M�q. Solid and dashed lines show the results with and without the renormal-
ization e�ects, respectively. In both plots, WIMP mass is set to be M = 200 GeV.

6 Conclusion and discussion

So far we have discussed a way of evaluating the WIMP-nucleon scattering cross section
at the leading order in �s based on the e�ective theoretical approach. We have considered
a Majorana fermion, real scalar and vector bosons, and presented formulation for each
case. Further, using a particular example with a Majorana fermion, we have shown
that the renormalization e�ects may change the twist-2 contribution by more than 50%
when the colored mediators are much heavier than the electroweak scale, which results in
modification to the WIMP-nucleon scattering cross section by O(10)%.

As shown in Fig. 7, the calculation of the twist-2 contribution su�ers from O(10)%
uncertainty due to the perturbation in �s. It is possible to reduce the uncertainty by
going beyond the leading-order calculation. In fact, we have already had the higher-order
results for the RGEs and the matching conditions at each quark threshold, as commented
in Sec. 2.4. To complete the next-to-leading order computation, however, we further need
the higher-order matching conditions between the full and e�ective theories at the input
scale. We defer the calculation as future work. In addition, we expect that future lattice
QCD simulations will much improve the determination of the quark content in nucleon.
These two developments will enable us to evaluate the WIMP-nucleon scattering cross
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An NLO calculation for WINO dark matter (and a 
generic SU(2)L dark matter) was carried out
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Figure 6: Wino-proton SI scattering cross section. Blue dashed and red solid lines rep-
resent LO and NLO results, respectively, with corresponding bands show perturbative
uncertainties. Gray band shows uncertainty resulting from the input error. Yellow shaded
area corresponds to the region in which neutrino background overcomes DM signal [32].

than 1%, and thus well controlled compared to the scalar contribution.

3.3 Scattering cross section

Finally, we evaluate the wino-nucleon SI scattering cross section, which is given by

⇥N
SI =

4

�

�
MmN

M +mN

⇥2

|fN
scalar + fN

twist2|2 . (3.54)

We plot ⇥p
SI as function of the wino mass in Fig. 6. Additionally we indicate the parameter

region where the neutrino background dominates the the DM-nucleon scattering [32] and
then it becomes hard to detect the DM signal in the DM direct detection experiments (yel-
low shaded). Here we estimate each error by varying the scalar and twist-2 contributions
within their uncertainties evaluated above. The result shows that the large uncertainty in
the LO computation is significantly reduced once the NLO QCD corrections are included,
which is now smaller than that from the input error. In the large DM mass limit, the SI
scattering cross section converges to a constant value,

⇥p
SI = 2.3 +0.2

�0.3
+0.5
�0.4 � 10�47 cm2 , (3.55)

where the first and second terms represent the perturbative and input uncertainties, re-
spectively. As seen from Fig. 6, ⇥p

SI has little dependence on the DM mass; its variation
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The theoretical uncertainty is much smaller and the central 
cross-section value is about 70% larger than for LO 
corrections alone.

J. Hisano, K. Ishiwata, and N. Nagata, JHEP 1506 (2015), arXiv:1504.00915
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FIG. 1: Left: Relevant neutrino fluxes to the background of direct dark matter detection experiments: Solar, atmospheric, and
di�use supernovae [22–24]. Right: Neutrino background event rates for a germanium based detector. The black dashed line
corresponds to the sum of the neutrino induced nuclear recoil event rates. Also shown is the similarity between the event rate
from a 6 GeV/c2 WIMP with a SI cross section on the nucleon of 4.4� 10�45 cm2 (black solid line) and the 8B neutrino event
rate.

neutrino-nucleus cross section with the neutrino flux as

dR�

dEr
= MT ⇥

⇤

A

fA

⌅

Emin
�

dN

dE�

d⇤(E� , Er)

dEr
dE� (4)

where dN
dE�

corresponds to the neutrino flux. As it has
been shown in Ref. [17], the neutrino-nucleon elastic
interaction is theoretically well-understood within the
Standard Model, and leads to a coherence e�ect imply-
ing a neutrino-nucleus cross section that approximately
scales as the atomic number (A) squared when the mo-
mentum transfer is below a few keV. At tree level, the
neutrino-nucleon elastic scattering is a neutral current
interaction that proceeds via the exchange of a Z boson.
The resulting di�erential neutrino-nucleus cross section
as a function of the recoil energy and the neutrino en-
ergy is given by [18]:

d⇤(E� , Er)

dEr
=

G2
f

4⇥
Q2

⇤mN

�
1� mNEr

2E2
�

⇥
F 2
SI(Er) (5)

where mN is the nucleus mass, Gf is the Fermi coupling
constant and Q⇤ = N � (1 � 4 sin2 �⇤)Z is the weak
nuclear hypercharge with N the number of neutrons, Z
the number of protons, and �⇤ the weak mixing angle.
The presence of the form factors describes the loss of
coherence at higher momentum transfer and is assumed
to be the same as for the WIMP-nucleus SI scattering.
Interestingly, as the CNS interaction only proceeds
through a neutral current, it is equally sensitive to all
active neutrino flavors.

In Fig. 1 (left panel), we present all the neutrino fluxes
that will induce relevant backgrounds to dark matter
detection searches. The di�erent neutrino sources con-
sidered in this study are the sun, which generates high
fluxes of low energy neutrinos following the pp-chain [19]

and the possible CNO cycle [20, 21], di�use supernovae
(DSNB) [22] and the interaction of cosmic rays with the
atmosphere [23] which induces low fluxes of high energy
neutrinos. As a summary of the neutrino sources used
in the following, we present in Table II the di�erent
properties of the relevant neutrino families such as: the
maximal neutrino energy, the maximum recoil energy for
a Ge target nucleus and the overall flux normalization
and uncertainty. In order to most directly compare to
the analysis of Ref. [10], we use the standard solar model
BS05(OP) and the predictions on the atmospheric and
the DSNB neutrino fluxes from [23] and [22] respectively.

The di�erent neutrino event rates are shown in Fig. 1
(right panel) for a Ge target. We can first notice that
the highest event rates are due to the solar neutrinos
and correspond to recoil energies below 6 keV. Indeed,
the 8B and hep neutrinos dominate the total neutrino
event rate for recoil energies between 0.1 and 8 keV
and above these energies, the dominant component is
the atmospheric neutrinos. Also shown, as a black solid
line, is the event rate from a 6 GeV/c2 WIMP with
a SI cross section on the nucleon of 4.4 ⇥ 10�45 cm2.
We can already notice that for this particular set of
parameters (m⇥,⇤SI), the WIMP event rate is very
similar to the one induced by the 8B neutrinos. As
discussed in the next section, this similarity will lead
to a strongly reduced discrimination power between
the WIMP and the neutrino hypotheses and therefore
dramatically a�ect the discovery potential of upcoming
direct detection experiments.

Note that in this study we do not consider neutrino-
electron scattering, even though it is predicted to pro-
vide a substantial signal in future dark matter detectors.
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FIG. 1: Left: Relevant neutrino fluxes to the background of direct dark matter detection experiments: Solar, atmospheric, and
di�use supernovae [22–24]. Right: Neutrino background event rates for a germanium based detector. The black dashed line
corresponds to the sum of the neutrino induced nuclear recoil event rates. Also shown is the similarity between the event rate
from a 6 GeV/c2 WIMP with a SI cross section on the nucleon of 4.4� 10�45 cm2 (black solid line) and the 8B neutrino event
rate.
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corresponds to the neutrino flux. As it has
been shown in Ref. [17], the neutrino-nucleon elastic
interaction is theoretically well-understood within the
Standard Model, and leads to a coherence e�ect imply-
ing a neutrino-nucleus cross section that approximately
scales as the atomic number (A) squared when the mo-
mentum transfer is below a few keV. At tree level, the
neutrino-nucleon elastic scattering is a neutral current
interaction that proceeds via the exchange of a Z boson.
The resulting di�erential neutrino-nucleus cross section
as a function of the recoil energy and the neutrino en-
ergy is given by [18]:
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where mN is the nucleus mass, Gf is the Fermi coupling
constant and Q⇤ = N � (1 � 4 sin2 �⇤)Z is the weak
nuclear hypercharge with N the number of neutrons, Z
the number of protons, and �⇤ the weak mixing angle.
The presence of the form factors describes the loss of
coherence at higher momentum transfer and is assumed
to be the same as for the WIMP-nucleus SI scattering.
Interestingly, as the CNS interaction only proceeds
through a neutral current, it is equally sensitive to all
active neutrino flavors.

In Fig. 1 (left panel), we present all the neutrino fluxes
that will induce relevant backgrounds to dark matter
detection searches. The di�erent neutrino sources con-
sidered in this study are the sun, which generates high
fluxes of low energy neutrinos following the pp-chain [19]

and the possible CNO cycle [20, 21], di�use supernovae
(DSNB) [22] and the interaction of cosmic rays with the
atmosphere [23] which induces low fluxes of high energy
neutrinos. As a summary of the neutrino sources used
in the following, we present in Table II the di�erent
properties of the relevant neutrino families such as: the
maximal neutrino energy, the maximum recoil energy for
a Ge target nucleus and the overall flux normalization
and uncertainty. In order to most directly compare to
the analysis of Ref. [10], we use the standard solar model
BS05(OP) and the predictions on the atmospheric and
the DSNB neutrino fluxes from [23] and [22] respectively.

The di�erent neutrino event rates are shown in Fig. 1
(right panel) for a Ge target. We can first notice that
the highest event rates are due to the solar neutrinos
and correspond to recoil energies below 6 keV. Indeed,
the 8B and hep neutrinos dominate the total neutrino
event rate for recoil energies between 0.1 and 8 keV
and above these energies, the dominant component is
the atmospheric neutrinos. Also shown, as a black solid
line, is the event rate from a 6 GeV/c2 WIMP with
a SI cross section on the nucleon of 4.4 ⇥ 10�45 cm2.
We can already notice that for this particular set of
parameters (m⇥,⇤SI), the WIMP event rate is very
similar to the one induced by the 8B neutrinos. As
discussed in the next section, this similarity will lead
to a strongly reduced discrimination power between
the WIMP and the neutrino hypotheses and therefore
dramatically a�ect the discovery potential of upcoming
direct detection experiments.

Note that in this study we do not consider neutrino-
electron scattering, even though it is predicted to pro-
vide a substantial signal in future dark matter detectors.
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FIG. 9: Mass limits for vector mediator models (left panel) and axial-vector models (right pannel) at 14 and 100 TeV colliders
using the multi-leg and a single-leg analysis. We also show the neutrino wall limit of the direct detection.
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FIG. 10: Mass limits for scalar mediator models (left panel) and pseudo-scalar models (right pannel) at 14 and 100 TeV colliders
using the multi-leg and a single-leg analysis. The neutrino wall a�ecting the direct detection experiments is shown in the left
plot and the indirect detection limit for pseudo-scalars using FERMI-LAT data [68] is shown as a tiny speck in the lower left
of the plot on the right.

at the same time the collider searches are are primarily sensitive to the scalar-to-top couplings5. For this parameter
choice we note that the collider constraints lie below the neutrino wall for 1 ab�1, as the FCC collects more data the
wall can be breached. As an example we plot the expected limit given 100 ab�1 of FCC data for the scalar mediator.

Finally in Figure 11 we show the plots in terms of the spin-dependent and the spin-independent DM–neutron cross
sections for a more traditional comparison of collider limits in terms of our simplified models with the limits/projections
from the direct and indirect detection experiments. We compare the results in the ⇥, mDM plane. The general pattern
of Figs. 9-10 is reproduced, with the �-wall for the spin-independent cases providing the strongest projected bounds.
For the axial-vector and scalar mediators(with TeV-scale mediator masses as chosen in Fig. 11) our LHC contours
cross the neutrino wall limits of direct detection experiments for mDM

<� 10 GeV. At 100 TeV we find that collider
bounds for the axial mediator are the strongest and universally below the �-wall limit of direct detection, whilst for
these parameter choices the scalar mediator and the �-wall are comparable. In the pseudo-scalar case the last plot in

5 We note that in the previous figures the �-wall curve corresponds to the magenta curve.

P. Harris, V.V. Khoze, M. Spannowsky, and C. Williams, 1509.02904
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choice we note that the collider constraints lie below the neutrino wall for 1 ab�1, as the FCC collects more data the
wall can be breached. As an example we plot the expected limit given 100 ab�1 of FCC data for the scalar mediator.

Finally in Figure 11 we show the plots in terms of the spin-dependent and the spin-independent DM–neutron cross
sections for a more traditional comparison of collider limits in terms of our simplified models with the limits/projections
from the direct and indirect detection experiments. We compare the results in the ⇥, mDM plane. The general pattern
of Figs. 9-10 is reproduced, with the �-wall for the spin-independent cases providing the strongest projected bounds.
For the axial-vector and scalar mediators(with TeV-scale mediator masses as chosen in Fig. 11) our LHC contours
cross the neutrino wall limits of direct detection experiments for mDM

<� 10 GeV. At 100 TeV we find that collider
bounds for the axial mediator are the strongest and universally below the �-wall limit of direct detection, whilst for
these parameter choices the scalar mediator and the �-wall are comparable. In the pseudo-scalar case the last plot in

5 We note that in the previous figures the �-wall curve corresponds to the magenta curve.

P. Harris, V.V. Khoze, M. Spannowsky, and C. Williams, 1509.02904
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FIG. 11: Collider exclusion contours interpreted in terms of the spin-dependent and spin-independent cross sections plotted
as functions of the dark matter mass. For the vector, axial-vector and scalar mediator models indicate the neutrino wall
limit of the direct detection experiments. For the pseudo-scalar mediator model we show the indirect detection limits (using
FERMI-LATdata [68]).

Fig. 11 demonstrates that both 14 TeV and 100 TeV collider bounds provide a multi-order of magnitude improvement
over the current ID reach.

IV. CONCLUSIONS

We have presented a comprehensive study of the forthcoming and future hadron collider limits and projections at 14
and 100 TeV for searchers of new physics associated with the Dark Matter sector. The dark sectors are characterised
in this work in terms of four generic classes of simplified models Eqs. (1)-(4) where interactions between the Standard
Model partons and the ‘invisible’ dark matter sector particles are described by four basic types of mediators: scalar,
pseudo-scalar, vector or axial-vector particles. The dark matter particles we consider are produced via s-channel
mediator exchange, see Fig. 1. For collider searches of dark particles to be e�ective, two body decays of mediators
produced on-shell should be kinematically possible, which requires that mMED > 2mDM, as can be seen in e.g. Figs. 7.
It is then the ability to produce the mediator particle itself that underlines the e⇤ciency of collider searches for dark
matter, and not so much the particular species of Dark Matter the mediator decays into, in so far as these decays
are kinematically allowed. Importantly, there is no requirement that once produced, the mediators should decay
predominantly into the cosmologically stable Dark Matter, instead (and arguably more plausibly) they can have
significant branching ratios for decay into any dark sector particles which are long-lived on collider scales. Hence we
do not impose the relic density constraints on the dark particle production in our simplified model treatment.

Collider limits on the signal cross-sections for the cases of the 14 TeV LHC and the 100 TeV FCC are summarised
in Fig. 6 for all four mediator types. From these we have determined the collider reach on the (mDM, mMED) mass
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FIG. 11: Collider exclusion contours interpreted in terms of the spin-dependent and spin-independent cross sections plotted
as functions of the dark matter mass. For the vector, axial-vector and scalar mediator models indicate the neutrino wall
limit of the direct detection experiments. For the pseudo-scalar mediator model we show the indirect detection limits (using
FERMI-LATdata [68]).

Fig. 11 demonstrates that both 14 TeV and 100 TeV collider bounds provide a multi-order of magnitude improvement
over the current ID reach.

IV. CONCLUSIONS

We have presented a comprehensive study of the forthcoming and future hadron collider limits and projections at 14
and 100 TeV for searchers of new physics associated with the Dark Matter sector. The dark sectors are characterised
in this work in terms of four generic classes of simplified models Eqs. (1)-(4) where interactions between the Standard
Model partons and the ‘invisible’ dark matter sector particles are described by four basic types of mediators: scalar,
pseudo-scalar, vector or axial-vector particles. The dark matter particles we consider are produced via s-channel
mediator exchange, see Fig. 1. For collider searches of dark particles to be e�ective, two body decays of mediators
produced on-shell should be kinematically possible, which requires that mMED > 2mDM, as can be seen in e.g. Figs. 7.
It is then the ability to produce the mediator particle itself that underlines the e⇤ciency of collider searches for dark
matter, and not so much the particular species of Dark Matter the mediator decays into, in so far as these decays
are kinematically allowed. Importantly, there is no requirement that once produced, the mediators should decay
predominantly into the cosmologically stable Dark Matter, instead (and arguably more plausibly) they can have
significant branching ratios for decay into any dark sector particles which are long-lived on collider scales. Hence we
do not impose the relic density constraints on the dark particle production in our simplified model treatment.

Collider limits on the signal cross-sections for the cases of the 14 TeV LHC and the 100 TeV FCC are summarised
in Fig. 6 for all four mediator types. From these we have determined the collider reach on the (mDM, mMED) mass
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Figure 6. Upper panel: bounds on the SD scattering cross section from tree-level processes compared
to the bound from loop-induced SI interactions (solid red curve) for the axialvector operator OAX .
Lower panel: corresponding limits on the SI reference cross section for the anapole operator OAN .

4.2 Bounds on the DM scattering cross section

Even though Fig. 5 seems to indicate that loop-induced SI scattering cross sections do not
lead to relevant constraints on the scale M�, it is interesting to consider cases where the
bounds from LHC searches and the relic density requirement do not apply, for example
low-mass asymmetric DM interacting with the SM via a mediator that is light compared
to LHC scales [42]. In this case, only direct detection experiments can give lower limits
on M�. In this section, we will therefore directly compare the limits from loop-induced SI
interactions with the bounds from tree-level SD interactions (for the axialvector operator
OAX) and momentum suppressed interactions (for the anapole operator OAN ) to determine
which contribution gives the most stringent constraint.

For the axialvector operatorOAX , the constraints onM� derived above can be translated
into bounds on the SD scattering cross section using

⇥SD
N = a2N

3

�

m2
red

M4
�

, (4.7)
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Here we will not repeat this analysis, referring to [4] for a more general discussion of �MED; we will instead adopt
a reduced simplified description where the width is set to its minimal computed value �MED,min which amounts to
larger signal cross-sections (we will also check that �MED,min < mMED/2). For our simplified models we have

�MED,min = ��� +

Nf⇤

i=1

Nc �qiqi (7)

where ��� is the mediator decay rate into two DM fermions, and the sum is over the SM quark flavours. Depending
on the mediator mass, decays to top quarks may or may not be open i.e. mMED should be > 2mt for an open decay.
The partial decay widths of vector, Axial-vector, scalar and pseudo-scalar mediators into fermions are given by,

�V
ff

=
g2f (m

2
MED + 2m2

f )

12�mMED

⌅

1�
4m2

f

m2
MED

, �A
ff

=
g2f (m

2
MED � 4m2

f )

12�mMED

⌅

1�
4m2

f

m2
MED

(8)

�S
ff
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g2f
8�
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�
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4m2
f

m2
MED

⇥ 3
2

, �P
ff

=
g2f
8�

mMED

�
1�

4m2
f

m2
MED

⇥ 1
2

(9)

where mf denotes masses of either SM quarks q or DM fermions ⇥ and the coupling constant gf denotes either gSM
or gDM.

g

g

�

�̄

g

X

t

t

t

t

q

q̄

�̄

�

g

q
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FIG. 1: Representative Feynman diagrams for gluon and quark induced mono-jet plus MET processes. The mediator X can
be a scalar, pseudo-scalar, vector or axial-vector particle. The gluon fusion process involves the heavy quark loop which we
compute in the microscopic theory, while the quark-anti-quark annihilation is a tree-level process at leading order.

In this paper we will focus on jets plus missing energy searches, generalizing our earlier results [4] from the 8-14
TeV to 100 TeV colliders. The analysis in [4] was based on a mono-jet plus missing transverse energy (MET, or /ET )
signature – a popular choice used in searches for new physics including supersymmetry, extra dimensions and dark
matter at the Tevatron and the LHC [20–32]. Here we will update the experimental analysis techniques to take into
account both the leading and trailing jets in the final state to present a more realistic idea of potential limits. Hence
we will update our LHC 14 results [4] accordingly to provide a fair benchmark.

Depending on the choice for the mediator field di⇥erent production mechanisms will contribute. For vectors and
axial-vectors the dominant mechanism is the quark-antiquark annihilation at tree-level. For scalars and pseudo-scalars
on the other hand, the loop-level gluon fusion processes are more relevant. The representative Feynman diagrams for
both channels are shown in Fig. 1. In comparing DM collider searches with direct and indirect detection experiments
it is important to keep in mind that our collider processes and limits continue to be applicable for discovery of any dark
sector particles escaping the detector. Hence dark particles produced at colliders do not have to be the cosmologically
stable dark matter.

Finally we would like to comment on the possible origin and the UV consistency of the simplified models (1)-(4).
The scalar and pseudo-scalar messenger fields in our simplified models (1)-(2) are singlets under the Standard Model.
How can this be reconciled with the fact that they are supposed to be Higgs-like, with the Higgs being an SU(2)L
doublet? In fact, the simplified models (1)-(2) can arise from two types of the more fundamental theories. The
simplest theories of the first type are the two-Higgs-doublet models [33]. In this case the mediators would originate
from the second Higgs doublet. The other type of models giving rise to our simplified models are even simpler in the
sense that scalar mediators (and the dark sector particles they are coupled to) can be genuinely neutral under the
SM but mix with the neutral component of the Higgs. Following the Higgs discovery there is a renewed interest in
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3.3 Results

For the t-channel model, the current limits are compared with the 14 TeV mono-W reach
in Fig. (4) for fu,d = 1. We also include current constraints on the parameter space from
mono-jet and multi-jet searches, which are adopted from Ref. [47]. The region labelled
“stability” is forbidden as it corresponds to parameters where m⇤ > m� and thus the DM
would be unstable to decay. For the mono-lepton search, we find that both the current 8
TeV exclusion and 14 TeV reach are not competitive with existing constraints from mono-jet
searches. Owing to small signal size and large backgrounds, it is too weakly constraining to
be featured on our t-channel summary plot. For the mono fat jet search, we find that the
8 TeV exclusions are also not competitive with existing constraints from mono-jet searches.
We show the 14 TeV reach in the mono fat jet channel with 3000 fb�1 of data, which is able
to probe a region of parameter space unconstrained by existing mono-jet results.
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Figure 4. Parameter space for the t-channel colored scalar model, for fu,d = 1. Exclusions are shown
as shaded regions for the mono and multi jet at 8 TeV, and the reach is shown for the mono fat jet
at 14 TeV 3000 fb�1.

For the s-channel model, our results are shown in Fig. (5) for three choices of the Z ⇥

couplings to DM and quarks, as labelled. The relevant mono-jet, di-jet and LUX [82] direct
detection limits shown are adopted from Ref. [83]. Note that the LUX limit assumes the
actual (sub-critical) contribution to the DM relic density implied by the model parameters,
rather than assuming a full relic density. We also include perturbativity limits for the s-
channel model. As has been recently shown in [83, 84], the s-channel model with axial
couplings may have perturbativity and unitarity issues without the inclusion of additional new
physics such a dark Higgs scalar which generates the DM and Z ⇥ mass. Perturbative unitarity

implies that the Z ⇥ cannot be much lighter than the DM, and should satisfy m⇤ �
⇤
4⇥
g�

mZ� .
This is shown on the s-channel plots as the perturbativity region. While this is not a concrete
exclusion, it is an important issue for this region of parameter space.

For the mono-lepton search, the current 8 TeV exclusion is too weak to be shown on the
plots, while the 14 TeV reach is shown only for gq = g⇤ = 1, as it is very weakly constraining
for the other coupling choices. As with the t-channel model, the mono fat jet channel has
better sensitivity than the mono-lepton channel, and the 14 TeV reach is shown for each of the
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Interaction Tables
3

DM bilinear SM fermion bilinear

fermion DM f̄f f̄�5f f̄�µf f̄�µ�5f

⇤̄⇤ ⇥v ⇥ v2, ⇥SI ⇥ 1 ⇥v ⇥ v2, ⇥SD ⇥ q2 � �
⇤̄�5⇤ �v � 1, �SI � q2 �v � 1, �SD � q4 � �

⇤̄�µ⇤ (Dirac only) � � ⇥v ⇥ 1, ⇥SI ⇥ 1 �v � 1, �SD � v2
�

⇤̄�µ�5⇤ � � ⇥v ⇥ v2, ⇥SI ⇥ v2� �v � 1, �SD � 1

TABLE II. A summary of the annihilation and elastic scattering behavior for all tree-level, s-channel annihilation
diagrams, for cases in which the DM is a fermion (see Eqs. 2 and 3). Because Majorana DM cannot couple to a
vector current, this table encodes 14 (rather than 16) possible simplified models. Only those scenarios in which the
low-velocity annihilation cross section is not suppressed (⇥v ⇥ 1) can the DM potentially account for the observed
gamma-ray excess. For elastic scattering, we indicate whether the constraint on the spin-independent (SI) or spin-
dependent (SD) cross section is currently more restrictive, and whether that cross section is unsuppressed (⇥1), or
is suppressed by powers of momentum or velocity. Any entry with a “�” symbol indicates that there is no particle
representation that at tree-level can mediate the interaction indicated. We use green to indicate a model that satisfies
all of our criteria, and blue to indicate a model that allows for unsuppressed annihilation, but is ruled out by direct
detection constraints. Models presented in black cannot account for the observed gamma-ray excess.

or through the s-channel exchange of a spin-1 medi-
ator, Vµ:

L ⇤
�
a ⇤̄�µ(g⇥v + g⇥a�

5)⇤+ f̄�µ(gfv + gfa�
5)f

⇥
Vµ.
(3)

In each case, the couplings are defined such that
a = 1 (1/2) for DM in the form of a Dirac (Majorana)
fermion. For Majorana fermions, g⇥v is required to
be zero. We will return to the case of t-channel an-
nihilations in Sec. IV.

The basic results of this section are summarized in
Table II. Of the fourteen linearly independent combi-
nations that link the DM with SM fermions (counting
Dirac and Majorana DM separately), there are eight
in which the low-velocity annihilation cross section is
not suppressed. We denote these models in the table
with the shorthand ⇥v ⇥ 1. These models are capable
of accounting for the observed gamma-ray excess.

In Figs. 1 and 2, we show additional information
for each of these eight interaction combinations. In
the lower portion of each frame, we show as a function
of the mediator mass the product of the couplings
that is required in order to produce a thermal relic
density in agreement with the measured cosmologi-
cal DM abundance (for the relevant cross sections,
see Appendices B 1 through B4). In the upper por-
tion of each frame, we show the low-velocity annihi-
lation cross section that is predicted for that choice
of couplings. If the solid curve falls between the two
horizontal dashed lines, the model in question can
account for the overall normalization of the Galac-
tic Center’s gamma-ray excess. In generating these
plots we have assumed that spin-1 mediators couple
equally to all SM fermions, and that spin-0 media-

tors couple to SM fermions proportionally to their
mass (as motivated by minimal flavor violation [43]).
Unless otherwise stated, we will maintain these as-
sumptions throughout this paper.

We also assume that all DM annihilations proceed
to pairs of SM fermions. If the mass of the mediator
is less than that of the DM particles, however, anni-
hilations could potentially be dominated instead by
the production of mediator pairs. The fraction of DM
annihilations that yield non-SM particles depends on
the ratio of the mediator’s couplings to the DM and
to SM fermions. While we consider the exploration of
such scenarios to be beyond the scope of the present
study, we acknowledge that such models provide an
additional degree of freedom that could allow them to
account for the Galactic Center’s gamma-ray excess.

Also shown in Figs. 1 and 2 are the current con-
straints from direct detection experiments (shown as
dotted lines). For the details of the calculation of
the DM’s elastic scattering cross section with nuclei,
see Appendix A 2. For the instances in which the
spin-independent cross section provides the dominant
constraint, we apply the results of the LUX Collorab-
oration [42]. For those in which spin-dependent scat-
tering with neutrons is more restrictive, we compare
our results to the constraints of XENON100 [44].3 At
present, the most stringent of these constraints only
rules out one of the eight scenarios shown, in which
the DM is a Dirac fermion annihilating through a

3 In cases in which the DM’s spin-dependent cross section with
protons is much greater than that with neutrons, COUPP
could potentially provide the most stringent limit [45].
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DM bilinear SM fermion bilinear

scalar DM f̄f f̄�5f f̄�µf f̄�µ�5f

⇧†⇧ ⌅v ⇤ 1, ⌅SI ⇤ 1 �v � 1, �SD � q2 � �
⇧†

�
�µ⇧ (complex only) � � ⌅v ⇤ v2, ⌅SI ⇤ 1 ⌅v ⇤ v2, ⌅SD ⇤ v2⇥

vector DM f̄f f̄�5f f̄�µf f̄�µ�5f

XµX†
µ ⌅v ⇤ 1, ⌅SI ⇤ 1 �v � 1, �SD � q2 � �

X⇥�⇥X†
µ � � ⌅v ⇤ v2, ⌅SI ⇤ q2 · v2⇥ ⌅v ⇤ v2, ⌅SD ⇤ q2

TABLE III. A summary of the annihilation and elastic scattering behavior for all tree-level, s-channel annihilation
diagrams, for cases in which the DM is a real or complex scalar or a real or complex vector (see Eqs. 4-7). Only in those
scenarios in which the low-velocity annihilation cross section is not suppressed (⌅v ⇤ 1) can the DM potentially account
for the observed gamma-ray excess. For elastic scattering, we indicate whether constraints on the spin-independent
(SI) or spin-dependent (SD) cross section is currently more restrictive, and whether that cross section is unsuppressed
(⇤ 1), or is suppressed by powers of momentum or velocity. Any entry with a “�” symbol indicates that there is no
particle representation that at tree-level can mediate the interaction indicated. We use green to indicate a model
that satisfies all of our criteria, blue to indicate a model that allows for unsuppressed annihilation, but is ruled out by
direct detection constraints. Models presented in black cannot provide the observed gamma-ray excess.

in this section assume that spin-1 mediators couple
equally to all SM fermions, and that spin-0 mediators
couple to SM fermions proportionally to their mass.

Next, we consider DM in the form of a complex
or real vector, Xµ, interacting either through the ex-
change of a spin-0 mediator:

L ⌅
⇤
aµXXµX†

µ + f̄(⇥fs + ⇥fpi�
5)f

⌅
A, (6)

or a spin-1 mediator:

L ⌅
⇤
a gX

�
X†⇥�⇥X

µ + h.c.
⇥

(7)

+ f̄�µ
�
gfv + gfa�

5
⇥
f
⌅
Vµ,

where a = 1 (1/2) for DM as a complex (real) vector.
The conclusions regarding vector DM are very

similar to those found for scalar DM. This can be seen
by comparing the upper and lower portions of Ta-
ble III. Again, we find four cases with an annihilation
cross section that is not velocity-suppressed: those
in which the DM annihilates through the s-channel
exchange of a spin-0 mediator (see Appendices B 9
through B12). Again, two of these four cases are
compatible with direct detection constraints: those
with pseudoscalar, rather than scalar, interactions.
We show the results for these models in Fig. 5.

To date, mono-b projected constraints have only
been presented for the case of fermionic DM. For this
reason, the figures in this and the following section do
not include such constraints. Such constraints should
be qualitatively similar for the cases of scalar or vec-
tor DM as they are for the fermion case. In particu-
lar, we do not expect current mono-b projections to

restrict any of the models under consideration. For
scalar DM, however, we do plot the constraints (90%
CL) from hadronic mono-W/Z plus missing energy
searches by the ATLAS Collaboration [48]. We re-
mind the reader that the same caveats associated
with the validity of e⇥ective field theory hold for
this channel as in the cases of mono-jet and mono-
b searches.

It is possible that some of these statements could
be modified somewhat in a case in which DM anni-
hilations proceed through a finely-tuned resonance.
For instance, if there existed a scalar with a mass of
⇤70 GeV and a narrow width (� ⇧ 1 GeV), it might
also be possible for scalar DM to e⇧ciently annihilate
through that mediator while also evading direct de-
tection constraints [55]. From the top portions of the
upper left frames of Figs. 4 and 5, however, we see
that in this case the low-velocity annihilation cross
section is pulled away from the required range of val-
ues, making it unlikely that resonance annihilation is
responsible for the observed gamma-ray excess.

To summarize this section, we find that DM in
the form of a scalar or a vector could account for
the gamma-ray excess only if it annihilates through
a spin-0 mediator with pseudoscalar interactions. All
other s-channel annihilation diagrams lead to either a
velocity-suppressed annihilation cross section, or pre-
dict an elastic scattering cross section with nuclei that
is in conflict with direct detection constraints.
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DM Mediator Interaction Assessment

Dirac Fermion Spin-0 1± �5 �v � 1, LHC OK

Dirac Fermion Spin-1 �µ(1± �5) �v � 1, LHC OK

Majorana Fermion Spin-0 1± �5 ⇤v ⇤ v2

Majorana Fermion Spin-1 �µ(1± �5) ⇤v ⇤ v2

Real Scalar Spin-1/2 1± �5 ⇤v ⇤ 1, LHC Excluded

Complex Scalar Spin-1/2 1± �5 ⇤v ⇤ v2

Real Vector Spin-1/2 �µ(1± �5) �v � 1, LHC OK

Complex Vector Spin-1/2 �µ(1± �5) �v � 1, LHC OK

TABLE IV. A summary of the annihilation and elastic scattering behavior for all tree-level, t-channel annihilation
diagrams which do not lead to a scalar elastic scattering cross section with nuclei. Only those scenarios in which the
low-velocity annihilation cross section is not suppressed (⇤v ⇤ 1) can the DM account for the observed gamma-ray
excess. We use green to indicate a model that satisfies all of our criteria, blue to indicate a model that allows for
unsuppressed annihilation, but that is ruled out by LHC constraints. All of the models shown evade current constraints
from direct detection. Models presented in black are not capable of generating the observed gamma-ray excess.

nitude of the scattering cross-section is roughly the
same. There are important caveats that apply to the
first two of these these statements.

Just as in the case of s-channel annihilation mod-
els, we evaluate the elastic scattering cross section
of the DM with nuclei by integrating out the media-
tor. In the t-channel case, we then perform a Fierz
transformation to convert the resulting contact op-
erator into a sum of the s-channel interactions de-
scribed in the preceding sections. If we start with
any single interaction form in isolation (scalar, pseu-
doscalar, axial, or vector), this procedure invariably
generates a non-negligible amount of all possible in-
teraction forms [60]. In particular, in each of these
cases, we find an unsuppressed scalar contact inter-
action. As demonstrated in Figs. 4 and 5, scalar con-
tact interactions with couplings proportional to quark
mass already significantly exceed the constraints from
LUX. This excludes the majority of t-channel models
that we can consider.

The exception to this conclusion arises when one
considers interactions which include both scalar and
pseudoscalar couplings, or vector and axial cou-
plings. In particular, a t-channel annihilation dia-
gram with interactions of the form 1 + �5 (as ob-
tained for ⇥s = ⇥p) leads to an e�ective operator
that is a sum of vector and axial interactions, such as
(1/2)⌅̄�µ(1��5)⌅ f̄�µ(1+�5)f . Similarly, a t-channel
annihilation diagram with an interaction of the form
�µ(1 + �5) (corresponding to gv = ga) transforms to
yield an e�ective operator of the form �µ(1� �5). In
both of these cases, no scalar term appears, and the
leading direct detection constraint comes from the
vector interaction.

If this coupling applies to all quarks, the vector
interaction would still induce a very large scatter-
ing cross section, incompatible with direct detection
constraints. If the t-channel mediator couples only to
b-quarks, however, the elastic scattering cross section
will be loop-suppressed, allowing it to evade the cur-
rent limits. In particular, the elastic scattering cross
section in this case is dominated by the exchange of
a photon between the bottom-mediator loop and the
nucleus. This behavior is found, for example, in the
flavored DM models of Refs. [56, 61].

In Table IV, we summarize the characteristics of
the eight t-channel models with interaction forms ca-
pable of suppressing the DM’s scalar elastic scatter-
ing cross section with nuclei. Of these eight mod-
els, four provide a viable explanation for the gamma-
ray excess. In Fig. 6, we show the results for the
four of these models that cannot account for this sig-
nal. In three of these cases (Majorana fermion DM
with interactions of the forms (1+ �5) or �µ(1 + �5),
and complex scalar DM with a (1 + �5) interaction),
the low-velocity annihilation cross section is too small
to provide the observed gamma-rays. In the fourth
case (real scalar DM with a (1 + �5) interaction),
the LHC constraint on heavy bottom partners (as
derived in Ref. [57] from the results of the CMS
sbottom search [62]) can only be satisfied if the cou-
plings are very large and non-perturbative. In each
frame, the horizontal dot-dashed line represents the
approximate point at which the couplings become
non-perturbative (where the coe⌅cients of an oper-
ator of the form (1 + �5)/2 or �µ(1 + �5)/2 exceeds
three).

The four viable t-channel models are shown in



Interaction Tables
14

Model
DM Mediator Interactions

Elastic Near Future Reach?

Number Scattering Direct LHC

1 Dirac Fermion Spin-0 ⌅̄�5⌅, f̄f ⇥SI ⇤ (q/2m⇥)2 (scalar) No Maybe

1 Majorana Fermion Spin-0 ⌅̄�5⌅, f̄f ⇥SI ⇤ (q/2m⇥)2 (scalar) No Maybe

2 Dirac Fermion Spin-0 ⌅̄�5⌅, f̄�5f ⇥SD ⇤ (q2/4mnm⇥)2 Never Maybe

2 Majorana Fermion Spin-0 ⌅̄�5⌅, f̄�5f ⇥SD ⇤ (q2/4mnm⇥)2 Never Maybe

3 Dirac Fermion Spin-1 ⌅̄�µ⌅, b̄�µb ⇥SI ⇤ loop (vector) Yes Maybe

4 Dirac Fermion Spin-1 ⌅̄�µ⌅, f̄�µ�5f
⇥SD ⇤ (q/2mn)2 or

Never Maybe
⇥SD ⇤ (q/2m⇥)2

5 Dirac Fermion Spin-1 ⌅̄�µ�5⌅, f̄�µ�5f ⇥SD ⇤ 1 Yes Maybe

5 Majorana Fermion Spin-1 ⌅̄�µ�5⌅, f̄�µ�5f ⇥SD ⇤ 1 Yes Maybe

6 Complex Scalar Spin-0 ⇤†⇤, f̄�5f ⇥SD ⇤ (q/2mn)2 No Maybe

6 Real Scalar Spin-0 ⇤2, f̄�5f ⇥SD ⇤ (q/2mn)2 No Maybe

6 Complex Vector Spin-0 B†
µB

µ, f̄�5f ⇥SD ⇤ (q/2mn)2 No Maybe

6 Real Vector Spin-0 BµBµ, f̄�5f ⇥SD ⇤ (q/2mn)2 No Maybe

7 Dirac Fermion Spin-0 (t-ch.) ⌅̄(1± �5)b ⇥SI ⇤ loop (vector) Yes Yes

7 Dirac Fermion Spin-1 (t-ch.) ⌅̄�µ(1± �5)b ⇥SI ⇤ loop (vector) Yes Yes

8 Complex Vector Spin-1/2 (t-ch.) X†
µ�

µ(1± �5)b ⇥SI ⇤ loop (vector) Yes Yes

8 Real Vector Spin-1/2 (t-ch.) Xµ�µ(1± �5)b ⇥SI ⇤ loop (vector) Yes Yes

TABLE V. A summary of the simplified models identified in our study as capable of generating the observed gamma-
ray excess without violating the constraints from colliders or direct detection experiments. In the last two columns,
we indicate whether the model in question will be within the reach of near future direct detection experiments (LUX,
XENON1T) or of the LHC. Models with an entry of “Never” predict an elastic scattering cross section with nuclei that
is below the irreducible background known as the “neutrino floor”. The “Model Number” given in the first column
provides the key for the model points shown in Fig. 9.

eventually be detected, but would require extremely
large detectors, beyond the next generation currently
being planned (LZ, PICO250, etc.). Fermionic DM
annihilating through a combination of pseudoscalar
and scalar couplings could also be detected on this
timescale. Extending direct detection sensitivity be-
yond that level, however, will be limited by the ir-
reducible background induced by coherent neutrino
scattering (known as the “neutrino floor”). Due to
this background, direct detection experiments would
be unlikely to be able to detect fermionic DM annihi-
lating through the exchange of a mediator with only
pseudoscalar interactions, or through a spin-1 medi-
ator with vector and axial couplings to the DM and
SM fermions, respectively.

VII. CONCLUSIONS

In this study, we have taken a “simplified model”
approach to determine which classes of dark matter
models are capable of producing the gamma-ray ex-

cess observed from the region surrounding the Galac-
tic Center. In doing so, we have identified 16 di�erent
models that can generate the observed excess without
exceeding any of the constraints from direct detection
experiments or from colliders (see Table V). These 16
models can be divided into the following three groups:

• Models in which the dark matter (which could
be spin-0, 1/2, or 1) annihilates through the
exchange of a spin-0 particle with pseudoscalar
interactions. Such a mediator could potentially
be observed in future searches for heavy neutral
Higgs bosons at the LHC.

• Models in which the dark matter is a fermion
that annihilates through the exchange of a
spin-1 particle with axial couplings to stan-
dard model fermions, or with vector couplings
to third generation standard model fermions.
Assuming perturbative couplings, LHC con-
straints from dijet searches require that the
mass of the mediator be less than ⇤1 TeV.
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⇧S⌃DM Type Interaction
Elastic Kinematic

Scattering Suppression

1/2 Dirac ⌃̄�5⌃q̄q SI (scalar) (q/2m⇥)2

1/2 Majorana ⌃̄�5⌃q̄q SI (scalar) (q/2m⇥)2

1/2 Dirac ⌃̄�5⌃q̄�5q SD (q2/4mnm⇥)2

1/2 Majorana ⌃̄�5⌃q̄�5q SD (q2/4mnm⇥)2

1/2 Dirac ⌃̄�µ⌃q̄�µq SI (vector) 1

1/2 Dirac ⌃̄�µ⌃q̄�µ�5q SD (q/2mn)2 or (q/2m⇥)2

1/2 Dirac ⌃̄�µ�5⌃q̄�µ�5q SD 1

1/2 Majorana ⌃̄�µ�5⌃q̄�µ�5q SD 1

0 Complex ⇧†⇧q̄q SI (scalar) 1

0 Real ⇧2q̄q SI (scalar) 1

0 Complex ⇧†⇧q̄�5q SD (scalar) (q/2mn)2

0 Real ⇧2q̄�5q SD (scalar) (q/2mn)2

1 Complex B†
µB

µq̄q SI (scalar) 1

1 Real BµBµq̄q SI (scalar) 1

1 Complex B†
µB

µq̄�5q SD (q/2mn)2

1 Real BµBµq̄�5q SD (q/2mn)2

TABLE VI. Direct detection suppression of various operators that can produce s-wave DM annihilation.

matrix element, average over incoming spins, and
sum over outgoing spins. Ultimately, to derive cross
sections, we must take the nonrelativistic limits for
spinors. For spin-independent interactions, we have
both ⌅out⌅in ⇥ 2m⇥ and ⌅out�

µ⌅in ⇥ 2m⇥⇥
µ
0 , while

for spin-dependent interactions, we have ⌅out�
5⌅in ⇥

2qi⇥⇧Si
⇥⌃ and ⌅out�

µ�5⌅in ⇥ 4m⇥⇧Si
⇥⌃⇥

µ
i . See Ref. [27]

for further details.
The t-channel interactions can be constructed

from the s-channel cases by Fierz transforma-
tions [60].6 Note that the DM and SM physics fac-
torize into distinct pieces. Here we discuss the sum-
mation of the SM operator into pieces relevant for
the nucleon, n. We will use tildes to denote that, in
contrast with much of the literature, our couplings in
the following discussion are all dimensionless.

Consider the interaction of the DM through a
scalar-mediated force with quarks:

OSI,s = ⌃fqf̄f ⇥ ⌃fnnn. (A8)

As scalar couplings generally scale with the mass of
the interacting fermion, such interactions are typi-
cally dominated by the dark matter’s couplings to

6 We remind the reader that by t- or s- channel, we refer to
the diagram responsible for annihilation, as opposed to the
diagram for elastic scattering.

the nucleon’s strange quark content, or by the cou-
pling to gluons through loops of heavy quarks (c, b,
t). DM scattering o� the nucleons is given by sum-
ming over their quark content, so we are interested
instead in the coe⇥cients ⌃fn:

⌃fn
mn

=
⇧

q=u,d,s

fn
Tq

⌃fq
mq

+
2

27
fTG

⇧

q=c,b,t

⌃fq
mq

⇥ ⇤s

GeV

�

⇤7

9

⇧

q=u,d,s

fn
Tq

+
2

9

⇥

⌅ ,

(A9)

where in the second line we take ⌃fq = ⇤smq/GeV
and fTG = 1 � fn

Tu
� fn

Td
� fn

Ts
. We adopt the stan-

dard values to describe the nuclear quark content:
fp
Tu

= 0.020 and fp
Td

= 0.026 (and the reverse for
neutrons) and fTs = 0.043, as favored by recent lat-
tice QCD calculations [92]. This gives fTG ⇤ 0.91,
which implies that heavy quark loops mediate much
of this scattering.

Consider now the interaction of the DM through
a pseudoscalar-mediated force with quarks:

OSD,p =⌃tqf̄�5f ⇥ ⌃tnn�5n. (A10)

This interaction is spin-dependent and momentum
suppressed [27]. We will include the momentum sup-
pression at the target level because the momentum

Interaction Tables
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S L J C P

0 0 0 + -

0 1 1 - +

1 0 1 - -

1 1 0,1,2 + +

1 2 1,2,3 - -

1 3 2,3,4 + +

S L J C P

0 0 0 + +

0 1 1 - -

1 0 1 - +

1 1 0,1,2 + -

1 2 1,2,3 - +

2 0 2 + +

2 1 1,2,3 - -

2 2 0,1,2,3,4 + +

2 3 1,2,3,4,5 - -

2 4 2,3,4,5,6 + +

TABLE I. The C and P transformation properties of a fermion/anti-fermion (left) or boson/anti-boson (right) state for given
S, L and J quantum numbers.

bilinear C P J state

ψ̄ψ + + 0 S = 1, L = 1

ıψ̄γ5ψ + - 0 S = 0, L = 0

ψ̄γ0ψ - + 0 none

ψ̄γiψ - - 1 S = 1, L = 0, 2

ψ̄γ0γ5ψ + - 0 S = 0, L = 0

ψ̄γiγ5ψ + + 1 S = 1, L = 1

ψ̄σ0iψ - - 1 S = 1, L = 0, 2

ψ̄σijψ - + 1 S = 0, L = 1

φ†φ + + 0 S = 0, L = 0

ıIm(φ†∂0φ) - + 0 none

ıIm(φ†∂iφ) - - 1 S = 0, L = 1

B†
µB

µ + + 0 S = 0, L = 0; S = 2, L = 2

ıIm(B†
ν∂

0Bν) - + 0 none

ıIm(B†
ν∂

iBν) - - 1 S = 0, L = 1; S = 2, L = 1, 3

ı(B†
iBj −B†

jBi) - + 1 S = 1, L = 0, 2

ı(B†
iB0 −B†

0Bi) - - 1 S = 0, L = 1; S = 2, L = 1, 3

ε0ijkBi∂jBk + - 0 S = 1, L = 1

−ε0ijkB0∂jBk + + 1 S = 2, L = 2

Bν∂νB0 + + 0 S = 0, L = 0; S = 2, L = 2

Bν∂νBi + - 1 S = 1, L = 1

TABLE II. The C, P and J quantum numbers of any state that can be either created or annihilated by the bilinear. For each
possible state, the S and L quantum numbers are also given.

eigenvalues for a fermion/anti-fermion state (left) or boson/anti-boson state (right) in terms of the angular momentum
quantum numbers.
For any bosonic or fermionic bilinear, the transformation of the bilinear under rotations determines the total

angular momentum of the state that this bilinear either creates or annihilates. This information, along with the C
and P quantum numbers of the bilinear, are thus sufficient to determine (from Table I) the spin and orbital angular
momentum of the initial and final state. The S and L quantum numbers of the states created (annihilated) by every
lowest-dimension bilinear are listed in Table II.
We see that the only dark matter bilinears that can couple to an s-wave initial state are ıX̄γ5X , X̄γiX , X̄γ0γ5X ,

X̄σ0iX , φ†φ, B†
µB

µ, ı(B†
iBj − B†

jBi) and Bν∂νB0. Note that the structures ψ̄γ0ψ, ıIm(φ†∂0φ) and ıIm(B†
ν∂

0Bν)
cannot couple to any state and cannot contribute to any non-zero annihilation matrix element.
The Standard Model fermion bilinear must be able to produce a final state with the same J quantum number as

the initial state (though the C and P transformations need not be the same, since a general interaction structure can
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Interaction Tables
4

S L J Jz = Sz fermion helicities

0 0 0 0 fL, f̄R; fR, f̄L

1 0 1 1 fR, f̄R
1 0 1 0 fL, f̄R; fR, f̄L
1 0 1 -1 fL, f̄L

0 1 1 0 fL, f̄R; fR, f̄L

1 1 0 0 fL, f̄R; fR, f̄L

1 1 1 1 fR, f̄R
1 1 1 0 -

1 1 1 -1 fL, f̄L

1 2 1 1 fR, f̄R
1 2 1 0 fL, f̄R; fR, f̄L
1 2 1 -1 fL, f̄L

TABLE III. The possible fermion and anti-fermion helicities of a fermion/anti-fermion state with given S, L, J and Jz quantum
numbers. It is assumed that the fermion is travelling on the +z-axis, and the anti-fermion is travelling on the −z-axis. f̄L,R

denotes the CP -conjugate of fL,R (so, for example, f̄L is a right-handed anti-fermion ).

violate either symmetry). Thus, the spin and orbital angular momentum of the final and initial state may be different.
Finally, we address the question of whether or not there is a chirality-suppression (∝ m2

f/m
2
X) of the annihilation

matrix element. This suppression arises if a SM mass insertion is required to produce a final state with the appropriate
spin. An outgoing state of SM fermions f̄f can only be in a Sz = 0 state if the fermion and anti-fermion are from
different Weyl spinors (fL and fR). They are in an Sz = ±1 state if the fermion and anti-fermion are from the same
Weyl spinor. We take the z-axis to lie along the direction of motion of the outgoing fermion and anti-fermion, so
Lz = 0, and Jz = Sz. (Note that for particles moving along the z-axis it is clear that Lz = 0, because Ylm(θ = 0,φ) "= 0
only if m = 0.)
In Table III, we list the possible fermion and anti-fermion helicities for final states with fixed choices of S, L, J

and Jz . We assume that the fermion moves along the +z-axis and the anti-fermion along the −z-axis, and that
the initial state is written in a basis with angular momentum projected along the z-axis. In our notation, f̄L is a
right-handed anti-fermion, the CP -conjugate of fL. For a SM bilinear to produce one of the listed final states, it must
be able to produce a state with appropriate S, L and J quantum numbers. The helicities of the produced fermion
and anti-fermion are then determined by the number of Dirac matrices in the bilinear; a bilinear with an even number
of Dirac matrices will produce a fermion/anti-fermion pair from the same Weyl spinor, while a bilinear with an odd
number of Dirac matrices will produce a pair from different Weyl spinors. If a bilinear does not produce a fermion
and anti-fermion of the needed helicities, then there will be a chirality flip arising from a mass-insertion.
We can now bring together all of the pieces which contribute to an understanding of the annihilation matrix element.

The procedure is as follows:

• For each interaction structure, we find the C and P transformations and J quantum number of the dark matter
bilinear, and from this identify the initial state that can couple to this bilinear; s-wave annihilation is only
permitted if this state has L = 0.

• We then determine if the Standard Model bilinear can create a final state with the same J as the initial state.
If so, the matrix element for annihilation from the initial state to the appropriate final state is non-zero.

• We then check if the matrix element has an additional mf/mX chirality suppression. For each Jz projection of
the final state, we find the helicities of the final state fermion and anti-fermion. If there is no choice of Jz for
which the SM bilinear can produce fermions with the appropriate helicities, then the annihilation cross section
is suppressed by m2

f/m
2
X .

In Appendix B, we list the matrix elements arising from fermion/anti-fermion creation or annihilation, for all choices
of interaction structure. In the interest of generality, the anti-fermion is not assumed to be the anti-particle of the
fermion, and the two particles are allowed to have different masses. These matrix elements can thus be used for the
case of dark matter co-annihilation, or if dark matter annihilates through a flavor-violating process. The standard
case can be obtained by setting the masses of the two particles to be equal.
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IV. RESULTS

We summarize our results in the following four tables. In Table IV, we list the dependence of the spin-independent
and spin-dependent scattering matrix elements on

−→
S , −→q and v⊥. For each structure, we indicate whether the

momentum or velocity dependence arises from the dark matter or Standard Model bilinear. For interactions structures
that yield several matrix element terms with different kinematic dependence, the kinematic dependence of each
term is listed on a separate line. We also list if each interaction permits s-wave annihilation, and (if so) whether
or not s-wave annihilation is chirality-suppressed. Note that, using Lorentz gauge, one can rewrite Bν∂νBµ as
∂ν(BνBµ) = ∂ν [(1/4)gµνBρBρ+BνBµ(sym)], where “(sym)” means symmetric and traceless in the µν indices. Note
also that, although operator V8 permits annihilation from an s-wave dark matter initial state, the matrix element
nevertheless has an additional v2-suppression which arises because it depends on the time-like component of the
polarization vector, and thus vanishes in the non-relativistic limit.

Name Interaction Structure σSI suppression σSD suppression s-wave?

F1 X̄Xq̄q 1 q2v⊥2 (SM) No

F2 X̄γ5Xq̄q q2 (DM) q2v⊥2 (SM); q2 (DM) Yes

F3 X̄Xq̄γ5q 0 q2 (SM) No

F4 X̄γ5Xq̄γ5q 0 q2 (SM); q2 (DM) Yes

F5 X̄γµXq̄γµq 1 q2v⊥2 (SM) Yes

(vanishes for Majorana X) q2 (SM); q2 or v⊥2 (DM)

F6 X̄γµγ5Xq̄γµq v⊥2 (SM or DM) q2 (SM) No

F7 X̄γµXq̄γµγ
5q q2v⊥2 (SM); q2 (DM) v⊥2 (SM) Yes

(vanishes for Majorana X) v⊥2 or q2 (DM)

F8 X̄γµγ5Xq̄γµγ5q q2v⊥2 (SM) 1 ∝ m2
f/m

2
X

F9 X̄σµνXq̄σµνq q2 (SM); q2 or v⊥2 (DM) 1 Yes

(vanishes for Majorana X) q2v⊥2 (SM)

F10 X̄σµνγ5Xq̄σµνq q2 (SM) v⊥2 (SM) Yes

(vanishes for Majorana X) q2 or v⊥2 (DM)

S1 φ†φq̄q or φ2q̄q 1 q2v⊥2 (SM) Yes

S2 φ†φq̄γ5q or φ2q̄γ5q 0 q2 (SM) Yes

S3 φ†∂µφq̄γ
µq 1 q2v⊥2 (SM) No

q2 (SM); v⊥2 (DM)

S4 φ†∂µφq̄γµγ5q 0 v⊥2 (SM or DM) No

V1 B†
µB

µq̄q or BµB
µq̄q 1 q2v⊥2 (SM) Yes

V2 B†
µB

µq̄γ5q or BµB
µq̄γ5q 0 q2 (SM) Yes

V3 B†
ν∂µB

ν q̄γµq 1 q2v⊥2 (SM) No

q2 (SM); v⊥2 (DM)

V4 B†
ν∂µBν q̄γµγ5q 0 v⊥2 (SM or DM) No

V5 (B†
µBν −B†

νBµ)q̄σ
µνq q2v⊥2 (SM) 1 Yes

V6 (B†
µBν −B†

νBµ)q̄σ
µνγ5q q2 (SM) v⊥2 (SM) Yes

V7 B†
ν∂

νBµq̄γ
µq or Bν∂

νBµq̄γ
µq v⊥2 (SM); q2 (DM) q2 (SM); q2 (DM) No

V8 B†
ν∂

νBµq̄γ
µγ5q or Bν∂

νBµq̄γ
µγ5q q2v⊥2 (SM); q2 (DM) q2 (DM) ∝ m2

f/m
2
X

V9 εµνρσB†
ν∂ρBσ q̄γµq or εµνρσBν∂ρBσ q̄γµq v⊥2 (DM or SM) q2 (SM) No

V10 εµνρσB†
ν∂ρBσ q̄γµγ

5q or εµνρσBν∂ρBσ q̄γµγ
5q q2v⊥2 (SM) 1 No

TABLE IV. The kinematic suppression of the spin-independent and spin-dependent scattering cross sections for all possible
interaction structures. F1-F10 correspond to fermionic dark matter (with F5, F7, F9 and F10 absent for Majorana fermions),
S1-S4 correspond to real or complex scalar dark matter, V1-V10 to real or complex vector dark matter. Each suppression is
labelled to indicate if it arises from the SM or dark matter (DM) bilinear. If a cross section contains several terms with different
kinematic suppressions, each is listed on a separate line. We also list if s-wave annihilation is permitted and unsuppressed, if it
is chirality-suppressed by a factor ∝ m2

f/m
2
X , or if it is not permitted at all; although the interactions are expressed in terms

of quark fields q, by a slight abuse of notation we allow for annihilation to any pair of SM fermions f̄f , each of mass mf .
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J Sinit Linit Sfinal Lfinal Interaction structure

0 0 0 0 0 X̄γ5Xq̄γ5q, X̄γ0γ5Xq̄γ0γ5q

0 0 0 1 1 X̄γ5Xq̄q

0 1 1 0 0 X̄Xq̄γ5q

0 1 1 1 1 X̄Xq̄q

1 0 1 0 1 X̄σijXq̄σijq

1 0 1 1 0 X̄σijXq̄σijγ5q

1 1 0 0 1 X̄σijγ5Xq̄σijq

1 1 0 1 0 X̄γiXq̄γiq, X̄σijγ5Xq̄σijγ5q

1 1 1 1 1 X̄γiγ5Xq̄γiγ5q

1 1 0 1 1 X̄γiXq̄γiγ5q

1 1 1 1 0 X̄γiγ5Xq̄γiq

0 0 0 0 0 B†
µB

µq̄γ5q, Bν∂νB0q̄γ
0γ5q

0 0 0 1 1 B†
µB

µq̄q

0 1 1 0 0 ε0ijkBi∂jBkq̄γ
0γ5q

1 0 1 0 1 ı(B†
iB0 −B†

iB0)q̄σ0iγ5q

1 0 1 1 0 ı(B†
iB0 −B†

iB0)q̄σ
0iq, ıIm(B†

ν∂iB
ν)q̄γiq

1 0 1 1 1 ıIm(B†
ν∂iB

ν)q̄γiγ5q

1 1 0 0 1 ı(B†
iBj −B†

iBj)q̄σ
ijq

1 1 0 1 0 ı(B†
iBj −B†

iBj)q̄σ
ijγ5q

1 1 1 1 0 Bν∂νBiq̄γiq

1 1 1 1 1 Bν∂νBiq̄γ
iγ5q

1 2 2 1 0 ε0ijkBj∂0Bk q̄γiq

1 2 2 1 1 ε0ijkBj∂0Bkq̄γiγ
5q

TABLE V. The interaction structures that can annihilate an initial state with quantum numbers Sinit, Linit and J and create
a final state with quantum numbers Sfinal, Lfinal and J . If two interaction structures are listed on the same line, then they
can interfere in an annihilation process.

A. Interference

Of course, it is certainly possible for dark matter to couple to Standard Model matter through a sum of several
effective interaction structures. In that case, it is important to understand if these operators can interfere. For
the annihilation process, interference can only occur between structures that annihilate states of the same quantum
numbers (S, L and J) and create states of the same quantum numbers. Table V indicates the interaction structures
that can connect initial and final states for all possible combinations of quantum numbers; interaction operators that
appear on the same line can interfere with one another in annihilation processes. In particular, interference between
two interactions structures can only occur for s-wave annihilation. It can be seen from Table II that if dark matter
is spin-0, then there are no interference terms.
We now consider interference between different interaction structures in scattering processes. As we have seen, each

of the SM or dark matter bilinears depends on a spin matrix element which is either spin-independent (1) or depends
on a spin projection (Sq̂, Sv̂⊥ or Sη̂, if the dark matter spin matrix element is a vector). For the full interaction
structure, there are sixteen possible choices of the full spin matrix element. The four choices that are independent
of the quark spin (but may or may not depend on the dark matter spin) yield spin-independent scattering, while
the remaining twelve choices yield spin-dependent scattering. Two interaction structures can interfere in a scattering
process only if they have the same full spin matrix element. Two operators that couple to different spin projections
will not interfere as the interference terms vanish on summing over spins.
We denote the four choices of the spin-independent matrix element by the numbers 1-4, and the twelve choices of

the spin-dependent matrix element by the letters A-L. We list in Table VI, for each interaction structure for spin-1/2
dark matter, the leading spin matrix elements. If an interaction structure contains terms with multiple spin matrix
elements, then they are listed on separate lines. Note, it is possible for two operators to each interfere with a third,
even if they cannot interfere with each other. In Table VII we list the leading spin matrix elements if dark matter is
spin-0, and in Table VIII we list the spin matrix elements for spin-1 dark matter. Note that, for spin-0 dark matter, it
is not necessary to list the dark matter spin matrix element, which is always trivial. Thus, all interaction structures can
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Interaction Structure SI (SX -dep.) SD (SX -dep.) SD (SSM -dep.) SI Class SD Class

F1 X̄Xq̄q 1 1 Sη̂ 1 C

F2 X̄γ5Xq̄q Sq̂ Sq̂ Sη̂ 2 F

F3 X̄Xq̄γ5q - 1 Sq̂ - A

F4 X̄γ5Xq̄γ5q - Sq̂ Sq̂ - D

F5 X̄γµXq̄γµq 1 1 Sη̂ 1 C

(vanishes for Majorana X) Sv̂⊥ Sv̂⊥ H

Sη̂ Sη̂ L

F6 X̄γµγ5Xq̄γµq Sv̂⊥ Sη̂ Sv̂⊥ 3 K

Sv̂⊥ Sη̂ I

F7 X̄γµXq̄γµγ
5q Sv̂⊥ 1 Sv̂⊥ 3 B

(vanishes for Majorana X) Sv̂⊥ Sη̂ I

Sη̂ Sv̂⊥ K

F8 X̄γµγ5Xq̄γµγ
5q Sη̂ Sq̂ Sq̂ 4 D

Sv̂⊥ Sv̂⊥ H

Sη̂ Sη̂ L

F9 X̄σµνXq̄σµνq 1 , Sη̂ Sq̂ Sq̂ 1, 4 D

(vanishes for Majorana X) Sv̂⊥ Sv̂⊥ H

Sη̂ Sη̂ L

F10 X̄σµνγ5Xq̄σµνq Sq̂ 1 Sq̂ 2 A

(vanishes for Majorana X) Sq̂ Sη̂ F

Sη̂ Sq̂ J

TABLE VI. For each interaction structure, we indicate if the scattering matrix element is independent of the dark matter
or SM spin (1), or if it depends on the projection of the spin on any of three orthogonal axes: the direction of momentum
transfer (q̂), the direction of the relative velocity transverse to the momentum transfer (v̂⊥), or the direction perpendicular to
q̂ and v̂⊥ (η̂ = q̂ × v̂⊥). If an interaction structure yields several terms with different spin component dependence, they are
listed on separate lines. The sixteen possible couplings to dark matter and nucleon spin are divided into four classes (1-4) that
are independent of the nucleon spin, and twelve classes (A-L) that are nucleon spin-dependent. For each structure, all of its
coupling classes are listed; if two interaction structures are listed in the same class, then they can interfere.

Interaction Structure SD (SSM -dep.)

S1 φ†φq̄q or φ2q̄q Sη̂

S2 φ†φq̄γ5q or φ2q̄γ5q Sq̂

S3 φ†∂µφq̄γ
µq Sη̂

S4 φ†∂µφq̄γ
µγ5q Sv̂⊥

TABLE VII. Similar to Table VI, but for spin-0 dark matter. Thus, there is no dependence on the dark matter spin. All of
these structures can interfere for spin-independent scattering. For spin-dependent scattering, two interaction structures can
interfere if they couple to the same projection of the nucleon spin.

interfere for spin-independent scattering of spin-0 dark matter. There is interference in the spin-dependent scattering
matrix element if two structures couple to the same nucleon spin matrix element. For spin-1 DM, the interaction
structures V7 and V8 couple to a dark matter spin matrix element that transforms as a traceless symmetric tensor,
denoted by Π. We represent it by its components in the orthogonal basis defined by q̂, v̂⊥ and η̂.

If two interaction structures can interfere, but their matrix elements scale with different powers of q and v⊥, then
the interference terms will be small unless one of the structures has a very small coefficient. But if two interfering
interaction structures are suppressed by the same number of powers of q and v⊥, then the interference terms will be
significant as long as the coefficients are comparable. In Table IX, we list each interaction structure according to the
number of powers of q or v⊥ that appear in the SI (top) or SD (bottom) matrix element. Interaction structures that
appear within parentheses can interfere.
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Interaction Structure SI (SX -dep.) SD (SX -dep.) SD (SSM -dep.) SI Class SD Class

V1 B†
µB

µq̄q or BµB
µq̄q 1 1 Sη̂ 1 C

V2 B†
µB

µq̄γ5q or BµB
µq̄γ5q - 1 Sq̂ - A

V3 B†
ν∂µBν q̄γµq 1 1 Sη̂ 1 C

V4 B†
ν∂µBν q̄γµγ5q - 1 Sv̂⊥ 1 B

V5 (B†
µBν −B†

νBµ)q̄σµνq Sη̂ Sq̂ Sq̂ 4 D

Sv̂⊥ Sv̂⊥ H

Sη̂ Sη̂ L

V6 (B†
µBν −B†

νBµ)q̄σµνγ5q Sq̂ Sq̂ Sη̂ 2 F

Sη̂ Sq̂ J

V7 B†
ν∂

νBµq̄γ
µq or Bν∂

νBµq̄γ
µq Πq̂v̂⊥ Πq̂v̂⊥ Sη̂

Πq̂η̂ Sv̂⊥

V8 B†
ν∂

νBµq̄γµγ5q or Bν∂νBµq̄γµγ5q Sq̂ Πq̂v̂ Sv̂ 2

Πq̂η̂ Πq̂q̂ Sq̂

Πq̂η̂ Sη̂

V9 εµνρσB†
ν∂ρBσ q̄γµq or εµνρσBν∂ρBσ q̄γµq Sv̂⊥ Sv̂⊥ Sη̂ 3 I

Sη̂ Sv̂⊥ K

V10 εµνρσB†
ν∂ρBσ q̄γµγ

5q or εµνρσBν∂ρBσ q̄γµγ
5q Sη̂ Sq̂ Sq̂ 4 D

Sv̂⊥ Sv̂⊥ H

Sη̂ Sη̂ L

TABLE VIII. Similar to Table VI, but for spin-1 dark matter. For structures V7 and V8, the dark matter spin bilinear is a
traceless symmetric tensor represented by Π with components in the orthogonal basis defined by q̂, v̂⊥ and η̂. Note that V7
and V8 cannot interfere with any other structure.

Powers of q and v⊥ Interaction structures

SI 0 (X̄Xq̄q, X̄γµXq̄γµq)

2 (X̄γ5Xq̄q, X̄σµνγ5Xq̄σµνq), X̄γµγ5Xq̄γµq

4 (X̄γµγ5Xq̄γµγ5q, X̄σµνXq̄σµνq)

6 X̄γµXq̄γµγ
5q

SD 0 (X̄γµγ5Xq̄γµγ
5q , X̄σµνXq̄σµνq)

2 (X̄Xq̄γ5q, X̄σµνγ5Xq̄σµνq), (X̄γµγ5Xq̄γµq, X̄γµXq̄γµγ5q)

4 (X̄Xq̄q, X̄γµXq̄γµq), X̄γ5Xq̄γ5q

6 X̄γ5Xq̄q

TABLE IX. The number of powers of q and v⊥ that appear in the spin-independent and spin-dependent scattering cross section
for each interaction structure (if dark matter is spin-1/2). Interaction structures that are listed together in parentheses can
interfere and have the same kinematic suppression.

V. INTERESTING FEATURES AND DEVIATIONS FROM THE STANDARD LORE

These results lead to some interesting observations, including deviations from the standard lore which arise from
consideration of more general models than WIMPs of a constrained version of the MSSM. We find:

1. The standard lore is that neutralino annihilation to the light Higgs (XX → hh) is necessarily p-wave sup-
pressed [11]. In fact, we see from our analysis that the annihilation of Majorana fermion dark matter to
identical scalars is either p-wave suppressed or suppressed by CP -violating phases [12]. Since the final state
consists of identical scalars with S = 0, symmetry of the wavefunction requires that L must be even. If the
initial state is S = 0, L = 0, J = 0, CP -odd, then the final state of identical bosons must be S = 0, L = 0,
J = 0, CP -even, and there must be CP -violation in the annihilation matrix element. The relevant interaction
structure is then X̄γ5Xhh. If the initial state is S = 1, L = 1, CP -even, then the matrix element is p-wave
suppressed.
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Interaction Structure SI (SX -dep.) SD (SX -dep.) SD (SSM -dep.) SI Class SD Class

V1 B†
µB

µq̄q or BµB
µq̄q 1 1 Sη̂ 1 C

V2 B†
µB

µq̄γ5q or BµB
µq̄γ5q - 1 Sq̂ - A

V3 B†
ν∂µBν q̄γµq 1 1 Sη̂ 1 C

V4 B†
ν∂µBν q̄γµγ5q - 1 Sv̂⊥ 1 B

V5 (B†
µBν −B†

νBµ)q̄σµνq Sη̂ Sq̂ Sq̂ 4 D

Sv̂⊥ Sv̂⊥ H

Sη̂ Sη̂ L

V6 (B†
µBν −B†

νBµ)q̄σµνγ5q Sq̂ Sq̂ Sη̂ 2 F

Sη̂ Sq̂ J

V7 B†
ν∂

νBµq̄γ
µq or Bν∂

νBµq̄γ
µq Πq̂v̂⊥ Πq̂v̂⊥ Sη̂

Πq̂η̂ Sv̂⊥

V8 B†
ν∂

νBµq̄γµγ5q or Bν∂νBµq̄γµγ5q Sq̂ Πq̂v̂ Sv̂ 2

Πq̂η̂ Πq̂q̂ Sq̂

Πq̂η̂ Sη̂

V9 εµνρσB†
ν∂ρBσ q̄γµq or εµνρσBν∂ρBσ q̄γµq Sv̂⊥ Sv̂⊥ Sη̂ 3 I

Sη̂ Sv̂⊥ K

V10 εµνρσB†
ν∂ρBσ q̄γµγ

5q or εµνρσBν∂ρBσ q̄γµγ
5q Sη̂ Sq̂ Sq̂ 4 D

Sv̂⊥ Sv̂⊥ H

Sη̂ Sη̂ L

TABLE VIII. Similar to Table VI, but for spin-1 dark matter. For structures V7 and V8, the dark matter spin bilinear is a
traceless symmetric tensor represented by Π with components in the orthogonal basis defined by q̂, v̂⊥ and η̂. Note that V7
and V8 cannot interfere with any other structure.

Powers of q and v⊥ Interaction structures

SI 0 (X̄Xq̄q, X̄γµXq̄γµq)

2 (X̄γ5Xq̄q, X̄σµνγ5Xq̄σµνq), X̄γµγ5Xq̄γµq

4 (X̄γµγ5Xq̄γµγ5q, X̄σµνXq̄σµνq)

6 X̄γµXq̄γµγ
5q

SD 0 (X̄γµγ5Xq̄γµγ
5q , X̄σµνXq̄σµνq)

2 (X̄Xq̄γ5q, X̄σµνγ5Xq̄σµνq), (X̄γµγ5Xq̄γµq, X̄γµXq̄γµγ5q)

4 (X̄Xq̄q, X̄γµXq̄γµq), X̄γ5Xq̄γ5q

6 X̄γ5Xq̄q

TABLE IX. The number of powers of q and v⊥ that appear in the spin-independent and spin-dependent scattering cross section
for each interaction structure (if dark matter is spin-1/2). Interaction structures that are listed together in parentheses can
interfere and have the same kinematic suppression.

V. INTERESTING FEATURES AND DEVIATIONS FROM THE STANDARD LORE

These results lead to some interesting observations, including deviations from the standard lore which arise from
consideration of more general models than WIMPs of a constrained version of the MSSM. We find:

1. The standard lore is that neutralino annihilation to the light Higgs (XX → hh) is necessarily p-wave sup-
pressed [11]. In fact, we see from our analysis that the annihilation of Majorana fermion dark matter to
identical scalars is either p-wave suppressed or suppressed by CP -violating phases [12]. Since the final state
consists of identical scalars with S = 0, symmetry of the wavefunction requires that L must be even. If the
initial state is S = 0, L = 0, J = 0, CP -odd, then the final state of identical bosons must be S = 0, L = 0,
J = 0, CP -even, and there must be CP -violation in the annihilation matrix element. The relevant interaction
structure is then X̄γ5Xhh. If the initial state is S = 1, L = 1, CP -even, then the matrix element is p-wave
suppressed.
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Operator Structure Dim D

V1 (1/�)B†
µB

µq̄q 5

V2 (1/�)ıB†
µB

µq̄�5q 5

V3 (1/2�2)ı(B†
⇥⇧µB

⇥ �B⇥⇧µB
†
⇥)q̄�

µq 6

V4 (1/2�2)ı(B†
⇥⇧µB

⇥ �B⇥⇧µB
†
⇥)q̄�

µ�5q 6

V5 (1/�)ıB†
µB⇥ q̄⇤

µ⇥q 5

V6 (1/�)B†
µB⇥ q̄⇤

µ⇥�5q 5

V7+ (1/2�2)(B†
⇥⇧

⇥Bµ +B⇥⇧
⇥B†

µ)q̄�
µq 6

V7� (1/2�2)ı(B†
⇥⇧

⇥Bµ �B⇥⇧
⇥B†

µ)q̄�
µq 6

V8+ (1/2�2)(B†
⇥⇧

⇥Bµ +B⇥⇧
⇥B†

µ)q̄�
µ�5q 6

V8� (1/2�2)ı(B†
⇥⇧

⇥Bµ �B⇥⇧
⇥B†

µ)q̄�
µ�5q 6

V9+ (1/2�2)⇥µ⇥⇤⌅(B†
⇥⇧⇤B⌅ +B⇥⇧⇤B

†
⌅)q̄�µq 6

V9� (1/2�2)ı⇥µ⇥⇤⌅(B†
⇥⇧⇤B⌅ �B⇥⇧⇤B

†
⌅)q̄�µq 6

V10+ (1/2�2)⇥µ⇥⇤⌅(B†
⇥⇧⇤B⌅ +B⇥⇧⇤B

†
⌅)q̄�µ�

5q 6

V10� (1/2�2)ı⇥µ⇥⇤⌅(B†
⇥⇧⇤B⌅ �B⇥⇧⇤B

†
⌅)q̄�µ�

5q 6

TABLE I. Possible Hermitian contact operators up to dimension 6 that couple spin-1 dark matter to SM quarks (or other
fermions).

The operators in Table I are assumed to be the low energy manifestations of some more fundamental ultraviolet
theory. All of the contact operators given above can arise from renormalizable interactions in which the dark matter
pair is produced by the s-channel exchange of a spin-1 or spin-0 mediator (for example, a heavy Z ⇥ or Higgs particle),
or by the t-/u-channel exchange of a spin-1/2 particle. A detailed analysis of these constructions is presented in [18].
Our intention is to perform a completely general analysis of spin-1 dark matter at the LHC; under the assumption
that the e⇥ective theory description is valid at these energies, the operators in Table I represent a basis set to describe
these interactions.

We are interested in the scaling of the matrix element for the process q̄q ⇧ B†B with respect to the energy E in
the center-of-mass frame of the q̄q system. This scaling is determined by the following considerations:

• The matrix element scales by a factor (E/�)d�4, where d is the dimension of the operator and � is the energy
scale of the coe⌅cient.

• The matrix element also scales by additional factors of E/mB for each DM longitudinal polarization vector.
The number of such vectors can be found by determining the C, P , and J quantum numbers of the DM state
that can be created by each operator. These in turn determine the L and S quantum numbers of the DM final
state, which determine the polarization vectors.

The C and P quantum numbers of the dark matter two-particle state (for this purpose, the jet(s) in the final state
are irrelevant) created by each operator are determined by the transformation properties of the DM bilinear. The J
quantum number of the dark matter two-particle state is determined by the rotational transformation properties of
the DM bilinear. The L and S quantum numbers of the DM final state system are then given by

C : (�1)L+S , P : (�1)L, |L� S| ⇤ J ⇤ |L+ S|, (1)

which are valid when the dark matter is a boson. Following [17], in Table II we display the quantum numbers of the
DM state created by the various terms in the above operators. Note that we have ignored all operator terms involving
the quark bilinears q̄�0q and q̄�0�5q. The former vanishes identically when acting on any quark-antiquark initial
state, while the latter yields a matrix element that is proportional to mq, and thus vanishes in the limit mq ⌅ E, as
is relevant here.

Using Table II, one can first write the DM final state as a linear combination of states in the |L, Stot, J, Jz⌃ basis
(where Stot is the total spin of the DM system), then rewrite the state in the |L,Lz, Stot, Stotz ⌃ basis, and finally
rewrite the state in the |L,Lz, S1, S1z, S2, S2z⌃ basis (where S1 and S2 are the spins of each of the two dark matter
particles.). The matrix element then receives a factor E/mB enhancement for each DM particle with spin projection
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Operator Term CB PB J State

V1 (1/�)B†
µB

µq̄q + + 0 L = 0, S = 0; L = 2, S = 2

V2 (1/�)ıB†
µB

µq̄�5q + + 0 L = 0, S = 0; L = 2, S = 2

V3 (1/2�2)ı(B†
⇥⌃iB

⇥ �B⇥⌃iB
†
⇥)q̄�

iq - - 1 L = 1, S = 0; L = 1, 3, S = 2

V4 (1/2�2)ı(B†
⇥⌃iB

⇥ �B⇥⌃iB
†
⇥)q̄�

i�5q - - 1 L = 1, S = 0; L = 1, 3, S = 2

V5 (1/�)ıB†
iBj q̄⇤

ijq - + 1 L = 0, 2, S = 1

(1/2�)ı(B†
0Bi �B†

iB0q̄)q̄⇤
0iq - - 1 L = 1, S = 0; L = 1, 3, S = 2

V6 (1/�)B†
iBj q̄⇤

ij�5q - + 1 L = 0, 2, S = 1

(1/2�)(B†
0Bi �B†

iB0)q̄⇤
0i�5q - - 1 L = 1, S = 0; L = 1, 3, S = 2

V7+ (1/2�2)(B†
⇥⌃

⇥Bi +B⇥⌃
⇥B†

i )q̄�
iq + - 1 L = 1, S = 1

V7� (1/2�2)ı(B†
⇥⌃

⇥Bi �B⇥⌃
⇥B†

i )q̄�
iq - - 1 L = 1, S = 0; L = 1, 3, S = 2

V8+ (1/2�2)(B†
⇥⌃

⇥Bi +B⇥⌃
⇥B†

i )q̄�
i�5q + - 1 L = 1, S = 1

V8� (1/2�2)ı(B†
⇥⌃

⇥Bi �B⇥⌃
⇥B†

i )q̄�
i�5q - - 1 L = 1, S = 0; L = 1, 3, S = 2

V9+ (1/2�2)⇥i0jk(B†
0⌃jBk +B0⌃jB

†
k)q̄�iq + + 1 L = 2, S = 2

V9� (1/2�2)ı⇥i0jk(B†
0⌃jBk �B0⌃jB

†
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TABLE II. The charge conjugation (CB), parity (PB), and total angular momentum (J) quantum numbers of the DM system,
as well as possible orbital (L) and spin (S) angular momenta of the DM state. Only nonvanishing or non-negligible terms in
each operator are shown.

S(1,2)z = 0. The details of this derivation are provided in Appendix A, and we summarize the energy dependence
of the leading term in Table III. While it may be possible that the coe⇥cient of the leading term experiences an

Operators Dimension enhancement Polarization enhancement

V1, V2, V5, V6 E/� (E/mB)
2

V3, V4, V7�, V8� (E/�)2 (E/mB)
2

V7+, V8+, V9±, V10± (E/�)2 E/mB

TABLE III. The energy enhancement factors in the matrix element for the process q̄q ⇥ B†B.

accidental cancellation, explicit calculation of the matrix elements indicates that this is not the case. The squared
matrix elements are listed in Appendix B.

III. CONSTRAINTS FROM UNITARITY

If the scale of the new physics mediating the dark matter–quark interaction is su⇥ciently light, the contact-
operator approximation will break down. In simple models with a single mediator, the energy suppression scale � of
the contact operator is generally larger than the mass scale of the mediator, implying that one should not trust the
contact-operator approximation for processes where the DM system center-of-mass energy is larger than �. But in
more complicated models with large numbers of mediators, it is not clear that the mediator mass must be smaller
than �. More generally, the tightest constraint one can rigorously impose is that the dark matter production matrix
element satisfy unitarity when evaluated at the energy of the hard process.

To impose this constraint, we follow the formalism and notation of [19]. We thus consider the matrix element for
the on-shell process q̄q � B†B. If the initial state is a helicity eigenstate, then the fundamental unitarity constraint
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Operator Constraint Benchmark �min (TeV)

V1, V2
E
⇤

E2 �m2
B

16�2�2

�
3 +

4E2

m4
B

(E2 �m2
B)

⇥
⇤ 1 1.59⇥ 105

V3, V4
E(E2 �m2

B)
3/2

72�2�4

�
3 +

4E2

m4
B

(E2 �m2
B)

⇥
⇤ 1 274

V5, V6
E
⇤

E2 �m2
B

72�2�2

�
4E2

m2
B

+
2E2

m4
B

(E2 �m2
B)� 1

⇥
⇤ 1 5.31⇥ 104

V7+, V8+
E3(E2 �m2

B)
3/2

18�2m2
B�

4
⇤ 1 8.66

V9+, V10+
E(E2 �m2

B)
5/2

18�2m2
B�

4
⇤ 1 8.66

V7�, V8�
E3(E2 �m2

B)
3/2

18�2m2
B�

4

�
1 +

E2

m2
B

⇥
⇤ 1 274

V9�, V10�
E3(E2 �m2

B)
1/2

32�2�4

�
1 + 2

E2

m2
B

⇥
⇤ 1 8.66

TABLE IV. Unitarity constraints on the energy E of a dark matter particle in the center-of-mass frame of the q̄q ⌅ B†B
interaction. These constraints can be rephrased in terms of a maximum B†B invariant mass, which is then applied during
event generation to get conservative collider sensitivities. We have also included the minimum value of � from these constraints
for each operator, using the benchmark values of E = 1 TeV and mB = 1 GeV.

can be written as
�

f

�i�f |T j
i⇥f |

2 ⇥ 1 , (2)

where we have expanded the matrix element Mi⇥f in Wigner d-functions as

Mi⇥f (⇤) = 8⇧
⇤�

j=0

(2j + 1)T j
i⇥fd

j
�f�i

. (3)

Here, ⌅i,f are the total helicities of the initial and final states, respectively, j is the total angular momentum of the
state, and ⇤ is the scattering angle. The Wigner d-functions dj�f�i

which are relevant here are given by

d00,0 = 1,

d11,1 = d1�1,�1 =
1 + cos ⇤

2
,

d11,0 = �d1�1,0 = d10,�1 = �d10,1 = � sin ⇤⌃
2

,

d11,�1 = d1�1,1 =
1� cos ⇤

2
,

d10,0 = cos ⇤ . (4)

They satisfy
⇥ 1

�1
d cos ⇤ dj���d

j�

��� =
2

2j + 1
⇥jj� , (5a)

dj���(⇤ = 0) = ⇥��� . (5b)

The unitarity constraints (on the q̄q ⇤ B†B process) shown in Table IV are obtained by explicitly evaluating Eq. (2)
for each of our 14 operators. We also give the minimum value for � allowed by these constraints, using the benchmark
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Electroweak Bremsstrahlung in Dark Matter Annihilation
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A conservative upper bound on the total dark matter (DM) annihilation rate can be obtained
by constraining the appearance rate of the annihilation products which are hardest to detect. The
production of neutrinos, via the process χχ → ν̄ν, has thus been used to set a strong general
bound on the dark matter annihilation rate. However, Standard Model radiative corrections to
this process will inevitably produce photons which may be easier to detect. We present an explicit
calculation of the branching ratios for the electroweak bremsstrahlung processes χχ → ν̄νZ and
χχ → ν̄eW . These modes inevitably lead to electromagnetic showers and further constraints on the
DM annihilation cross-section. In addition to annihilation, our calculations are also applicable to
the case of dark matter decay.

PACS numbers: 95.35.+d, 95.85.Ry

I. INTRODUCTION

The identity of the dark matter (DM) is one of the
great unresolved questions in particle physics and cos-
mology [1, 2, 3]. An important method of probing DM
properties is via indirect detection, whereby we look for
the appearance of particles produced via DM annihila-
tion or decay. We can search for such a signal ema-
nating from the dark matter concentration in our own
galaxy, other galaxies (satellite, dwarf, or clustered), or
for a isotropic flux from the dark matter distributed
throughout the Universe [4]. Investigated signals include
positrons, gamma-rays, x-rays, and even microwaves (the
“WMAP haze” [5]).

If we make the reasonable assumption that DM decay
or annihilation products must be Standard Model (SM)
particles (i.e. we assume the dark matter is the lightest
stable particle in the beyond-SM sector) then it is pos-
sible to set a conservative upper bound on the total DM
annihilation rate by looking for the annihilation products
which are the hardest to detect, namely, neutrinos [6].
All other possible final states would lead to the produc-
tion of gamma rays, for which more stringent bounds
apply. For example, quarks and gluons hadronize, pro-
ducing pions and thus photons via π0 → γγ; the decays
of τ±, W±, and Z0 also produce π0. Charged parti-
cles produce photons via electromagnetic radiative cor-
rections [7, 8], while energy loss processes for e± also
produce photons [9]. By calculating the cosmic diffuse
neutrino flux produced via the DM annihilation process
χχ → ν̄ν in all halos throughout the Universe, a strong
and general bound on the DM total annihilation cross
section has recently been derived [6]. The corresponding
signal from our own galaxy can be used to set a compara-
ble limit (and improves upon the cosmic bound in some
mass ranges) [10] while the technique has been extended
to low (MeV) masses in Ref. [11]. Analogous bounds have
been derived for the DM decay rate [12].

The general upper bound on the total DM annihilation
cross section defined via the limit on χχ → ν̄ν is surpris-

χ

χ

ν

ν
(a)

χ

χ

ν(l−)

ν

Z(W +)

(b)

FIG. 1: The lowest order tree level process χχ → ν̄ν
(left) is accompanied by electroweak bremsstrahlung pro-
cesses (right).

ingly strong. (See Ref. [13] for a comparison between
photon-based and neutrino-based limits.) However, a
scenario in which neutrinos alone are produced in the
final state is technically impossible. Even leaving aside
the theoretical issue that a direct coupling of DM to only
neutrinos violates the SU(2)-invariance of the weak inter-
action, electroweak radiative corrections imply indirect
couplings to states other than neutrinos. For example,
for energies above MW,Z , electroweak bremsstrahlung of
W or Z bosons can occur at sizeable rates [14, 15], see
Fig. 1. The hadronic decays of these gauge bosons pro-
duce neutral pions, which decay to gamma rays. Even
for energies below MW , processes involving virtual elec-
troweak gauge bosons will lead to particles with electro-
magnetic interactions, though the rate for such processes
is suppressed at low energy.

Kachelriess and Serpico have estimated the constraints
on the cross section for χχ → ν̄ν (and hence on total DM
annihilation cross section) by considering gamma rays
produced via the accompanying process χχ → ν̄νZ [14].
We present here an explicit calculation of the branch-
ing ratios for the electroweak bremsstrahlung processes
χχ → ν̄νZ and χχ → ν̄eW .

Note that the expected magnitude of the DM total an-
nihilation cross section varies enormously between spe-
cific models. For LSP (lightest supersymmetric parti-
cle) DM, s-wave annihilation to fermions is helicity sup-
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FIG. 1. The t-channel ((a),(c), and (e)) and u-channel ((b), (d) and (f)) Feynman diagrams for χχ → e+νW−. Note that t-
and u-channel amplitudes are simply related by the k1 ↔ k2 interchange symmetry. All fermion momenta in the diagrams flow
with the arrow except p2 and q2, with q1 = p1 +Q, q2 = p2 +Q.

The W boson behaves as a massive transverse photon,
with just two transverse polarizations contributing. As a
consequence, our calculation of W bremsstrahlung must
reduce to the known results for photon bremsstrahlung
in the mW → 0 limit, modulo coupling constants. Below
we will show that this happens.

The thermally-averaged cross section is given by

v dσ =
1

2s

∫

1

4

∑

spin, pol.

|M|2 dLips3 (14)

where the 1
4

arises from averaging over the spins of the

initial χ pair, v =
√

1− 4m2
χ

s is the mean dark matter
velocity, as well as the dark matter single-particle velocity
in the center of mass frame1, and dLipsn represents n-
body Lorentz invariant phase space.

We calculate the cross section for W emission follow-
ing the procedure outlined above, with the integration
over phase space performed according to the method de-
scribed in Ref. [1]. We expand in powers of the DM
velocity, v, keeping only the leading order (v0) contribu-
tion. As expected, we have an unsuppressed cross section
given by

σv #
αW f4

256π2m2
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(
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(15)

1 Informative discussions of the meaning of v are given in [21], and the inclusion of thermal averaging is covered in [22].
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where αW ≡ g2/(4π) . The Spence function (or “dilogarithm”) is defined as Li2(z) ≡ −
∫ z
0

dζ
ζ ln |1− ζ| =

∑∞
k=1

zk

k2 .
If we take the limit mW → 0 and replace αW with 2αem, then Eq. (15) reproduces the cross section for

bremsstrahlung of photons, namely2

σv $
αemf4

128π2m2
χ

{

(µ+ 1)

[

π2

6
− ln2

(

µ+ 1

2µ

)

− 2Li2

(

µ+ 1

2µ

)]

+
4µ+ 3

µ+ 1
+

4µ2 − 3µ− 1

2µ
ln

(

µ− 1

µ+ 1

)}

. (16)
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FIG. 2. The ratio R = v σ(χχ → e+νW−)/v σ(χχ → e+e−)
as a function of µ = (mη/mχ)

2, for mχ = 300 GeV. We have
used v = 10−3c, appropriate for the Galactic halo.
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FIG. 3. The ratio R = v σ(χχ → e+νW−)/v σ(χχ → e+e−)
as a function of the DM mass mχ, for µ = 1.2 GeV. We have
used v = 10−3c, appropriate for the Galactic halo.

The successful recovery of the photon bremsstrahlung
result in the massless W limit provides a check3

on the rather complicated expression for massive W

2 Note that Eq.2. of Ref. [15] is larger by an overall factor of two,
and also has the opposite sign for the (1+µ)[...] term, while Eq.1.
of Ref. [15] is consistent with our results.

3 A related work [23] appeared on the arXiv nearly simultaneously
with ours. In this related work there appears analytic expres-
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FIG. 4. The cross sections for χχ → e+νW− (red) and χχ →

e+e−γ (blue), for µ = 1.2 and coupling f = 1. For large DM
mass, the cross sections differ by a factor of 1/(2 sin2 θW ) =
2.17 while for mχ comparable to mW the W bremsstrahlung
cross section is suppressed by phase space effects.

bremsstrahlung given above in Eq.(15).
Since we are working in the limits v = 0 and mf = 0,

the nonzero results in Eqs.(15) and (16) imply that
the leading terms are neither helicity nor velocity sup-
pressed. Not clear from the mathematical expressions
is the sensible fact that the cross sections fall monoton-
ically with increasing mη (or µ). This monotonic fall
is shown in Fig. 2, where we plot the ratio of the W -
strahlung cross section to that of the lowest order process,
R = v σ(χχ → e+νW−)/v σ(χχ → e+e−). The lowest
order process itself falls as µ−2, so the W -strahlung pro-
cess falls as µ−4. This latter dependence is expected
for processes with two propagators each off-shell by 1/µ,
thereby signaling leading order cancellations among Fig.
1 diagrams (a)-(d).

Importantly, the effectiveness of the W -strahlung pro-
cesses in lifting suppression of the annihilation rate is
evident in Fig. 2. The ratio is maximized for µ close to
1, where mχ and mη are nearly degenerate. However, the
W -strahlung process dominates over the tree level anni-
hilation even if a mild hierarchy between mχ and mη is
assumed. The ratio exceeds 100 for µ ! 2.

Fig. 3 illustrates that the ratio R is insensitive to the
DM mass, except for low mχ where the W mass signifi-

sions for the MZ , MW = 0 limits of the cross-section which we
calculate, thereby providing another calculational check.
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the leading contribution arises already at tree level, therefore we do not need to consider
the subleading one-loop contributions.

When performing the tree-level matching, going from left- and right-handed currents
to vector and axial currents is straightforward. But this is not the full story, since the
operator coupling the DM to the Higgs current leads to the following contribution obtained
by giving the Higgs doublets an EWSB VEV. The result is to induce an e�ective tree-level
coupling between the DM and the Z boson

L��Z =
cH
⇥2

⇥�µ⇥
⇤
H†

⌅
i
⇥⇤
D µ ⌅H⇧ = �cH
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⌃
g2 + g� 2 ⇥�µ⇥Zµ . (2.27)

The Z boson also couples to SM fermions

LZ
N.C. =

g

2cw
ZµJ

µ
0 , (2.28)

where the neutral current Jµ
0 is defined as follows

Jµ
0 =

⇧

f

�
gV f f�

µf + gAf f�
µ�5f

⇥
, (2.29)

gV f =T 3
f � 2s2wQf , (2.30)

gAf = � T 3
f . (2.31)

Here, T 3
f is the third component of the weak isospin, sw the sine of the weak mixing angle

and Qf the fermion electromagnetic charge. The coe⇥cients for the SM fermions explicitly
read

gV u = 1
2 � 4

3s
2
w , gV d = �1

2 + 2
3s

2
w , gV e = �1

2 + 2s2w ,

gAu = �1
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2 .

(2.32)

Integrating out the Z boson gives rise to the Fermi Lagrangian for SM neutral currents

LFermi = �GF⌃
2
Jµ
0 J0µ . (2.33)

Analogously, tree-level Z exchange gives a finite threshold corrections to the Wilson coe⇥-
cients of the EMSM� EFT. The complete matching conditions read

c(i)�V u =
c(i)�q + c(i)�u

2
+ cH gV u , (2.34)

c(i)�V d =
c(i)�q + c(i)�d
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�c(i)�q + c(i)�u
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c(i)�Ae =
�c(i)�l + c(i)�e

2
+ cH gAe . (2.39)
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Figure 2. External legs corrections for SM fermions.
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Figure 3. External legs for SM Higgs.

3 Renormalization Group Evolution

We present the complete one-loop RG equations in both EFTs. Here, we only show Feynman
diagrams and quote final results. Regularization and renormalization at one loop in both
EFTs are detailedly discussed in App.B. As explained in the previous Section, no interesting
loop e�ect takes place among the dimension 5 operators, besides the well known heavy quark
threshold contribution from the Higgs portal [81]. Thus we focus on dimension 6 operators.

3.1 From the messenger scale to the EWSB scale

The evolution of the Wilson coe⇥cients in Eq. (2.9) is described by the di�erential equation

d CSM�

d lnµ
= �SM�CSM� , (3.1)

where µ is the renormalization scale and �SM� is the anomalous dimension matrix. Our
goal here is to fill out the 16� 16 = 256 entries of the matrix �SM� .

We start our one-loop analysis in this theory by considering external legs corrections.
Since the DM field is a gauge singlet, these contributions only involve SM fields and inter-
actions. We perform the field renormalizations

⇥i ⇥ Z1/2
�i

⇥i , H ⇥ Z1/2
H H , (3.2)

where ⇥i is any SM fermion, and we do it in such a way to subtract the infinite part from
the residue of each one-loop propagator. There are only two possible sources for this e�ect,
which are gauge and Yukawa interactions. As is well know, the Higgs quartic coupling does
not induce a one-loop contribution to the wave-function renormalization. The relevant
Feynman diagrams are shown in Figs. 2 and 3 for fermion and Higgs fields, respectively.

When considering vertex corrections, one still has to deal only with these two inter-
actions. We organize the presentation by fixing the external legs of a specific amplitude,
and then identifying all the possible one-loop contributions. In other words, we fix a given
e�ective operator from the ones in Table 6 and then look for operators mixing into it.
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Figure 4. One loop corrections to the Wilson coe⇥cient cL in the SM� EFT, where the crossed
circle denotes the e�ective vertex between SM fields and the DM bilinear. The index j for right-
handed fermions can be either u or d. The diagrams for the one-loop corrections to cuR and cdR are
analogous, but without the W i

µ gauge bosons in the loop.
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Figure 5. One loop corrections to the Wilson coe⇥cient cH in the SM� EFT. The crossed circle
notation is the same as Fig. 4. In the first row we have corrections from gauge interactions, in the
second row from Yukawa interactions.
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Figure 6. One loop corrections to the Wilson coe⇥cient cB of the redundant operator in the SM�

EFT. The crossed circle notation is the same as Fig. 4.

We start from the loop corrections to the Wilson coe⇥cient cL, which can be induced
by gauge interactions (diagonal renormalization) and by Yukawa interactions (o�-diagonal
renormalization). The associated Feynman diagrams are shown in Fig. 4. Loop e�ects for
cuR and cdR are analogous, with the important di�erence that right-handed fermions have no
SU(2)L interactions, and therefore there are no diagrams with W i

µ in the loop.
The analysis of loop corrections to cH involves many more Feynman diagrams. The

associated operator describes the DM interaction with two Higgs bosons, and we expect by
gauge invariance also diagrams with two Higgses and one electroweak gauge boson. We have
computed all the possible one-loop diagrams, both the ones with only two Higgs fields on
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We start from the loop corrections to the Wilson coe⇥cient cL, which can be induced
by gauge interactions (diagonal renormalization) and by Yukawa interactions (o�-diagonal
renormalization). The associated Feynman diagrams are shown in Fig. 4. Loop e�ects for
cuR and cdR are analogous, with the important di�erence that right-handed fermions have no
SU(2)L interactions, and therefore there are no diagrams with W i

µ in the loop.
The analysis of loop corrections to cH involves many more Feynman diagrams. The

associated operator describes the DM interaction with two Higgs bosons, and we expect by
gauge invariance also diagrams with two Higgses and one electroweak gauge boson. We have
computed all the possible one-loop diagrams, both the ones with only two Higgs fields on
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the external legs and the ones with an additional W i
µ or a Bµ gauge boson on the external

legs, and checked that they combine in a gauge invariant way to give the Higgs current
defined in Eq. (2.8). We show in Fig. 5 only the diagrams with two external Higgs bosons,
which get contributions from gauge and Yukawa interactions. For the latter, we checked
that the associated diagrams with an external Bµ combine in a gauge invariant way with
the others only after using the SM hypercharge values, as it should be.

Finally, loop diagrams in Fig. 6 radiatively induce a contribution to the Wilson coef-
ficient cB of the redundant operator in Eq. (2.10). By consistently using the equation of
motion, this translates into a shift for the independent operators as in Eqs. (2.11)-(2.16).2.

The explicit expression for the one-loop amplitudes, as well as the consequent derivation
of the RG equations, are presented in App. B. As shown there, the gauge interactions
contribution to wave-function renormalization exactly cancels with the associated vertex
corrections. This is consistent with the Ward identities in abelian gauge theories, and with
the fact that non-abelian gauge interactions renormalize only axial currents starting at two
loops. The final anomalous dimension matrix has two main pieces

�SM� = �SM�

⇤⇤
�
+ �SM�

⇤⇤
Y

, (3.3)

where the contribution proportional to the hypercharge gauge couplings is a consequence
of the diagrams in Fig. 6. The explicit expressions read

�SM�

⇤⇤
�
= 1

8⇤2

⌅

�����������������������������������������������������⌃

�
⇥2
u + ⇥2

d

⇥
/2 �⇥2

u/2 �⇥2
d/2 0 0 0 0 0 0 0 0 0 0 0 0

�
⇥2
u + ⇥2

d

⇥
/2

�⇥2
u ⇥2

u 0 0 0 0 0 0 0 0 0 0 0 0 0 ⇥2
u

�⇥2
d 0 ⇥2

d 0 0 0 0 0 0 0 0 0 0 0 0 ⇥2
d

0 0 0 ⇥2
e/2 �⇥2

e/2 0 0 0 0 0 0 0 0 0 0 ⇥2
e/2

0 0 0 �⇥2
e ⇥2

e 0 0 0 0 0 0 0 0 0 0 ⇥2
e

0 0 0 0 0
�
⇥2
c + ⇥2

s

⇥
/2 �⇥2

c/2 �⇥2
s/2 0 0 0 0 0 0 0

�
⇥2
c + ⇥2

s

⇥
/2

0 0 0 0 0 �⇥2
c ⇥2

c 0 0 0 0 0 0 0 0 ⇥2
c

0 0 0 0 0 �⇥2
s 0 ⇥2

s 0 0 0 0 0 0 0 ⇥2
s

0 0 0 0 0 0 0 0 ⇥2
µ/2 �⇥2

µ/2 0 0 0 0 0 ⇥2
µ/2

0 0 0 0 0 0 0 0 �⇥2
µ ⇥2

µ 0 0 0 0 0 ⇥2
µ

0 0 0 0 0 0 0 0 0 0
�
⇥2
t + ⇥2

b

⇥
/2 �⇥2

t /2 �⇥2
b/2 0 0

�
⇥2
t + ⇥2

b

⇥
/2

0 0 0 0 0 0 0 0 0 0 �⇥2
t ⇥2

t 0 0 0 ⇥2
t

0 0 0 0 0 0 0 0 0 0 �⇥2
b 0 ⇥2

b 0 0 ⇥2
b

0 0 0 0 0 0 0 0 0 0 0 0 0 ⇥2
⇥/2 �⇥2

⇥/2 ⇥2
⇥/2

0 0 0 0 0 0 0 0 0 0 0 0 0 �⇥2
⇥ ⇥2

⇥ ⇥2
⇥

3
�
⇥2
u � ⇥2

d

⇥
�3⇥2

u 3⇥2
d �⇥2

e ⇥2
e 3

�
⇥2
c � ⇥2

s

⇥
�3⇥2

c 3⇥2
s �⇥2

µ ⇥2
µ 3

�
⇥2
t � ⇥2

b

⇥
�3⇥2

t 3⇥2
b �⇥2

⇥ ⇥2
⇥ 3

⌦
q ⇥

2
q +
⌦

l ⇥
2
l

⇧

                                                     ⌥

,

(3.4)

2Alternatively, instead of dealing with a redundant operator, we can restrict ourselves to a minimal
basis. In this case one has to compute one-loop corrections to Wilson coe�cients coming from one-particle-
reducible (penguin-type) diagrams. We explicitly checked that the two procedures lead to the same results,
as it should be.
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FIG. 10. (Color online) A two-dimensional histogram of
APhigh and expansion time after applying the optimum fidu-
cial cuts, divided into bins of equal exposure to dark matter
(i.e. a dark matter signal would appear uniform in the his-
togram). All the background events populate the left and top
of the histogram. The optimum cuts are represented by the
red rectangle.
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FIG. 11. (Color online) The 90% C.L. limit on the SI
WIMP-nucleon cross section from PICO-60 is plotted in blue,
along with limits from COUPP (light blue), LUX (black),
XENON100 (orange), DarkSide-50 (green), and the reanaly-
sis of CDMS-II (magenta) [10, 40–43].

form factors described in [35–38] to determine sensitiv-
ity to both spin-dependent and spin-independent dark
matter interactions. For the SI case, we use the M re-
sponse of Table 1 in [35], and for SD interactions, we
use the sum of the �� and ��� terms from the same ta-
ble. To implement these interactions and form factors,
we use the publicly available dmdd code package [38, 39].
The resulting 90% C.L. limit plots for spin-independent
WIMP-nucleon and spin-dependent WIMP-proton cross-
sections are presented in Figs. 11 and 12.
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FIG. 12. (Color online) The 90% C.L. limit on the SD WIMP-
proton cross section from PICO-60 is plotted in blue, along
with limits from PICO-2L (red), COUPP (light blue region),
PICASSO (dark blue), SIMPLE (green), XENON100 (or-
ange), IceCube (dashed and solid pink), SuperK (dashed and
solid black) and CMS (dashed orange), [10, 12, 13, 44–48].
For the IceCube and SuperK results, the dashed lines assume
annihilation to W -pairs while the solid lines assume annihila-
tion to b-quarks. Comparable limits assuming these and other
annihilation channels are set by the ANTARES, Baikal and
Baksan neutrino telescopes [49–51]. The CMS limit is from
a mono-jet search and assumes an e�ective field theory, valid
only for a heavy mediator [52, 53]. Comparable limits are set
by ATLAS [54, 55]. The purple region represents parameter
space of the CMSSM model of [56].

VII. DISCUSSION

Despite the presence of a population of unknown ori-
gin in the dataset, the combination of the discriminat-
ing variables results in a large total exposure with zero
dark matter candidates. The SD-proton reach of bubble
chambers remains unmatched in the field of direct detec-
tion, significantly constraining CMSSM model parameter
space.

The leading hypothesis for the source of the back-
ground events is particulate contamination. An alpha
decay from an atom embedded in a small dust particle
can result in a partial alpha track into the fluid with the
daughter nucleus remaining in the particle, and such a
track could provide the acoustic signature observed in the
background events [26]. The timing and spatial distribu-
tions suggest convection currents as a potential source of
particle movement, and particulate spike runs in a test
chamber have shown that particulates do collect on the
interfaces. Additionally, assays of the fluids taken after
the run discovered many particulates with composition
matching the wetted surfaces of the inner volume, as well
as elevated levels of thorium in the chamber. A future run
of PICO-60 with C3F8 will include upgrades to allow for
improved cleaning of the glass and metal surfaces before

Spin dependent limits
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FIG. 4: Left: Existing bounds on s2� in the singlet-singlet model from h2 ⇥ �� (solid lines from ATLAS [50] and
CMS [51]) and from h2 ⇥ WW,ZZ (dashed black line, CMS [52]) as a function of the heavy scalar mass, mh2 . Right:
Bounds on s2� � Br(h2 ⇥ h1h1) from h2 ⇥ h1h1 ⇥ 2�2b (solid black from CMS [53], solid blue from ATLAS [54])
and from h2 ⇥ h1h1 ⇥ 4b (dashed black from CMS [55]). The projected exclusions at the 14-TeV LHC with 300 fb�1

(3000 fb�1) [56] are shown as dashed (solid) red lines. The colored points indicate the parameter region consistent
with the relic density constraint, �⇥ = �DM, with the di⇥erent colors (shapes) denoting current and future 90% C.L.
exclusions from direct detection experiments.

an additional jet allows for easier discrimination from the background [60].
As can be seen from the figures, current and future direct detection experiments can cover a significantly

larger portion of the parameter space of the singlet-singlet model than collider experiments. However, there
are also many parameter points that are not constrained by available data from LUX, but that are excluded by
LHC results for Higgs couplings and heavy Higgs searches. Therefore, collider and direct detection experiments
provide complementary information for probing this model. On the other hand, the correct relic density can
be realized for very small values of the mixing angle, sin� ⇥ 0.01, which cannot be tested conclusively either
at colliders or through direct detection.

B. Majorana Singlet-Doublet Model

For m0
l � 100 GeV, co-annihilation is required in the Majorana singlet-doublet model to obtain the correct

thermal relic density for weak Yukawa couplings, y < 1. This implies that the mass di�erence m0
m � m0

l is
preferred to be a few tens of GeV. For DM masses in the TeV range the model thus becomes significantly
fine-tuned. We therefore restrict ourselves to the range m0

l < 1 TeV.
If the mass di�erence becomes too small, the relic density constraint cannot be satisfied even for very small

values of y. This is depicted by the shaded region at the bottom of Fig. 5. On the other hand, large values of
y are constrained by limits on the spin-independent direct detection cross-section from LUX [35] (see shaded
region at the top of the plot).

In the remaining allowed part of parameter space, the mass di�erence m0
m �m0

l is relatively small, so that
the leptons from the process (47) are soft and fail the selection cuts for the 3⇥ signature [42, 43]. On the
other hand, the production cross-section for (47) is too small to be constrained by the available mono-jet data
[44, 45]. As a consequence, no bound on the cosmologically preferred parameter space of the singlet-doublet
model is obtained from LHC8 data (see also Refs. [61–63]). Similarly, the projected reach for the 3⇥ signal of
the LHC14 [64, 65] and FCC-hh [66, 67] does not extend into the white region in Fig. 5.

Instead, requiring a hard initial-state jet can help to trigger on events with soft leptons and improve the
signal-to-background ratio for this case. Several authors have analyzed this signature, consisting of at least
one hard jet, large missing energy, and at least two soft leptons, and found it to be promising for the parameter
region preferred by co-annihilation [46, 61, 68–70]. We have obtained the estimated 95% C.L. reach of LHC14
by recasting the analysis of Ref. [61]. Concretely, Ref. [61] contains results for a Majorana singlet-triplet
scenario, with the dominant signal contribution stemming from the process (47). In our case, since we have
heavy doublet fermions instead of a triplet, the production cross-section is reduced by a factor of two. After

Higgs portal: DM-SM via the Higgs 



14

m� < mh2/2 m� > mh2/2

!
!
!
!
!!

!!

!!
!!
!!

!!
!!
!!
!!

!!
!
!!
!!

!
!!
!
!
!!
!!

!
!!
!!
!
!
!

!!

!!
!!

!!
!

!
!!
!!
!
!!
!!
!

!
!!
!!
!!
!
!!
!
!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!
!

!!
!!
!!
!!
!!
!
!!
!!
!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!
!!
!!
!!
!!
!!
!!
!!
!!
!
!!

!!
!!
!!
!
!!
!!
!!
!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!

!

!!
!!
!!
!!
!
!
!!
!!
!!

!
!!
!!
!
!
!!
!
!

!!
!!
!!
!!
!!
!

!!
!!

!!
!!
!!
!
!
!!

!!
!!
!!
!!
!
!!
!!
!
!!
!
!!

!!
!!
!!
!
!!
!!
!
!
!

!!
!!
!!
!!
!
!!
!!
!
!
!

!!
!!
!!
!!
!!
!!
!
!

!
!!
!!
!!
!!
!!
!
!!
!

!!
!!
!!
!
!
!!
!!
!
!

!
!!
!!
!
!
!!
!
!
!

!!
!!
!!
!!
!!
!!
!!
!
!

!
!!
!!
!
!!
!
!

!!
!!
!!
!
!!
!!
!!
!

!!
!!
!
!!
!!
!

!!
!!
!!
!!
!

!!
!!
!

!!
!!
!!
!
!
!
!
!

!!
!!
!!
!!
!
!
!!

!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!
!

!

!!
!!
!!
!!
!!
!!
!!
!

!!
!
!
!!
!!

!!
!!
!!
!!
!!
!!
!
!

!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!
!

!!
!!
!
!!
!!
!!
!!

!!
!!
!
!!
!!

!!
!!
!!
!
!!
!!
!

!!
!!
!!
!

!

!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!
!

!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!

!!
!!
!
!!
!!
!!
!

!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!
!

!!
!!
!
!!
!!
!!
!!

!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!
!

!!
!!
!!
!!

!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!

!!
!!
!!
!!

!!
!!
!!
!!
!!
!

!!
!!
!!
!!

!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!

"
"
"
"

"

"
"
"
"
"

"

"
"
"
"
"

"

"
"
"
"
"

"

"
"
"
"
"
"

"

"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"

"
"
"
"
"
"
"
"
"
"
"

"

"

"

"
"
"
"

"
"

"

"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"

"
"
"
"
"

"
"

"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"

"

"
"
"
"
"
"
"
"
"

"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !"#$%&!& '( )*+
" ,-./-0 1!2#/ 34 +567689

! '!(30& +567689

):;< !8 #3%=$-0>?

:)#):;

@);

ABB CBB DBB <BB 8BBB

8E"8B#F

GE"8B#F

8E"8B#A

BEBG

BE8B

BEGB

"!A
$H!I%

?
-0

"

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!
!

!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!
!

!!
!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!

!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!
!

!!
!!
!!
!!
!!
!!
!!
!!
!

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !"#$%&!& '( )*+

" ,-./-0 1!2#/ 34 +567689

! '!(30& +567689

):;< !8 #3%=$-0>?

:)#):;

@);

ABB CBB DBB <BB 8BBB

8E"8B#F

GE"8B#F

8E"8B#A

BEBG

BE8B

BEGB

"!A
$H!I%

?
-0

"

FIG. 3: Allowed parameter space for the singlet-singlet model consistent with the requirement that the thermal relic
density of � accounts for all dark matter in the universe, �� = �DM. The di⇥erent colors (shapes) of the points indicate
current and future 90% C.L. exclusions from direct detection experiments. Also shown are current 95% C.L. limits from
Higgs coupling measurements at the LHC (dashed line), and future projections for LHC14 with 3000 fb�1 (dotted) and
ILC with

⇤
s � 500 GeV (long dashed). The left panel corresponds to m� < mh2/2, which forbids the annihilation

channels �� ⇥ h2h1,2, while in the right panel m� > mh2/2.

the SM Higgs with mass mh2 . Similarly, the production cross-section is ⇤(h2) = s2�⇤(H)SM , and is given by
the would-be SM Higgs production with mass mh2 .

For mh2 > 2mh1 , the decay h2 ⌥ h1h1 is kinematically allowed. It proceeds through the interactions

L ⌅ µ2h
3

v
� µ⇤

2
Sh2 � ⇥⇤vS2h� µSS

3

= h2h
2
1

⇤
3
µ2

v
s�c

2
� � µ⇤

2

�
c2� � 2s2�

⇥
c� � ⇥⇤v

�
s2� � 2c2�

⇥
s� � 3µSc�s

2
�

⌅
+ · · · .

(53)

If the mixing angle is small, s� ⇧ 1, then the h2h1h1 coupling is equal to µ⇤/2. This means that the h2 ⌥ h1h1

branching ratio can be large and will dominate over h2 ⌥ WW,ZZ, tt̄ for µ⇤ ⌃ v. On the other hand, if µ⇤ ⇧ v,
the decay h2 ⌥ h1h1 will be subleading. It is also possible to make the h2 ⌥ h1h1 branching ratio small while
keeping s� large, by canceling di�erent contributions in Eq. (53). For mh2 > 2m⇥, the decay h2 ⌥ inv. is open
and can become dominant for sizeable values of y or y5. The actual constraint from h2 decays thus strongly
depends on the specific realization of the model.

In Fig. 4 (left), we show the bounds from searches for direct decays of h2 into SM final states. They
can be expressed as a constraint on s2� ⇥ Br(h2 ⌥ V V, f f̄) as a function of mh2 , where V = W,Z, �, g.
The most constraining channels are h2 ⌥ WW,ZZ, with the resulting bound from CMS shown as a dashed
black curve [52]. The searches in the di-photon channel, h2 ⌥ ��, are e�ective at lower h2 masses. The
resulting bounds from ATLAS [50] and CMS [51] are shown as solid curves in the upper left corner. In
Fig. 4 (right), we also show bounds on s2� ⇥ Br(h2 ⌥ h1h1) from di-Higgs searches. The CMS [53] and
ATLAS [54] bounds from h2 ⌥ h1h1 ⌥ 2�2b are shown as solid black and blue lines, respectively. The CMS
bound from h2 ⌥ h1h1 ⌥ 4b [55] is shown as a dashed black line. There are also CMS di-Higgs searches
with di-photon and leptonic final states [57] and h2 ⌥ ⌅⌅ [58]. However, with their current precision these
results do not constrain s�. We see that relatively large mixing angles s� ⇤ 0.3 are allowed for all h2 masses,
comparable to the constraints from global Higgs coupling measurements in Eq. (49). In Fig. 4 we also show
as dashed (solid) red lines the projected exclusions at 14 TeV LHC with 300 fb�1 (3000 fb�1) obtained in
Ref. [56]. At the end of the high luminosity LHC run, mixing angles as small as s� ⇤ 0.05 can be probed for
mh2 ⇤ 400 GeV. Notice that for large h2 masses, large mixings are additionally constrained by electroweak
precision tests [49, 59].

At a 100 TeV collider, one can also search directly for DM production through an o�-shell singlet mediator
in the monojet signal, pp ⌥ h⇥

1(⌥ ⇧⇧̄)j, even if h1 does not decay to DM [10]. This signature is quite
challenging due to its very small cross-section, and can thus be observed only in a small parameter region with
m⇥ just above mh1/2. More promising is the signal with two jets and missing energy, where the presence of

Higgs portal: DM-SM via the Higgs 



5

 [GeV]
H

m

150 200 250 300 350 400

in
v
.)

 [
fb

]
→

H
 B

R
(

× 
Z
H

σ 

0

100

200

300

400

500

600

,SMZH
σ

Observed 95% CL limit

Expected 95% CL limit

σ1±

σ2±

ATLAS

ZH → ℓℓ + inv.

-1
 L dt = 4.5 fb∫ = 7 TeV, s

-1
 L dt = 20.3 fb∫ = 8 TeV, s

FIG. 3. Upper limits on �ZH � BR(H ⇥ inv.) at 95%
CL for a Higgs boson with 110 < mH < 400 GeV, for the
combined 7 and 8 TeV data. The full and dashed lines show
the observed and expected limits, respectively.

didate is considered and is either a scalar, a vector or a
Majorana fermion. The Higgs–nucleon coupling is taken
as 0.33+0.30

�0.07 [65], the uncertainty of which is expressed
by the bands in the figure. Spin-independent results
from direct-search experiments are also shown [66–73].
These results do not depend on the assumptions of the
Higgs-portal scenario. Within the constraints of such
a scenario however, the results presented in this Letter
provide the strongest available limits for low-mass DM
candidates. There is no sensitivity to these models once
the mass of the DM candidate exceeds mH/2. A search
by the ATLAS experiment for DM in more generic mod-
els, also using the dilepton + large Emiss

T final state, is
presented in Ref. [74].
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Figure 9: Left: Approximate 95% exclusion reach from the combination of VBF, ggH

and tt̄H channels with 3 ab�1 at
⇧
s = 14 and 3, 30 ab�1 at

⇧
s = 100 TeV determined

from S/
⇧
B = 1.96, neglecting systematic errors and correlations between channels. Right:

Approximate 5� discovery reach from the same combination at
⇧
s = 14, 100 TeV.

of 3 ab�1. For
⇧
s = 100 TeV we consider scenarios with 3 ab�1 and 30 ab�1, respectively.

We compute the significance of a search in terms of signal events S and background events

B passing cuts as

Exclusion Sign. =
S⇧

S +B
Discovery Sign. =

S⇧
B

(4.1)

neglecting systematic uncertainties in the signal and background estimates. In principle,

systematic uncertainties in background determination could have a substantial impact at⇧
s = 100 TeV since S/B is quite small. However, in practice one expects data-driven deter-

mination of Z+jets and other backgrounds to substantially lower systematic uncertainties by

the 100 TeV era.

Results for the exclusion and discovery reach of the VBF, monojet, and tt̄ searches at⇧
s = 14 TeV are presented in Fig. 6. For the VBF channel at 14 TeV, our preliminary study of

pileup e�ects indicates that S/
⇧
B is reduced approximately by a factor of 2� 3 for ⇤N⌅PU ⇥

100. This may potentially be mitigated through the use of next-generation jet-grooming

algorithms (see for example [71–73]). As expected, all three channels improve significantly

over the
⇧
s = 8 TeV VBF reach, while the VBF channel substantially outperforms the

monojet and tt̄ channels at
⇧
s = 14 TeV.

The corresponding results for VBF, monojet, and tt̄ searches at
⇧
s = 100 TeV are pre-

sented in Figs. 7 and 8 for the 3 ab�1 and 30 ab�1 scenarios, respectively. Here we do not

include pileup estimates, as the operating parameters and e⇤cacy of jet-grooming algorithms

are entirely unknown. The reach of the VBF search is in fairly good agreement with the

simplified analysis in [17], with a modest reduction in sensitivity due to the additional back-
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2

fermion DM with Higgs portal has been constructed in
Ref. [4]:

L = ⇤(i/⌅ � m� � ⇥S)⇤+
1

2
⌅µS⌅

µS � 1

2
m2

0S
2 (2)

� ⇥HSH
†HS2 � µHSSH

†H � µ3
0S � µS

3!
S3 � ⇥S

4!
S4.

Expanding both fields around their VEVs (�H0 =
vH , �S = vs), we can derive the Lagrangian in terms
of h and s. After diagonalization of the mass matrix,
DM ⇤ couples with both H1 and H2.

The interaction Lagrangian of H1 and H2 with the SM
fields and DM ⇤ is given by

Lint = �(H1 cos�+H2 sin�)

⇧

⌥
 

f

mf

vH
f̄f � 2m2

W

vH
W+

µ W�µ � m2
Z

vH
ZµZ

µ

⌃

�+ ⇥(H1 sin� � H2 cos�)⇤̄⇤ , (3)

following the convention of Ref. [4]. We identify the ob-
served 125 GeV scalar boson as H1. The mixing between
h and s leads to the universal suppression of the Higgs
signal strengths at the LHC, independent of production

and decay channels [4].
Let us start with the DM-nucleon scattering amplitude

at parton level, ⇤(p) + q(k) ⌃ ⇤(p⇥) + q(k⇥), the parton
level amplitude of which is given by

M = �u(p⇥)u(p)u(k⇥)u(k)
mq

vH
⇥ sin� cos�

⇤
1

t � m2
H1

+ imH1�H1

� 1

t � m2
H2

+ imH2�H2

⌅
(4)

⌃ u(p⇥)u(p)u(k⇥)u(k)
mq

2vH
⇥ sin 2�

⇤
1

m2
H1

� 1

m2
H2

⌅
⇥ mq

⇥3
dd

u(p⇥)u(p)u(k⇥)u(k), (5)

where t ⇥ (p⇥ � p)2 is the square of the 4-momentum
transfer to the nucleon, and we took the limit t ⌃ 0 in
the second line, which is a good approximation to the
DM-nucleon scattering. The scale of the dim-7 e⇤ective
operator, mq q̄q⇤⇤, describing the direct detection cross
section for the DM-nucleon scattering is defined in terms
of ⇥dd:

⇥3
dd ⇥

2m2
H1

vH
⇥ sin 2�

�
1 �

m2
H1

m2
H2

⇥�1

, (6)

⇥̄3
dd ⇥

2m2
H1

vH
⇥ sin 2�

, (7)

where ⇥̄dd is derived from ⇥dd in the limit mH2 ⇧ mH1 .
It is important to notice that the amplitude (4) was de-
rived from renormalizable and unitary Lagrangian with
the full SM gauge symmetry, and thus can be a good
starting point for addressing the issue of validity of com-
plementarity.

The amplitude for the monojet + missing ET signature
at hadron colliders is connected to the amplitude (4) by
crossing symmetry s ⌥ t. Comparing with the corre-
sponding amplitude from the EFT approach, we have to
include the following form factor:

1

⇥3
dd

⌃ 1

⇥̄3
dd

⇤
m2

H1

ŝ � m2
H1

+ imH1�H1

�
m2

H1

ŝ � m2
H2

+ imH2�H2

⌅
⇥ 1

⇥3
col(ŝ)

, (8)

where ŝ ⇥ m2
�� is the square of the invariant mass of the

DM pair. Note that s ⌅ 4m2
� in the physical region for

DM pair creation, and that there is no single constant
scale ⇥col for an e⇤ective operator that characterizes the

qq̄ ⌃ ⇤⇤̄, since ŝ varies in the range of 4m2
� ⇤ ŝ ⇤ s

with
⌦
s being the center-of-mass (CM) energy of the

collider. Also note that we have to include two scalar
propagators with opposite sign in order to respect the
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Figure 11: Results of fits for benchmark models that probe for potential extra contributions to the total width, but
do not allow contributions from non-SM particles in the H���, gg � H and H � Z� loops, with free gauge and
fermion coupling strengths ⇥V , ⇥F . The result for each parameter marked by a full box corresponds to the model
with a constraint on the total width from µo� . The result for each parameter marked by a full circle corresponds to
the model with the constraint ⇥V < 1 imposed. The the inner and outer bars correspond to 68% CL and 95% CL
intervals. The confidence intervals of BRi. ,u. and, in the benchmark model with the constraint ⇥V < 1, also ⇥V , are
estimated with respect to their physical boundaries as described in the text.

5.4.2. Probing BSM contributions in loops and to the total width

This next benchmark model releases the assumption of SM particle content in loop processes of the
previous benchmark by introducing the e�ective loop coupling parameters used in the benchmark models
of Section 5.3. The free parameters of this model are thus ⇥F , ⇥V , ⇥g, ⇥� , ⇥Z� and BRi. ,u. . Figure 12
shows the best-fit values and their uncertainties.

The six-dimensional compatibility of the SM hypothesis with the best-fit point is 96% (64%) when apply-
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FIG. 3: Allowed parameter space for the singlet-singlet model consistent with the requirement that the thermal relic
density of � accounts for all dark matter in the universe, �� = �DM. The di⇥erent colors (shapes) of the points indicate
current and future 90% C.L. exclusions from direct detection experiments. Also shown are current 95% C.L. limits from
Higgs coupling measurements at the LHC (dashed line), and future projections for LHC14 with 3000 fb�1 (dotted) and
ILC with

⇤
s � 500 GeV (long dashed). The left panel corresponds to m� < mh2/2, which forbids the annihilation

channels �� ⇥ h2h1,2, while in the right panel m� > mh2/2.

the SM Higgs with mass mh2 . Similarly, the production cross-section is ⌅(h2) = s2�⌅(H)SM , and is given by
the would-be SM Higgs production with mass mh2 .

For mh2 > 2mh1 , the decay h2 � h1h1 is kinematically allowed. It proceeds through the interactions

L ⇧ µ2h
3

v
� µ⇤

2
Sh2 � ⇥⇤vS2h� µSS

3

= h2h
2
1

⇤
3
µ2

v
s�c

2
� � µ⇤

2

�
c2� � 2s2�

⇥
c� � ⇥⇤v

�
s2� � 2c2�

⇥
s� � 3µSc�s

2
�

⌅
+ · · · .

(53)

If the mixing angle is small, s� ⌃ 1, then the h2h1h1 coupling is equal to µ⇤/2. This means that the h2 � h1h1

branching ratio can be large and will dominate over h2 � WW,ZZ, tt̄ for µ⇤ ⌥ v. On the other hand, if µ⇤ ⌃ v,
the decay h2 � h1h1 will be subleading. It is also possible to make the h2 � h1h1 branching ratio small while
keeping s� large, by canceling di�erent contributions in Eq. (53). For mh2 > 2m⇥, the decay h2 � inv. is open
and can become dominant for sizeable values of y or y5. The actual constraint from h2 decays thus strongly
depends on the specific realization of the model.

In Fig. 4 (left), we show the bounds from searches for direct decays of h2 into SM final states. They
can be expressed as a constraint on s2� ⇤ Br(h2 � V V, f f̄) as a function of mh2 , where V = W,Z, �, g.
The most constraining channels are h2 � WW,ZZ, with the resulting bound from CMS shown as a dashed
black curve [52]. The searches in the di-photon channel, h2 � ��, are e�ective at lower h2 masses. The
resulting bounds from ATLAS [50] and CMS [51] are shown as solid curves in the upper left corner. In
Fig. 4 (right), we also show bounds on s2� ⇤ Br(h2 � h1h1) from di-Higgs searches. The CMS [53] and
ATLAS [54] bounds from h2 � h1h1 � 2�2b are shown as solid black and blue lines, respectively. The CMS
bound from h2 � h1h1 � 4b [55] is shown as a dashed black line. There are also CMS di-Higgs searches
with di-photon and leptonic final states [57] and h2 � ⇧⇧ [58]. However, with their current precision these
results do not constrain s�. We see that relatively large mixing angles s� ⌅ 0.3 are allowed for all h2 masses,
comparable to the constraints from global Higgs coupling measurements in Eq. (49). In Fig. 4 we also show
as dashed (solid) red lines the projected exclusions at 14 TeV LHC with 300 fb�1 (3000 fb�1) obtained in
Ref. [56]. At the end of the high luminosity LHC run, mixing angles as small as s� ⌅ 0.05 can be probed for
mh2 ⌅ 400 GeV. Notice that for large h2 masses, large mixings are additionally constrained by electroweak
precision tests [49, 59].

At a 100 TeV collider, one can also search directly for DM production through an o�-shell singlet mediator
in the monojet signal, pp � h⇥

1(� ⌃⌃̄)j, even if h1 does not decay to DM [10]. This signature is quite
challenging due to its very small cross-section, and can thus be observed only in a small parameter region with
m⇥ just above mh1/2. More promising is the signal with two jets and missing energy, where the presence of

A. Freitas, S. Westhoff, and J. Zupan, JHEP 1509 (2015) 015, arXiv:1506.04149.
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Higgs portal: DM-SM via the Higgs 

Scalar singlet Fermion singlet

Scalar singlet
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Fermion singlet/doublet
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+

Fermion doublet/triplet

Majorana Dirac



However, Eq. (9) is also true with the replacements sW → ŝW , cW → ĉW and MZ1
→

M̂Z , leading to the identity sW cWMZ1
= ŝW ĉW M̂Z . Keeping only to leading order 2

in ξ and isolating the Z1 interactions, the Lagrangian then takes the form:

LZ1
= − e

2sW cW

(

1 +
ξ2

2

(

M2
Z2

M2
Z1

− 1

)

+ ξsW tanχ

)

(10)

× ψiγ
µ

{(

T i
3 − 2Qis2

∗ + ξf̃ i
V

)

−
(

T i
3 + ξf̃ i

A

)

γ5
}

ψiZ1µ

where we have used

M̂2
Z = M2

Z1

{

1 + sin2 ξ

(

M2
Z2

M2
Z1

− 1

)}

(11)

and defined

f̃ i
V,A =

ĝ′cW sW

e cos χ
f i

V,A

s2
∗ ≡ sin2 θ∗ (12)

= s2
W + c2

W sW ξ tan χ − c2
Ws2

W

c2
W − s2

W

(

M2
Z2

M2
Z1

− 1

)

ξ2

The last equation defines yet another weak angle which appears only in the vector
interaction vertices.

This Lagrangian has a very familiar form and can be taken over directly to the
effective Lagrangian formulation of the S, T, U parameters [5, 10, 11]. In that for-
mulation, the model-independent (i.e., g′ → 0) part of the corrected Z1 interaction
Lagrangian has the form:

LZ1
= − e

2sW cW

(

1 +
αT

2

)

ψiγ
µ

(

(T i
3 − 2Qis2

∗) − T i
3γ

5
)

ψiZ1µ. (13)

where

s2
∗ = s2

W +
1

c2
W − s2

W

(

1

4
αS − c2

W s2
WαT

)

(14)

Comparing Eqs. (10) and (12) to Eqs. (13) and (14) we can identify the Z − Z ′

contributions to S, T to be:

αS = 4ξc2
WsW tan χ (15)

αT = ξ2

(

M2
Z2

M2
Z1

− 1

)

+ 2ξsW tan χ

which hold to lowest order in ξ. Several comments are in order: First, Z −Z ′ mixing
without kinetic mixing (i.e., χ = 0) always shifts T to larger values since the Z1 mass
will always be smaller than the pure SM Z mass (assuming M̂Z′ > M̂Z). However in

2It is often the case that ξ2(M2
Z2

/M2
Z1

) ∼ O(ξ) so we will keep it when working at O(ξ).
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SU(3)C SU(2)W U(1)Y U(1)B−xL U(1)q+xu U(1)10+x5̄ U(1)d−xu

qL 3 2 1/3 1/3 1/3 1/3 0

uR 3 1 4/3 1/3 x/3 −1/3 −x/3

dR 3 1 −2/3 1/3 (2 − x)/3 −x/3 1/3

lL 1 2 −1 −x −1 x/3 (−1 + x)/3

eR 1 1 −2 −x −(2 + x)/3 −1/3 x/3

νR −1 (−4 + x)/3 (−2 + x)/3 −x/3
1 1 0

ν ′
R · · −1 − x/3 ·

ψl
L −1 · −(1 + x)/3 −2x/5

1 2 −1
ψl

R −x · 2/3 (−1 + x/5)/3

ψe
L −1 · · ·

1 1 −2
ψe

R −x · · ·

ψd
L · · −2/3 (1 − 4x/5)/3

3 1 −2/3
ψd

R · · (1 + x)/3 x/15

Table 1: Fermion gauge charges.

for the SM fermions that allows quark and lepton masses from Yukawa couplings, and is

relevant for Z ′ searches at the Tevatron.

All other generation-independent U(1)z charge assignments require the restrictions

on fermion charges from fermion mass generation to be lifted, for example by replacing

the Yukawa couplings with higher-dimensional operators. The six anomalies given in

Eqs. (2.14)-(2.16) vanish only for the nonexotic family of U(1)z charges that depends on

two parameters [5]. Assuming that zq "= 0, and normalizing the gz gauge coupling such

that zq = 1/3, determines all other charges as a linear function of a single free parameter,

x, as shown in Table 1. We label this charge assignment by U(1)q+xu. Particular cases

of Z ′ “models” include U(1)B−L for x = 1, the U(1)χ from SO(10) grand unification for

x = −1, and the [U(1)R × U(1)B−L]/U(1)Y group from left-right symmetric models for

x = 4 − 3g2
R/g2

Y where gR is the U(1)R gauge coupling.

Many popular Z ′ models are accessible at the Tevatron provided both the restrictions

from fermion mass generation are lifted and new fermions charged under the SM gauge

group are present. We have found a couple of generation-independent charge assignments

10
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Anomalies
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SU(3)C SU(2)W U(1)Y Axial A Axial B Leptophobic A Leptophobic B Leptophobic C Axial-Leptophobic

qL 3 2 1/3 1/3 1/3 1/3 1/3 2/3 1/3
uR 3 1 4/3 -1/3 -1/3 1/3 1/3 2/3 -1/3
dR 3 1 -2/3 -1/3 -1/3 1/3 1/3 2/3 -1/3
lL 1 2 -1 1/3 -1/3 0 0 0 0
eR 1 1 -2 -1/3 -2/3 0 0 0 0

�R 1 1 0 -1/3 – -1 -3 – -5/3
��
R 1 1 0 -4/3 – – 2 – –

⇥L 1 1 0 – 1/3 – – 1 –
⇥R 1 1 0 – -4/3 – – -1 –

⇤d
L 3 1 -2/3 -2/3 2/3 – – – -1/3

⇤d
R 3 1 -2/3 2/3 -2/3 – – – 1

⇤l
L 1 2 -1 -2/3 2/3 -1 2 -1 -1

⇤l
R 1 2 -1 2/3 1/3 – 3 1 –

⇤e
L 1 1 -2 – – -1 3 1 –

⇤e
R 1 1 -2 – – – 2 -1 -1/3

TABLE I. Charge assignments for Standard Model fermions and exotic fermions in selected U(1)� scenarios.

where Yf is the fermion’s hypercharge. And similarly
for the diagram with two Z ⇥s and one hypercharge gauge
boson:

�

fL

ncn2YfLz
2
fL �

�

fR

ncn2YfRz
2
fR = 0. (18)

The cancellation of the self-induced anomaly from a tri-
angle with three Z ⇥s requires:

�

fL

ncn2z
3
fL �

�

fR

ncn2z
3
fR = 0. (19)

And lastly, the cancellation of the anomaly resulting from
a diagram with two gravitons and a Z ⇥ requires:

�

fL

ncn2zfL �
�

fR

ncn2zfR = 0. (20)

If the only fermions in these loops are those of the SM,
the only anomaly-free U(1)⇥ is U(1)B�L (ie. that charged
under baryon number minus lepton number). All other
charge assignments require the introduction of additional
chiral fermions, known as exotics [120, 121]. As U(1)B�L

leads neither to purely axial nor leptophobic couplings,
we are lead to consider models with additional fermions.
A (B�L) charge assignment limited to third generation
fermions would be a phenomenologically viable option,
however.

Following Secs. III A and III B, we first consider a Z ⇥

with purely axial couplings to light quarks, zqL = �zuR =
�zdR . In this case, Eq. 15 (describing the g � g � Z ⇥

anomaly) cannot be satisfied without introducing colored
fermions beyond those contained within the SM. In Ta-
ble I, we describe the particle content in examples of
anomaly-free Z ⇥ models with purely axial couplings to
SM quarks. The first of these cases (labelled “Axial A”)
is the well known U(1)� model, as inspired by E6 Grand
Unification. In this model, all fermions belonging to the
10 or 5̄ representations of SU(5) have the same charge

under the new U(1)⇥. Anomalies are cancelled in this
model by two right-handed neutrinos (�R, �⇥R), as well
as the fermions ⇤l and ⇤d, which are vector-like under
the SM and possess the same SM charges as lL and dR,
respectively (each per generation). In this model, any of
the right-handed neutrinos could serve as our dark mat-
ter candidate, assuming that it is stabilized by some un-
named symmetry. We also present in Table I an alterna-
tive model with purely-axial couplings to the Z ⇥ (labelled
“Axial B”). Here, instead of a pair of right-handed neu-
trinos, we include left- and right-handed components of
the fermion ⇥, which again can serve as our dark matter
candidate.

Moving on to leptophobic scenarios, we consider three
models with a Z ⇥ that couples proportionally to baryon
number (“Leptophobic A-C”) [122, 123]. Although these
models do not require any additional colored fermions
to cancel anomalies, they do require ⇤l and ⇤e, with
the same SM charges as lL and eR, respectively. The
scenario “Leptophobic B” is particularly interesting, as
the Z ⇥ couples to the potential dark matter candidate
�R nine times more strongly than it does to SM quarks,
resulting in significantly relaxed constraints from hadron
colliders.

To the best of the author’s knowledge, there are no
well known examples in the literature of U(1)⇥ models
that are both axially coupled to quarks and leptophobic.
Such a model is not di�cult to construct, however, and
we give an example in the final column of Table I (“Axial-
Leptophobic”). In Fig. 5 we plot the constraints on the
parameter space of this axial and leptophobic model. For
a wide range of Z ⇥ masses (mZ� ⇥ 30 � 400 GeV) this
model is compatible with all direct detection and accel-
erator bounds.

In addition to axial and leptophobic models, there are
many viable scenarios in which the Z ⇥ couples dominantly
to the third generation. For example, the models “Axial

D. Hooper, PRD 91 1411.4079



Simplified Model Comparison



O. Buchmueller, M.J. Dolan, S.A. Malik, and C. McCabe, JHEP 1501 (2015), arXiv:1407.8257

A Minimal Simplified Dark Matter Model with a vector mediator has been used to compare collider and 
direct detection constraints

experiments. Section 4 contains our main results: we show the current complementarity of

mono-jet and direct detection searches for vector and axial-vector mediators in various two-

dimensional projections of the four-dimensional parameter space. We also have a dedicated

discussion (in section 4.2) of the low mass region where direct detection experiments lose

sensitivity and show projected limits (in section 4.3) from future scenarios, including limits

from the LHC after 30 fb�1, 300 fb�1 and 3000 fb�1 and xenon direct detection experi-

ments with multiple ton-year exposures. In section 5 we present a comparison of the limits

obtained in the MSDM and EFT frameworks, which serves to highlight the inadequacies

of the EFT framework. We present our conclusions in section 6.

2 Minimal Simplified Dark Matter models

The use of simplified models to characterise new physics searches at the LHC has become a

standard procedure in both the experimental and theoretical communities. The advantage

of simplified models is that they are fully described by a small number of fundamental

parameters, such as masses, couplings and/or cross-sections. All these parameters are

directly related to experimental observables, making this approach an e�ective framework

for characterising searches in a well-defined, simple, and consistent manner.

In this paper we introduce a Minimal Simplified Dark Matter (MSDM) framework,

which extends the SM matter content by two new fields whose properties are specified by

(a minimum of) four parameters. The two fields are the dark matter and the mediator

while the four basic parameters are the mass of the dark matter particle, mDM, the mass

of the mediator, Mmed, the coupling of quarks to the mediator, gq, and the coupling of

the mediator to the dark matter, gDM. This set of parameters is su⇤cient to characterise

the interactions of a variety of di�erent UV completions (which we assume do not interact

with each other) of the e�ective operators previously considered in the context of mono-

jet searches (see e.g. [9] for a comprehensive list), including both s-channel and t-channel

mediators [35–41].

In this paper we focus on the example of a vector mediator Z ⇥ which is exchanged in

the s-channel in mono-jet production. We consider the case when the dark matter is a

Dirac fermion ⇥ and assume that the quark-mediator coupling gq is equal for all quarks.

In this case, as shown schematically in figure 1, the model is completely characterised by

the four parameters discussed above. These parameters are su⇤cient to determine the

mono-jet production and direct detection scattering rate.

In general a vector mediator can have vector or axial-vector couplings with quarks and

the dark matter. In addition to the usual mass and kinetic terms for ⇥ and Z ⇥, our MSDM

model with a vector mediator is defined by the interaction terms

Lvector ⇥ �
�

q

gqZ
⇥
µq̄�

µq � gDMZ ⇥
µ⇥̄�

µ⇥ (2.1)

Laxial ⇥ �
�

q

gqZ
⇥
µq̄�

µ�5q � gDMZ ⇥
µ⇥̄�

µ�5⇥ (2.2)

for vector and axial-vector couplings respectively, where the sum extends over all quarks.

Models of a vector Z ⇥ mediator in the context of collider and direct detection searches have
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6 Conclusions

In many previous studies, the e⇥ective field theory (EFT) framework has been utilised to

interpret and characterise studies of dark matter (DM) production at the LHC. The EFT

framework is very powerful in its domain of validity. Unfortunately, as we discussed in our

previous paper [12], the limits from the EFT framework for collider searches apply only

to a limited class of theories in which the mediator mass is very heavy and the couplings

are very large. In particular, in the region where the EFT is valid, the mediator width is

often larger than the mass of the mediator (�med > Mmed), meaning that a particle-like

interpretation of the mediator is di⌅cult (in the context of a single mediator).

In this paper we propose a Minimal Simplified Dark Matter (MSDM) framework,

which is a more robust and accurate approach for interpreting and characterising collider

searches of dark matter. In section 2 we introduce MSDM models for vector and axial-

vector mediators. In its most minimal variant our models are characterised by four free

parameters: mDM, Mmed, gDM and gq, which are the DM and mediator masses, and the

mediator couplings to DM and quarks respectively. These parameters are su⌅cient to fully

characterise DM production at colliders and scattering at direct detection experiments

(see figure 1). The advantage of the MSDM models is that the full event kinematics are

captured and the dependence on all couplings and masses can be systematically studied.

After validating our implementation of the CMS mono-jet and LUX direct detection

searches (see figures 2 to 4), we map out the four-dimensional parameter space of our

MSDM models by showing projections in two parameters. For vector mediators, we find

that generally the LUX limits are much more constraining than the mono-jet limits (see

left panels in figures 5 to 8). The only exception is when mDM � 5 GeV, where direct

detection experiments lose sensitivity. In this DM mass range the LHC limits are more

constraining (see figure 9). In contrast, the LHC and LUX limits on axial-vector mediators

generally show full complementarity, probing orthogonal directions in the parameter space

(see right panels in figures 5 to 8). For instance, the mono-jet search probes larger values

of Mmed while direct detection searches probe larger values of mDM.

We also provide estimates for the projected limits from the LHC for 14 TeV operation

after 30 fb�1, 300 fb�1 and 3000 fb�1, and from LZ after a 10 ton year exposure (see

figure 10). It is interesting to note that the mono-jet reach in the axial-vector case ap-

proaches the neutrino noise, which, with current technology and calculations, is considered

an irreducible background for direct detection experiments. It therefore seems critical to

combine both search approaches in order to have the best possible coverage for discovery

in the future.

We further explore the validity of the EFT framework by comparing the limits from

our MSDM models with the EFT limits (see figures 11 and 12). The EFT limits fail to give

a good approximation to the MSDM limits for both vector and axial-vector mediators over

almost all of the parameter values considered. Confirming the results in [12], we find that

the EFT limits give a good representation of the MSDM limits only in the case of heavy

mediator mass and large couplings. The EFT limits may also easily lead to misleading

conclusions regarding the complementarity of collider and direct detection searches.
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Figure 5. The 90% CL limits from current mono-jet (blue lines) and direct detection (red lines)
searches in the mDM vs Mmed plane for the vector (left panel) and axial-vector (right panel) medi-
ators. The region to the left of the various curves is excluded. The solid, dashed and dot-dashed
lines are for (gq, gDM) = (1, 1), (0.3, 1) and (0.5, 0.5) respectively. While the LHC limits are similar
in both panels, the LUX limits are significantly more constraining for vector mediators. Note that
the vector case has log scales for both axes while the axial-vector case has linear scales.

The behaviour of the collider limits is more complex and can be understood as follows.

First, consider the collider limits for fixed values of mDM and at large values of Mmed. Here

we again expect the cross-section to scale as g2qg
2
DM. However, unlike for direct detection,

we must also take into account the e⇥ect of the mediator width �med as discussed in [12, 13].

In this case the partonic cross-section scales approximately as g2qg
2
DM/(M4

med�med) so that

the limit on Mmed ⇤ ⌅
gqgDM ��1/4

med . Although this approximation ignores the PDFs, we

find numerically that it gives a good rule of thumb for the scaling at large values of Mmed.

From eqs. (2.4) to (2.7) we see that at large values of Mmed the width of the mediator �med

is proportional to 18g2q + g2DM. This implies that the (gq, gDM) = (0.3, 1) case is enhanced

with respect to the other cases because �med is smallest for this case. This enhancement

explains why the (gq, gDM) = (0.3, 1) mono-jet limit is closer to the gq = gDM = 1 limit

rather than the gq = gDM = 0.5 limit as in the case of the direct detection limits.

Second, consider the collider limits for fixed values of Mmed. The limits on mDM are

constrained by the energy of the colliding partons since two DM particles must be produced

in the final state. The phase-space suppression factors that enter the cross-section for

vector and axial-vector mediators are typically of the form
�

Q2
tr � 4m2

DM(Q2
tr + 2m2

DM)

and (Q2
tr � 4m2

DM)3/2 respectively, where Qtr ⇥ 700 GeV is the s-channel momentum

transfer [18]. It should be noted that these phase space factors also appear in the width

calculation cf. eqs. (2.4) to (2.7). The axial-vector mediator is more strongly phase-space

suppressed, which accounts for the greater suppression between the gq = gDM = 1 and

gq = gDM = 0.5 limits at small Mmed in the axial-vector case compared to the vector case
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Figure 6. The 90% CL limits from the LHC mono-jet (blue lines) and LUX (red lines) searches in
the Mmed vs (gq = gDM) plane; we have fixed gq = gDM. The left and right panels show the limits
for vector and axial-vector mediators respectively. The region to the right of the various curves is
excluded. We show three di�erent dark matter masses: mDM = 10 GeV is solid, mDM = 100 GeV
is dashed and mDM = 200 GeV is dot-dashed. Note that the Mmed-axis has a log (linear) scale in
the left (right) panel.

in figure 5. Note that these phase-space suppression factors also account for the di�erence

between the vector and axial-vector EFT limits in the left panel of figure 2.

Further insights into the dependence on the chosen coupling scenarios can be gained

by looking at the projection in the Mmed vs gq, gDM plane, shown in figure 6. The solid,

dashed and dot-dashed lines show the limits for mDM = 10, 100 and 200 GeV respectively.

We have fixed gq = gDM in this figure and the region to the right of the lines is excluded.

In this plane the mono-jet limits are similar for axial-vector and vector mediators:

both exclude down to gq = gDM � 0.2 for light mediators (when mDM = 10 GeV) and both

show a characteristic turning point owing to the resonance of the s-channel mediator. The

resonance occurs when M2
med � 4m2

DM + /E
2
T (where /ET = 400 GeV). For values of Mmed

below this, the limits on the couplings become weaker because the production is through an

o�-shell mediator. The small di�erence in behaviour between the vector and axial-vector

limits at large couplings and large Mmed can again be understood by the di�erent phase-

space suppression factors. The axial-vector phase-space suppression is stronger so there is

more of a di�erence between the limits at mDM = 10, 100 and 200 GeV. We again note

that this behaviour is also found in the EFT limits in the left panel of figure 2 for the same

reason.

The direct detection limit curves instead show a rather simple behaviour as there are

no resonance e�ects in this case. The limits on Mmed rise in proportion to the coupling

strength cf. eqs. (3.8) and (3.10). In comparison to the collider limits where the limits are
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Figure 7. The 90% CL limits from mono-jet (blue lines) and direct detection (red lines) searches
in the mDM vs (gq = gDM) plane for the vector (left) and axial-vector (right) mediators. We have
fixed gq = gDM. The parameter space to the right of the various curves is excluded. We show two
di⇥erent mediator masses: Mmed = 500 GeV is solid and Mmed = 1000 GeV is dashed. Note that
the mDM-axis scales are di⇥erent for each panel.

stronger for smaller mDM, the direct detection limit is strongest at mDM = 100 GeV and

weakest for mDM = 10 GeV. This can be easily understood with reference to figure 4.

Figure 6 again demonstrates the good complementarity between the mono-jet and

direct detection searches for axial-vector mediators since they probe di⇥erent regions in

the MSDM parameter space. The direct detection experiments are better at probing small

Mmed, which are not yet accessible to the collider searches as the mediator is very o⇥-shell,

while the LHC is a better probe at larger values of Mmed.

In figure 7 we compare the two searches in the mDM vs (gq = gDM) plane. The solid

and dashed lines show the limits for Mmed = 500 and 1000 GeV respectively. The region to

the right of the curves is excluded in both panels. The behaviour of the limits in this figure

is similar to that shown already. The LUX limit is significantly stronger than the LHC

limit for vector mediators, except in the low mDM region. The LUX and LHC limits show

good complementarity in the axial-vector case as they probe di⇥erent regions of parameter

space. The scalings of the collider limits can be understood with reference to the width

and phase-space scalings discussed in connection with figure 5. As discussed previously,

for a given value of mDM the LUX limit on
⇥
gqgDM � Mmed.

Finally, we consider the limits in the gDM vs gq plane, where we fix both Mmed and

mDM. Figure 8 shows that the direct detection limits are fully symmetric in this plane.

This is because the direct detection cross-section is sensitive only to the product g2qg
2
DM

cf. eqs. (3.8) and (3.10). However, the mono-jet search is able to break this degeneracy

because it is also sensitive to the mediator width, which is not symmetric in gq and gDM

(�med � 18g2q + g2DM at large values of Mmed). Therefore in the event of a DM discovery
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Figure 8. The current LHC mono-jet (blue lines) and LUX (red lines) 90% CL limits in the
gDM vs gq plane for a vector (left panel) and axial-vector (right panel) mediator. The parameter
space above and to the right of the various lines is excluded. We show three di�erent sets of dark
matter and mediator masses (mDM,Mmed): (100, 1000) GeV is solid, (200, 500) GeV is dashed and
(200, 800) GeV is dot-dashed. Note that the left (right) panel has log (linear) axes.

at colliders and direct detection, the mono-jet analysis, or other collider searches like the

dijet or jets plus MET searches, could add important information in order to disentangle

the coupling structure.

4.2 Low dark matter mass region

We now focus on the low mDM region of the vector mediator parameter space. This

is of particular interest as direct detection searches lose sensitivity for mDM � 10 GeV

because the momentum transfer becomes small and the nuclear recoil energy falls below

experimental thresholds. This is not an issue for collider searches and so it is interesting

to understand how collider searches can help to constrain this parameter space. It is

also an interesting region both from a theoretical perspective, since mDM � 5 GeV is

predicted in many models of asymmetric DM (see [103] for a recent review), and from a

phenomenological perspective, since it is the region where CoGeNT [104–107], CRESST-

II [108], CDMS-Si [109] and DAMA/LIBRA [110] reported signal-like excesses in recent

years. However, in 2013 both LUX and SuperCDMS reported results which naively exclude

these signals. See also [111], [112–114] and [115–117] for additional non-DM explanations of

the CoGeNT, CRESST-II and DAMA/LIBRA excesses. In this section we complement the

LUX result with the recent result from SuperCDMS as it extends the sensitivity of direct

detection experiments to lower values of mDM. Further details about the SuperCDMS

result and how it is used are provided in section 3.3.

In figure 9 we show the limits from the LHC mono-jet, SuperCDMS and LUX searches

in the mDM vs Mmed plane (left panel) and the gDM vs gq plane (right panel). In the
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Figure 9. The 90% CL limits from the LHC mono-jet (blue lines), LUX (red lines) and SuperCDMS
(green lines) searches in the low mDM region. The left and right panels show the mDM vs Mmed

and gDM vs gq planes for a vector mediator. In the left panel, the region to the left and above the
lines is excluded. In the right panel, the region to the right and above the lines is excluded. In
the Mmed-mDM plane we show three di�erent set of couplings: (gq, gDM) = (1, 1) is solid, (0.3, 1)
is dashed and (0.5, 0.5) is dot-dashed. In the gq-gDM plane we fix Mmed = 1 TeV and show two
di�erent choices of the dark matter mass: mDM = 3.5 GeV and mDM = 6 GeV. In the right panel,
the mono-jet limit is identical for the two di�erent mDM values while there is no LUX limit for
mDM = 3.5 GeV.

left panel we show again the three di�erent coupling scenarios: (gq, gDM)= (1, 1), (0.3, 1)

and (0.5, 0.5). SuperCDMS and LUX exclude the region above the green and red lines,

while the LHC limits exclude the region to the left of the blue lines. In the right panel we

show the limits for mDM = 3.5 and 6 GeV. We fix Mmed = 1 TeV as this approximates

the current sensitivity of the mono-jet searches (see figure 5) but a lower mediator mass

would not significantly change our discussion. The region to the right of the various lines

is excluded.

The left panel demonstrates that in the region of interest the LHC limits are inde-

pendent of mDM. The LHC bounds are only limited by on-shell mediator production and

currently extend to Mmed � 1100 GeV (for gq = gDM = 1). This is in contrast to LUX

and SuperCDMS, whose sensitivity drops o� rapidly below 6 GeV and 3.5 GeV respec-

tively. This is also demonstrated in the right panel. While the LHC limit is independent

of the choices for mDM, the LUX and SuperCDMS limits drop o� rapidly. These examples

demonstrate that direct detection and collider limits have good complementarity for vector

mediators in the low mDM region. This mass region is highly motivated in asymmetric DM

models, where typically mDM � 5 GeV, so mono-jet searches may have an important role

to play in testing these models (see e.g. [118]).
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Figure 10. The blue and red lines show the current and projected 90% CL limits from the LHC
mono-jet and LUX searches in the mDM vs Mmed plane. The left and right panels show the limits
for vector and axial-vector mediators respectively for (gq, gDM) = (1, 1). The region to the left of
the various curves is excluded. The plot legend is the same for both panels. The short-dashed
green lines shows the direct detection discovery reach after accounting for the neutrino background.
While LUX has better sensitivity than mono-jet searches and approaches the neutrino limit for
vector mediators, the opposite is true for axial-vector mediators. Note that the left (right) panel
has log (linear) axes.

4.3 Projection for future searches

In this section we provide extrapolations of how the limits and complementarity between

the LHC and direct detection search avenues will continue to develop. Both the collider

and direct detection communities have plans for mid- and long-term projects that possess

the potential to significantly increase the sensitivity for DM searches.

For the LHC we provide projected limits for:

• LHC 13 TeV and 30 fb�1. This gauges the reach for the first year of LHC running

in 2015.

• LHC 14 TeV and 300 fb�1. This provides an estimate of the ultimate reach of the

LHC.

• HL-LHC 14 TeV and 3000 fb�1. This is the expected reach of a high-luminosity

upgrade of the LHC.

The basis for these extrapolations are the 8 TeV limits of the CMS mono-jet search pre-

sented in section 4. These limits are scaled to the di�erent future scenarios assuming that

the underlying performances of the search in terms of signal e⇤ciency and background

suppression remains unchanged. These assumptions were also used in the Snowmass [119]

and ECFA [120–122] studies and form the basis of the Collider Reach [123] tool. Ref. [123]
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fermion DM with Higgs portal has been constructed in
Ref. [4]:

L = ⇤(i/⌅ � m� � ⇥S)⇤+
1

2
⌅µS⌅

µS � 1

2
m2

0S
2 (2)

� ⇥HSH
†HS2 � µHSSH

†H � µ3
0S � µS

3!
S3 � ⇥S

4!
S4.

Expanding both fields around their VEVs (�H0 =
vH , �S = vs), we can derive the Lagrangian in terms
of h and s. After diagonalization of the mass matrix,
DM ⇤ couples with both H1 and H2.

The interaction Lagrangian of H1 and H2 with the SM
fields and DM ⇤ is given by

Lint = �(H1 cos�+H2 sin�)

⇧

⌥
 

f

mf

vH
f̄f � 2m2

W

vH
W+

µ W�µ � m2
Z

vH
ZµZ

µ

⌃

�+ ⇥(H1 sin� � H2 cos�)⇤̄⇤ , (3)

following the convention of Ref. [4]. We identify the ob-
served 125 GeV scalar boson as H1. The mixing between
h and s leads to the universal suppression of the Higgs
signal strengths at the LHC, independent of production

and decay channels [4].
Let us start with the DM-nucleon scattering amplitude

at parton level, ⇤(p) + q(k) ⌃ ⇤(p⇥) + q(k⇥), the parton
level amplitude of which is given by

M = �u(p⇥)u(p)u(k⇥)u(k)
mq

vH
⇥ sin� cos�

⇤
1

t � m2
H1

+ imH1�H1

� 1

t � m2
H2

+ imH2�H2

⌅
(4)

⌃ u(p⇥)u(p)u(k⇥)u(k)
mq

2vH
⇥ sin 2�

⇤
1

m2
H1

� 1

m2
H2

⌅
⇥ mq

⇥3
dd

u(p⇥)u(p)u(k⇥)u(k), (5)

where t ⇥ (p⇥ � p)2 is the square of the 4-momentum
transfer to the nucleon, and we took the limit t ⌃ 0 in
the second line, which is a good approximation to the
DM-nucleon scattering. The scale of the dim-7 e⇤ective
operator, mq q̄q⇤⇤, describing the direct detection cross
section for the DM-nucleon scattering is defined in terms
of ⇥dd:

⇥3
dd ⇥

2m2
H1

vH
⇥ sin 2�

�
1 �

m2
H1

m2
H2

⇥�1

, (6)

⇥̄3
dd ⇥

2m2
H1

vH
⇥ sin 2�

, (7)

where ⇥̄dd is derived from ⇥dd in the limit mH2 ⇧ mH1 .
It is important to notice that the amplitude (4) was de-
rived from renormalizable and unitary Lagrangian with
the full SM gauge symmetry, and thus can be a good
starting point for addressing the issue of validity of com-
plementarity.

The amplitude for the monojet + missing ET signature
at hadron colliders is connected to the amplitude (4) by
crossing symmetry s ⌥ t. Comparing with the corre-
sponding amplitude from the EFT approach, we have to
include the following form factor:

1

⇥3
dd

⌃ 1

⇥̄3
dd

⇤
m2

H1

ŝ � m2
H1

+ imH1�H1

�
m2

H1

ŝ � m2
H2

+ imH2�H2

⌅
⇥ 1

⇥3
col(ŝ)

, (8)

where ŝ ⇥ m2
�� is the square of the invariant mass of the

DM pair. Note that s ⌅ 4m2
� in the physical region for

DM pair creation, and that there is no single constant
scale ⇥col for an e⇤ective operator that characterizes the

qq̄ ⌃ ⇤⇤̄, since ŝ varies in the range of 4m2
� ⇤ ŝ ⇤ s

with
⌦
s being the center-of-mass (CM) energy of the

collider. Also note that we have to include two scalar
propagators with opposite sign in order to respect the















Another example was obtained for the Higgs portal interaction

Operator Uniqueness
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radiation would lead to a mono-jet plus missing energy signal. Given the sizable SM model

backgrounds, we expect the reach in both of these channels to be fairly limited. Of course,

the Higgs can be on-shell if 2M < mh, but this scenario is already strongly constrained by

limits to Higgs invisible decay signals. In the future, we expect the Higgs invisible decay

limits to continue to provide stronger limits in this regime than the collider direct search.

The rest of the paper is organized as following. In section 2, we carry out the chiral

rotation and present our parameterization of the model parameters. In section 3, we

present our analytic calculation of the annihilation cross section, and examine the validity

of our truncation of the EFT expansion. Our calculation of the limits from Higgs decay,

relic abundance, and direct detection are presented in section 4, section 5, and section 6,

respectively. Finally, we combine all the constraints and present the remaining parameter

space in section 7, before concluding in section 8. Appendix A contains discussion of some

selected results presented in a fashion complementary to the main text.

2 The E�ective Field Theory

We consider a convenient parametrization of the e⇥ective pre-EWSB mass-eigenstate La-

grangian coupling mixing scalar and pseudoscalar SM-singlet fermionic DM operators to

the SM via the Higgs portal H†H:1,2

L = LSM + ⇤̄
�
i/⌅ �M0

⇥
⇤+ ��1

⇤
cos ⇥ ⇤̄⇤+ sin ⇥ ⇤̄i�5⇤

⌅
H†H . (2.1)

As the couplings break chiral symmetry independently of the mass term, one would

expect M0 to be at least of order �, and since we are assuming that the non-SM operators

in (2.1) do not participate in EWSB, one also expects M0 and � are greater than the weak

scale, although we will allow M0 < ⇤v⌅ in this work.

After EWSB the Higgs field develops a vacuum expectation value ⇤v⌅ and the Higgs-

field content becomes (in the unitary gauge with ⇤v⌅ = 246 GeV)

H†H �⇥ ⇤v⌅2

2
+ ⇤v⌅h+

h2

2
. (2.2)

The Lagrangian then becomes

L = LSM + ⇤̄i/⌅⇤�
⇧
M0⇤̄⇤� ⇤v⌅2

2�

⇤
cos ⇥ ⇤̄⇤+ sin ⇥ ⇤̄i�5⇤

⌅⌃

+ ��1

⇤
cos ⇥ ⇤̄⇤+ sin ⇥ ⇤̄i�5⇤

⌅⇤
⇤v⌅h+

1

2
h2

⌅
. (2.3)

1Unless explicitly stated, we will consider the DM field ⇥ to be a Dirac fermion and point out di⇥erences

for the Majorana fermion case.
2The parametrization in terms of � and � is convenient for a numerical scan of the parameter space,

but we should caution the reader that the “EFT suppression” scale � in this parametrization is only

approximately the scale of new physics: the scalar (CP-conserving) and pseudoscalar (CP-violating) oper-

ators can logically have di⇥erent new physics scales associated with them and this gets mixed up in our

parametrization. This issue should be borne in mind when judging issues of perturbative unitarity.
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present our analytic calculation of the annihilation cross section, and examine the validity

of our truncation of the EFT expansion. Our calculation of the limits from Higgs decay,

relic abundance, and direct detection are presented in section 4, section 5, and section 6,

respectively. Finally, we combine all the constraints and present the remaining parameter

space in section 7, before concluding in section 8. Appendix A contains discussion of some

selected results presented in a fashion complementary to the main text.

2 The E�ective Field Theory

We consider a convenient parametrization of the e⇥ective pre-EWSB mass-eigenstate La-

grangian coupling mixing scalar and pseudoscalar SM-singlet fermionic DM operators to

the SM via the Higgs portal H†H:1,2

L = LSM + ⇤̄
�
i/⌅ �M0

⇥
⇤+ ��1

⇤
cos ⇥ ⇤̄⇤+ sin ⇥ ⇤̄i�5⇤

⌅
H†H . (2.1)

As the couplings break chiral symmetry independently of the mass term, one would

expect M0 to be at least of order �, and since we are assuming that the non-SM operators

in (2.1) do not participate in EWSB, one also expects M0 and � are greater than the weak

scale, although we will allow M0 < ⇤v⌅ in this work.

After EWSB the Higgs field develops a vacuum expectation value ⇤v⌅ and the Higgs-

field content becomes (in the unitary gauge with ⇤v⌅ = 246 GeV)

H†H �⇥ ⇤v⌅2

2
+ ⇤v⌅h+

h2

2
. (2.2)

The Lagrangian then becomes

L = LSM + ⇤̄i/⌅⇤�
⇧
M0⇤̄⇤� ⇤v⌅2

2�

⇤
cos ⇥ ⇤̄⇤+ sin ⇥ ⇤̄i�5⇤

⌅⌃

+ ��1

⇤
cos ⇥ ⇤̄⇤+ sin ⇥ ⇤̄i�5⇤

⌅⇤
⇤v⌅h+

1

2
h2

⌅
. (2.3)

1Unless explicitly stated, we will consider the DM field ⇥ to be a Dirac fermion and point out di⇥erences

for the Majorana fermion case.
2The parametrization in terms of � and � is convenient for a numerical scan of the parameter space,

but we should caution the reader that the “EFT suppression” scale � in this parametrization is only

approximately the scale of new physics: the scalar (CP-conserving) and pseudoscalar (CP-violating) oper-

ators can logically have di⇥erent new physics scales associated with them and this gets mixed up in our

parametrization. This issue should be borne in mind when judging issues of perturbative unitarity.
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If we were to assume instead that the DM is Majorana, we would insert the conventional

factor of 1/2 in front of every fermionic bilinear; the subsequent analysis of the Lagrangian

is then unchanged from the Dirac case, modulo possible initial or final state symmetry

factors in computing amplitudes.

If sin ⇤ ⌅= 0, after EWSB it is necessary to perform a chiral rotation and field redefinition

to have a properly defined field with a real mass

⌃ ⇥ exp (i⇥5 �/2)⌃ ⇤ ⌃̄ ⇥ ⌃̄ exp (i⇥5 �/2) . (2.4)

Note that a chiral rotation by � = ⇧ would change the sign of the mass term in (2.3) and

also change the sign of the interaction terms. We can thus without loss of generality take

M0 > 0, so long as we preserve the relative signs between the mass term and the interaction

terms.3

After chiral rotation and field redefinition, we demand that the coe⇥cient of ⌃̄i⇥5⌃

vanish in order to go to the real mass basis; this determines the proper chiral rotation and

gives the mass of the field after EWSB in terms of the Lagrangian parameters (we define

the mass after EWSB, M , as the coe⇥cient of �⌃̄⌃ in the rotated field variables). The

requisite rotation is:

tan� =

⇤
⇧v⌃2

2�
sin ⇤

⌅ ⇤
M0 �

⇧v⌃2

2�
cos ⇤

⌅�1

. (2.5)

This of course determines sin2 � and cos2 �, but not the (common) sign of cos� and sin�:

cos2 � =

�
M0 �

⇧v⌃2

2�
cos ⇤

⇥2

�
M0 �

⇧v⌃2

2�
cos ⇤

⇥2

+

�
⇧v⌃2

2�

⇥2

sin2 ⇤

and (2.6)

sin2 � =

�
⇧v⌃2

2�

⇥2

sin2 ⇤

�
M0 �

⇧v⌃2

2�
cos ⇤

⇥2

+

�
⇧v⌃2

2�

⇥2

sin2 ⇤

. (2.7)

Using this rotation angle, the mass becomes

M = ±

⇧�
M0 �

⇧v⌃2

2�
cos ⇤

⇥2

+

�
⇧v⌃2

2�

⇥2

sin2 ⇤ . (2.8)

The signs of M , cos�, and sin� are common; we choose the common sign to be “+” for

M , cos� = +
⌥
cos2 �, and sin� = +

⌥
sin2 �. With this choice the Lagrangian becomes4

L = LSM + ⌃̄i/⌥⌃� ⌃̄M⌃+ ��1

�
⇧v⌃h+

1

2
h2

⇥⇤
cos ⌅ ⌃̄⌃+ sin ⌅ ⌃̄i⇥5⌃

⌅
, (2.9)

3In our parametrization this sign can be absorbed by a redefinition ⇥ � ⇥+ ⇤ leading back to the same

form. Thus, by suitable choice of the quadrant in which ⇥ lies, the form (2.3) is completely general with

M0 > 0.
4If we had chosen the opposite signs for M , cos�, and sin�, we could perform a further chiral rotation

by ⇤ and field definition to recover the sign conventions in (2.9).
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After EWSB:

A chiral rotation and field redefinition is needed for a real mass

1. sin ⇥ = 0, cos ⇥ = ±1: This would be a pure scalar interaction before EWSB. Af-

ter EWSB the interaction term is ± ��1 ⌅̄⌅
�
⌃v⌥h+ h2/2

⇥
and the mass is M =⇤⇤⇤M0 ⇥ ⌃v⌥2/2�

⇤⇤⇤. Thus, a pure scalar interaction before EWSB will remain a pure

scalar interaction with no admixture of pseudoscalar interactions. However, note

that the mass M is in general di⇥erent from M0.

2. cos ⇥ = 0, sin ⇥ = ±1: This would be a pure pseudoscalar interaction before EWSB.

After EWSB the interaction term is

��1

�

�⌦�
⌃v⌥2

2�M
⌅̄⌅±

⌘⇣⇣✏1�
⌃

⌃v⌥2

2�M

⌥2

⌅̄i�5⌅

 

�↵
�
⌃v⌥h+ h2/2

⇥
,

and in both cases M =

�

M2
0 +

⌅
⌃v⌥2

2�

⇧2

> ⌃v⌥2/2�. Even if the Higgs portal

coupling is purely pseudoscalar in the EW-symmetric Lagrangian, after EWSB a

scalar term proportional to ⌃v⌥2/2�M is generated.

3. M0 = 0 (or more generally, M0 ⇧ ⌃v⌥2/2�): In this case M = ⌃v⌥2/2�. If

M0 = 0, then cos ⇤ = �1 and sin ⇤ = 0, and the interaction term is purely scalar:

L ⌅ ���1
�
vh+ h2/2

⇥
⌅̄⌅. The chiral rotation that resulted in a real mass term

transforms the interaction into a purely scalar interaction irrespective of the value of

⇥. The only two parameters in this limit are M and �; one of the parameters may

be set by the requirement that freeze out results in the correct relic abundance.

Whether scalar, pseudoscalar, or a combination of both, the nature of the interactions

is of great importance: annihilation through a pure scalar interaction (sin ⇤ = 0) is velocity

suppressed, while elastic scattering of WIMPs with nucleons through a pure pseudoscalar

interaction (cos ⇤ = 0) is velocity suppressed.9 If both interactions are present, then the

(non-velocity-suppressed) interaction most important for direct detection (scalar) may not

be the same as the (non-velocity-suppressed) interaction most important for determining

the relic abundance (pseudoscalar).

We note finally that the form of the Lagrangian in terms of the chirally rotated field

variables is only appropriate to use ‘below’ the electroweak phase transition. We restrict

ourselves to considering DM lighter than 3 TeV where direct detection constraints from

LUX [29] are available, so this condition is always satisfied since such DM decouples at

T � O(200) GeV (the freeze-out temperature TF ⇤ M/xF with xF ⇤ 20�25 [36]). ‘Above’

the phase transition, the unrotated form should be used in the freeze-out computation,

while the rotated form would be relevant to compute all present-day low-energy observables:

we do not explore this regime further in this paper.

9Strictly speaking, the interaction is momentum-transfer suppressed, but for elastic scattering this leads

to velocity suppression.
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be set by the requirement that freeze out results in the correct relic abundance.

Whether scalar, pseudoscalar, or a combination of both, the nature of the interactions

is of great importance: annihilation through a pure scalar interaction (sin ⇤ = 0) is velocity

suppressed, while elastic scattering of WIMPs with nucleons through a pure pseudoscalar

interaction (cos ⇤ = 0) is velocity suppressed.9 If both interactions are present, then the

(non-velocity-suppressed) interaction most important for direct detection (scalar) may not

be the same as the (non-velocity-suppressed) interaction most important for determining

the relic abundance (pseudoscalar).

We note finally that the form of the Lagrangian in terms of the chirally rotated field

variables is only appropriate to use ‘below’ the electroweak phase transition. We restrict

ourselves to considering DM lighter than 3 TeV where direct detection constraints from

LUX [29] are available, so this condition is always satisfied since such DM decouples at

T � O(200) GeV (the freeze-out temperature TF ⇤ M/xF with xF ⇤ 20�25 [36]). ‘Above’

the phase transition, the unrotated form should be used in the freeze-out computation,

while the rotated form would be relevant to compute all present-day low-energy observables:

we do not explore this regime further in this paper.

9Strictly speaking, the interaction is momentum-transfer suppressed, but for elastic scattering this leads
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If we were to assume instead that the DM is Majorana, we would insert the conventional

factor of 1/2 in front of every fermionic bilinear; the subsequent analysis of the Lagrangian

is then unchanged from the Dirac case, modulo possible initial or final state symmetry

factors in computing amplitudes.

If sin ⇤ ⌅= 0, after EWSB it is necessary to perform a chiral rotation and field redefinition

to have a properly defined field with a real mass

⌃ ⇥ exp (i⇥5 �/2)⌃ ⇤ ⌃̄ ⇥ ⌃̄ exp (i⇥5 �/2) . (2.4)

Note that a chiral rotation by � = ⇧ would change the sign of the mass term in (2.3) and

also change the sign of the interaction terms. We can thus without loss of generality take

M0 > 0, so long as we preserve the relative signs between the mass term and the interaction

terms.3

After chiral rotation and field redefinition, we demand that the coe⇥cient of ⌃̄i⇥5⌃

vanish in order to go to the real mass basis; this determines the proper chiral rotation and

gives the mass of the field after EWSB in terms of the Lagrangian parameters (we define

the mass after EWSB, M , as the coe⇥cient of �⌃̄⌃ in the rotated field variables). The

requisite rotation is:

tan� =

⇤
⇧v⌃2

2�
sin ⇤

⌅ ⇤
M0 �

⇧v⌃2

2�
cos ⇤

⌅�1

. (2.5)

This of course determines sin2 � and cos2 �, but not the (common) sign of cos� and sin�:

cos2 � =

�
M0 �

⇧v⌃2

2�
cos ⇤

⇥2

�
M0 �

⇧v⌃2

2�
cos ⇤

⇥2

+

�
⇧v⌃2

2�

⇥2

sin2 ⇤

and (2.6)

sin2 � =

�
⇧v⌃2

2�

⇥2

sin2 ⇤

�
M0 �

⇧v⌃2

2�
cos ⇤

⇥2

+

�
⇧v⌃2

2�

⇥2

sin2 ⇤

. (2.7)

Using this rotation angle, the mass becomes

M = ±

⇧�
M0 �

⇧v⌃2

2�
cos ⇤

⇥2

+

�
⇧v⌃2

2�

⇥2

sin2 ⇤ . (2.8)

The signs of M , cos�, and sin� are common; we choose the common sign to be “+” for

M , cos� = +
⌥
cos2 �, and sin� = +

⌥
sin2 �. With this choice the Lagrangian becomes4

L = LSM + ⌃̄i/⌥⌃� ⌃̄M⌃+ ��1

�
⇧v⌃h+

1

2
h2

⇥⇤
cos ⌅ ⌃̄⌃+ sin ⌅ ⌃̄i⇥5⌃

⌅
, (2.9)

3In our parametrization this sign can be absorbed by a redefinition ⇥ � ⇥+ ⇤ leading back to the same

form. Thus, by suitable choice of the quadrant in which ⇥ lies, the form (2.3) is completely general with

M0 > 0.
4If we had chosen the opposite signs for M , cos�, and sin�, we could perform a further chiral rotation

by ⇤ and field definition to recover the sign conventions in (2.9).
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where we have defined ⇤ = ⇥ + �:

cos ⇤ =
M0

M

�
cos ⇥ � ⇤v⌅2

2�M0

⇥
and sin ⇤ =

M0

M
sin ⇥ . (2.10)

For a fixed value of �, we note that the mapping between (M0, ⇥) and (M, ⇤) is,

given our sign conventions, bijective. However, as will be explained more fully below, our

analysis scans over (M, ⇤) and fixes � by requiring the correct DM relic density. In this

way, � = �(M, ⇤), and the mapping back to (M0, ⇥) from (M, ⇤) with � = �(M, ⇤) may

not be 1-to-1 in some regions of parameter space. Put another way, if one scans over

(M0, ⇥) and asks for the value of � required to give the correct relic density, there are

regions of parameter space where two or more solutions may be possible, corresponding

necessarily to physically distinct scenarios (di⇥erent values of M and ⇤) in the Lagrangian

relevant below the electroweak phase transition. As we are never interested in the regime

where we must work with (M0, ⇥) (see below), this subtlety does not enter our work further

(although, see appendix A), but it should be borne in mind in when relating parameters

of some UV completion to our results; of course, if � is fixed a priori, then this concern is

not applicable.

Comparing eqs. (2.9) and (2.1), it appears that the discussion about chiral rota-

tions to have a proper mass term could have been avoided by just substituting5 H†H ⇥
H†H � 1

2⇤v⌅
2 = ⇤v⌅h + 1

2h
2 in (2.1). In the spirit of e⇥ective field theories, as we do not

know the origin of the mass M0 in the UV theory, one would näıvely expect we should not

care whether or not M in (2.9) has a contribution from EWSB. However, we have learned

something important because, due to the pseudoscalar interaction term, making the sub-

stitution H†H ⇥ H†H � 1
2⇤v⌅

2 in (2.1) — thereby avoiding the above discussion — is

equivalent to requiring a carefully chosen phase6 of the ⌅ mass term in the e⇥ective theory

above the EWSB scale, which in turn would require some conspiracy in the UV complete

theory to arrange. The opposite side of the same coin is that if we do work with the form of

the Lagrangian at (2.1), it is unnatural to have a pure pseudoscalar coupling after EWSB7

(cos ⇤ = 0) because this requires �M0 cos ⇥ = ⇤v⌅2/2, which is an ill-motivated coincidental

relationship between parameters in the e⇥ective high-energy theory (and thereby, its UV

completion) and the electroweak vacuum expectation value.8

Although we perform a general parameter scan, there are a few limiting cases that are

interesting to consider:

5This substitution preserves manifest SU(2)L ⇥ U(1)Y gauge invariance.
6The presence of both normal (⌅ ⇥̄⇥) and axial (⌅ ⇥̄i�5⇥) mass terms is equivalent a complex mass

term (L ⇤� M �⇥̄L⇥R + h.c.) with a non-zero phase for M �.
7Note that it is already clear at the level of the original Lagrangian that a vanishing scalar coupling

is a not naturally stabilized situation as it is not protected by any symmetry (cf. the case of vanishing

pseudoscalar coupling, which is protected by the overall CP-symmetry of the Lagrangian). What we have

really learned additionally is that EWSB itself causes changes to the pure-pseudoscalar nature of the original

coupling, already at tree-level.
8We would like to thank the authors of ref. [35] for sharing an early version of their work, wherein a

careful matching between our (2.1) and (2.9) is discussed.
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Figure 6. These colormaps represent interpolated values of ⌅�N
SI /⌅LUX

95% CL UL, with the solid black
line showing the equality of the computed cross section and the LUX limit [29] (note that 95% CL
UL from LUX are only available up to 2 TeV from DMTools [57]; we have extrapolated the limit
linearly up to 3 TeV — this is justified since the limit ⇥ 1/nDM ⇥ M and since in the data the
limit is already scaling approximately linearly in this region). Redder points “above” the black line
are excluded, bluer points “below” the black line are allowed. For reference, the dashed black line
is the cognate of the solid black line, except for the 90% CL UL from LUX: it shows the equality
of the computed cross-section and this limit; no other 90% CL UL contours are shown (90% CL
UL are available up to 3 TeV). Note that the mass region near M ⇤ mh/2 is allowed for any value
of ⇥: this is the resonant Higgs portal scenario [18]. The singly hatched region is where � < ⌅v⇧.
The doubly hatched region at low mass is where no � value can be found to obtain the correct relic
density.

�� ⇥ 220 km/s in the earth rest-frame; a proper treatment would require an averaging over

the DM velocity distribution already in the extraction of the cross-section exclusion bound

from LUX data, and not a posteriori once a bound is extracted, as there are additional

velocity-dependent factors which enter the conversion from the di⇥erential recoil rate in

the detector to a cross-section bound (see e.g. ref. [56]).

The total cross-section is

⌅�N
SI =

⌅|M|⇧
16⇤(M +MN )2

=
1

⇤

⇤
µ�N

m2
h

⌅2⇤fN
�

⌅2 ⇧
cos2 ⇥ +

1

2

�µ�N

M

⇥2
�2�

⌃
(6.4)

= 4.7� 10�38cm2

⇤
M

�

⌅2⇤ 1 GeV

0.94 GeV +M

⌅2 ⇧
cos2 ⇥ +

1

2

�µ�N

M

⇥2
�2�

⌃
. (6.5)

We will compare this to the latest LUX upper limits [29] on the spin-independent

WIMP-nucleon cross-section as supplied in numerical form by DMTools [57]. Results are

shown in figure 6 for both Dirac and Majorana DM.

7 Combined Limits

The combined limits are shown in figure 7 for Dirac and Majorana DM. The inserts are

regions where cos2 ⇥ is very close to zero and the EFT DM–Higgs coupling is nearly com-
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We will compare this to the latest LUX upper limits [29] on the spin-independent

WIMP-nucleon cross-section as supplied in numerical form by DMTools [57]. Results are

shown in figure 6 for both Dirac and Majorana DM.

7 Combined Limits

The combined limits are shown in figure 7 for Dirac and Majorana DM. The inserts are

regions where cos2 ⇥ is very close to zero and the EFT DM–Higgs coupling is nearly com-
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2

we use the LHC bounds on Binv
h to derive the bounds on

σSI
p as functions of (m2,α), and show when we recover

the usual results presented by ATLAS and CMS, and
when we do not. This exercise will be not only physi-
cally important, but also make good examples about the
difference between the EFT and the full theory, and we
would be able to understand clearly when the EFT can
fail.
In the following, we do not address thermal relic den-

sity of DM, since it is independent of the issues raised

and resolved in this paper. It would be straightforward
to include the discussions on thermal relic density, which
would be presented elsewhere [11].

RENORMALIZABLE SFDM MODEL

The simplest renormalizable Lagrangian for the Higgs
portal SFDM model is given by [8, 9] [27]

LSFDM = ψ (i∂ −mψ − λψS)− µHSSH
†H −
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+
1

2
∂µS∂

µS −
1

2
m2

SS
2 − µ3

SS −
µ

′

S

3
S3 −

λS

4
S4. (4)

We consider Dirac fermion DM in this paper. For the
Majorana fermion DM case, we have to multiply a factor
1/2 to the invisible decay rate of Higgses, and it results in
a factor 2 larger σSI

p relative to the case of Dirac fermion
DM. In general, the singlet scalar S can develop a nonzero
VEV, and we have to shift the field as S(x) → 〈S〉+s(x).
Also the SM Higgs will break the EWSB spontanesouly.
The detailed expressions for the relations among various
parameters can be found in Ref. [8], to which we refer
the details.
After all, there are two scalar bosons, a mixture of the

SM Higgs boson h and the singlet scalar s. The physical
states are defined after the SO(2) rotation:

H1 = h cosα− s sinα,

H2 = h sinα+ s cosα.

Note that there is a minus sign in one term which
orginates from SO(2) nature of the rotation matrix in
the scalar sector. This minus sign plays an important
role in the direct detection cross section of the DM scat-
tering on nucleon, since the contributions of H1 and H2

to σp interferes destructively [8]. This is a very generic
phenomenon in both SFDM and VDM cases [8, 18] [28].
The invisible and the non-SM branching fractions of

Higgs decay and the DM-proton scattering cross section
within the renormalizable SFDM model are given as fol-
lows:
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)
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with v being the lab velocity of DM, and mr ≡
mψmp/ (mψ +mp) and fp =

∑

q=u,d,s fq + 2
9
fQ with

fq being the hadronic matrix element and fQ = 1 −
∑

q=u,d,s fq. We take the fp = 0.326 from a lattice cal-

culation [12]. Note that the channel,“h → φφ∗ → φbb̄” is
also possible, and the associated decay rate is

Γh→φbb̄ ∼
(λ122sα)

2

3 (2π)5

(

mb

mh

)2 (mh −mφ)
5

mhm5
φ

(14)

This is smaller than ΓSM
h by many orders of magnitude,

and can be ignored safely.
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color.

3.5 Direct detection

For the CDM in the mass range

mψ = O(10− 100)GeV , (3.10)

there is a strong upper bound on the spin-independent (SI) dark matter-proton
scattering cross section from various direct detection experiments [31]:

σSI ! 10−44cm2. (3.11)

The spin-independent (SI) elastic scattering cross section for a Dirac fermion dark

matter to scatter off a proton target is given by

σp ≈
m2

r

π
λ2
p (3.12)

where mr is the reduced mass mr = mψmp/(mψ +mp), and λp is given by

λp

mp
=

∑

q=u,d,s

f (p)
Tq

λq

mq
+

2

27
f (p)
Tg

∑

q=c,b,t

λq

mq
. (3.13)
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The couplings λq’s describe the effective SI four fermion interactions of the quarks
and the dark matter, and are given by

λq

mq
=

λ sinα cosα

vH

(

1

m2
1

−
1

m2
2

)

. (3.14)

The parameter f ’s are defined by the following matrix elements

mpf
(p)
Tq ≡ 〈p|mq q̄q|p〉

for q = u, d, s, and f (p)
Tg = 1 −

∑

q=u,d,s f
(p)
Tq . The numerical values of the hadronic

matrix elements f (p)
Tq we used are [33]

f (p)
Tu = 0.023, f (p)

Td = 0.033, f (p)
Ts = 0.26. (3.15)

Note that recent study of these parameters in the lattice QCD yields somewhat

lower values [34]. In case we adopt these new numbers, the constraints from the
direct detection experiments will become milder.

After all, for the case mψ % mp, we find

σp & 5× 10−9 pb

(

143GeV

m1

)4(

1−
m2

1

m2
2

)2(λ sin θ cos θ

0.1

)2

. (3.16)

– 11 –

S. Baek, P. Ko and W.-I. Park, JHEP 1202 (2012), arXiv:1112.1847
S. Baek, P. Ko and W.-I. Park, Phys.Rev.D 90 (2014), arXiv:1405.3530

S. Baek, P. Ko, M. Park, W.-I. Park and C. Yu, arXiv:1506.06556

The second scalar field can develop a vev, and one rotates to the physical states

The direct detection cross-section is then altered 
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2

fermion DM with Higgs portal has been constructed in
Ref. [4]:

L = ⇤(i/⌅ � m� � ⇥S)⇤+
1

2
⌅µS⌅

µS � 1

2
m2

0S
2 (2)

� ⇥HSH
†HS2 � µHSSH

†H � µ3
0S � µS

3!
S3 � ⇥S

4!
S4.

Expanding both fields around their VEVs (�H0 =
vH , �S = vs), we can derive the Lagrangian in terms
of h and s. After diagonalization of the mass matrix,
DM ⇤ couples with both H1 and H2.

The interaction Lagrangian of H1 and H2 with the SM
fields and DM ⇤ is given by

Lint = �(H1 cos�+H2 sin�)

⇧

⌥
 

f

mf

vH
f̄f � 2m2

W

vH
W+

µ W�µ � m2
Z

vH
ZµZ

µ

⌃

�+ ⇥(H1 sin� � H2 cos�)⇤̄⇤ , (3)

following the convention of Ref. [4]. We identify the ob-
served 125 GeV scalar boson as H1. The mixing between
h and s leads to the universal suppression of the Higgs
signal strengths at the LHC, independent of production

and decay channels [4].
Let us start with the DM-nucleon scattering amplitude

at parton level, ⇤(p) + q(k) ⌃ ⇤(p⇥) + q(k⇥), the parton
level amplitude of which is given by

M = �u(p⇥)u(p)u(k⇥)u(k)
mq

vH
⇥ sin� cos�

⇤
1

t � m2
H1

+ imH1�H1

� 1

t � m2
H2

+ imH2�H2

⌅
(4)

⌃ u(p⇥)u(p)u(k⇥)u(k)
mq

2vH
⇥ sin 2�

⇤
1

m2
H1

� 1

m2
H2

⌅
⇥ mq

⇥3
dd

u(p⇥)u(p)u(k⇥)u(k), (5)

where t ⇥ (p⇥ � p)2 is the square of the 4-momentum
transfer to the nucleon, and we took the limit t ⌃ 0 in
the second line, which is a good approximation to the
DM-nucleon scattering. The scale of the dim-7 e⇤ective
operator, mq q̄q⇤⇤, describing the direct detection cross
section for the DM-nucleon scattering is defined in terms
of ⇥dd:

⇥3
dd ⇥

2m2
H1

vH
⇥ sin 2�

�
1 �

m2
H1

m2
H2

⇥�1

, (6)

⇥̄3
dd ⇥

2m2
H1

vH
⇥ sin 2�

, (7)

where ⇥̄dd is derived from ⇥dd in the limit mH2 ⇧ mH1 .
It is important to notice that the amplitude (4) was de-
rived from renormalizable and unitary Lagrangian with
the full SM gauge symmetry, and thus can be a good
starting point for addressing the issue of validity of com-
plementarity.

The amplitude for the monojet + missing ET signature
at hadron colliders is connected to the amplitude (4) by
crossing symmetry s ⌥ t. Comparing with the corre-
sponding amplitude from the EFT approach, we have to
include the following form factor:

1

⇥3
dd

⌃ 1

⇥̄3
dd

⇤
m2

H1

ŝ � m2
H1

+ imH1�H1

�
m2

H1

ŝ � m2
H2

+ imH2�H2

⌅
⇥ 1

⇥3
col(ŝ)

, (8)

where ŝ ⇥ m2
�� is the square of the invariant mass of the

DM pair. Note that s ⌅ 4m2
� in the physical region for

DM pair creation, and that there is no single constant
scale ⇥col for an e⇤ective operator that characterizes the

qq̄ ⌃ ⇤⇤̄, since ŝ varies in the range of 4m2
� ⇤ ŝ ⇤ s

with
⌦
s being the center-of-mass (CM) energy of the

collider. Also note that we have to include two scalar
propagators with opposite sign in order to respect the
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+ imH1�H1

� 1

t � m2
H2

+ imH2�H2

⌅
(4)

⌃ u(p⇥)u(p)u(k⇥)u(k)
mq

2vH
⇥ sin 2�

⇤
1

m2
H1

� 1

m2
H2

⌅
⇥ mq

⇥3
dd

u(p⇥)u(p)u(k⇥)u(k), (5)

where t ⇥ (p⇥ � p)2 is the square of the 4-momentum
transfer to the nucleon, and we took the limit t ⌃ 0 in
the second line, which is a good approximation to the
DM-nucleon scattering. The scale of the dim-7 e⇤ective
operator, mq q̄q⇤⇤, describing the direct detection cross
section for the DM-nucleon scattering is defined in terms
of ⇥dd:

⇥3
dd ⇥

2m2
H1

vH
⇥ sin 2�

�
1 �

m2
H1

m2
H2

⇥�1

, (6)

⇥̄3
dd ⇥

2m2
H1

vH
⇥ sin 2�

, (7)

where ⇥̄dd is derived from ⇥dd in the limit mH2 ⇧ mH1 .
It is important to notice that the amplitude (4) was de-
rived from renormalizable and unitary Lagrangian with
the full SM gauge symmetry, and thus can be a good
starting point for addressing the issue of validity of com-
plementarity.

The amplitude for the monojet + missing ET signature
at hadron colliders is connected to the amplitude (4) by
crossing symmetry s ⌥ t. Comparing with the corre-
sponding amplitude from the EFT approach, we have to
include the following form factor:

1

⇥3
dd

⌃ 1

⇥̄3
dd

⇤
m2

H1

ŝ � m2
H1

+ imH1�H1

�
m2

H1

ŝ � m2
H2

+ imH2�H2

⌅
⇥ 1

⇥3
col(ŝ)

, (8)

where ŝ ⇥ m2
�� is the square of the invariant mass of the

DM pair. Note that s ⌅ 4m2
� in the physical region for

DM pair creation, and that there is no single constant
scale ⇥col for an e⇤ective operator that characterizes the

qq̄ ⌃ ⇤⇤̄, since ŝ varies in the range of 4m2
� ⇤ ŝ ⇤ s

with
⌦
s being the center-of-mass (CM) energy of the

collider. Also note that we have to include two scalar
propagators with opposite sign in order to respect the

Interference effects arise due to the inclusion of the second scalar. This is a consequence 
of imposing the full SM gauge symmetry.

One needs to include the effects of both scalar particles in scattering amplitudes
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SFDM for a mixing angle α = 0.2. Upper panel: m2 =
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Lower panel: m2 = 100, 200, 500, 1000GeV for dashed lines
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Dark-gray and gray region are the exclusion regions of LUX
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Let us compare these results with those obtained in
the EFT:

(Binv
h )EFT =

(

Γinv
h

)

EFT

ΓSM
h +

(

Γinv
h

)

EFT

(15)

(σSI
p )EFT =

m2
r

π

[

λψH mp

Λm2
h

]2

f2
p (16)

where

(Γinv
h )EFT =

1

8π

(

λψHvH
Λ

)2

mh

(

1−
4m2

ψ

m2
h

)3/2

. (17)

Recent analysises of LHC experiments impose a bound
[1, 2] on the branching fraction of SM-like Higgs decay
to invisible particles as [2]

Binv
h < 0.51 at 95%CL (18)

(see also Ref. [13] for more involved analysis in the pres-
ence of extra singlet-like scalar boson that mixes with the
SM Higgs boson). In the renormalizable model described
by Eq. (4), the LHC bound on Binv

h can be translated di-
rectly to a constraint on σSI

p by the relation,

σSI
p = c4αm

4
hF(mψ, {mi}, v)

×
Binv

h ΓSM
h

(

1−Binv
h

)

8m2
r

m5
hβ

3
ψ

(

mp

vH

)2

f2
p (19)

where βψ =
√

1− 4m2
ψ/m

2
h. Here we set B

nonSM
1 = 0 for

simplicity, and denoted Binv
1 as Binv

h . On the other hand,
in the EFT described by Eq. (2) with

(

Binv
h

)

EFT
→ Binv

h ,
one finds

(σpSI)EFT
=

Binv
h ΓSM

h

1−Binv
h

8m2
r

m5
hβ

3
ψ

(

mp

vH

)2

f2
p (20)

which was used in the analysis’s of ATLAS [1] and CMS
[2]. Now it is clear from Eqs. (19) and (20) that, con-
trary to

(

σSI
p

)

EFT
of EFT, σSI

p of a full theory of Eq. (4)

has additional factors, c4αm
4
hF , which involves two extra

parameters, (α, m2). Note that, in the limit α is very
small so that we can make cosα $ 1, and m2 % m1

so that we can drop 1/m2
2 term in the σSI

p , Eq. (19)
for σSI

p approaches to Eq. (20) for
(

σSI
p

)

EFT
. However,

if one of these two assumptions is not valid, one can-
not make a definitive prediction for the σSI

p . Therefore
the bounds on the σSI

p derived by the ATLAS and the
CMS Collaborations should be taken with caution. Ba-
sically one cannot make model-independent connections
between Binv

h (= Binv
1 ) and σSI

p in the Higgs portal SFDM
model. This is clearly shown in Fig. 1 where colored solid
lines represent the LHC bound on σSI

p of Eq. (7) for var-
ious values for m2. The bound on (σSI

p )EFT of Eq. (16)
was also depicted for comparison. Note that, for low
mψ if m2 < mhcα/

√

1 + c2α, the LHC bound becomes
weaker than the claims made in [1, 2]. Especially, for
m2 ! mhcα/

√

12.3 + c2α, it can not win the direct detec-
tion bound for mψ " 8GeV.

RENORMALIZABLE VDM MODEL

The simplest renormalizable Lagrangian for the Higgs
portal VDM model is given by [14, 18]
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Let us compare these results with those obtained in
the EFT:

(Binv
h )EFT =

(

Γinv
h

)

EFT

ΓSM
h +

(

Γinv
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)

EFT

(15)

(σSI
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r

π

[

λψH mp

Λm2
h

]2
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p (16)

where

(Γinv
h )EFT =

1

8π

(

λψHvH
Λ

)2

mh

(

1−
4m2

ψ

m2
h

)3/2

. (17)

Recent analysises of LHC experiments impose a bound
[1, 2] on the branching fraction of SM-like Higgs decay
to invisible particles as [2]

Binv
h < 0.51 at 95%CL (18)

(see also Ref. [13] for more involved analysis in the pres-
ence of extra singlet-like scalar boson that mixes with the
SM Higgs boson). In the renormalizable model described
by Eq. (4), the LHC bound on Binv

h can be translated di-
rectly to a constraint on σSI

p by the relation,

σSI
p = c4αm

4
hF(mψ, {mi}, v)

×
Binv

h ΓSM
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(

1−Binv
h

)

8m2
r

m5
hβ

3
ψ

(

mp

vH

)2
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p (19)

where βψ =
√

1− 4m2
ψ/m

2
h. Here we set B

nonSM
1 = 0 for

simplicity, and denoted Binv
1 as Binv

h . On the other hand,
in the EFT described by Eq. (2) with

(

Binv
h

)

EFT
→ Binv

h ,
one finds

(σpSI)EFT
=

Binv
h ΓSM
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1−Binv
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hβ
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(

mp

vH

)2

f2
p (20)

which was used in the analysis’s of ATLAS [1] and CMS
[2]. Now it is clear from Eqs. (19) and (20) that, con-
trary to

(

σSI
p

)

EFT
of EFT, σSI

p of a full theory of Eq. (4)

has additional factors, c4αm
4
hF , which involves two extra

parameters, (α, m2). Note that, in the limit α is very
small so that we can make cosα $ 1, and m2 % m1

so that we can drop 1/m2
2 term in the σSI

p , Eq. (19)
for σSI

p approaches to Eq. (20) for
(

σSI
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)

EFT
. However,

if one of these two assumptions is not valid, one can-
not make a definitive prediction for the σSI

p . Therefore
the bounds on the σSI

p derived by the ATLAS and the
CMS Collaborations should be taken with caution. Ba-
sically one cannot make model-independent connections
between Binv

h (= Binv
1 ) and σSI

p in the Higgs portal SFDM
model. This is clearly shown in Fig. 1 where colored solid
lines represent the LHC bound on σSI

p of Eq. (7) for var-
ious values for m2. The bound on (σSI

p )EFT of Eq. (16)
was also depicted for comparison. Note that, for low
mψ if m2 < mhcα/

√

1 + c2α, the LHC bound becomes
weaker than the claims made in [1, 2]. Especially, for
m2 ! mhcα/

√

12.3 + c2α, it can not win the direct detec-
tion bound for mψ " 8GeV.

RENORMALIZABLE VDM MODEL

The simplest renormalizable Lagrangian for the Higgs
portal VDM model is given by [14, 18]

2

we use the LHC bounds on Binv
h to derive the bounds on

σSI
p as functions of (m2,α), and show when we recover

the usual results presented by ATLAS and CMS, and
when we do not. This exercise will be not only physi-
cally important, but also make good examples about the
difference between the EFT and the full theory, and we
would be able to understand clearly when the EFT can
fail.
In the following, we do not address thermal relic den-

sity of DM, since it is independent of the issues raised

and resolved in this paper. It would be straightforward
to include the discussions on thermal relic density, which
would be presented elsewhere [11].

RENORMALIZABLE SFDM MODEL

The simplest renormalizable Lagrangian for the Higgs
portal SFDM model is given by [8, 9] [27]

LSFDM = ψ (i∂ −mψ − λψS)− µHSSH
†H −

λHS

2
S2H†H

+
1

2
∂µS∂

µS −
1

2
m2

SS
2 − µ3

SS −
µ

′

S

3
S3 −

λS

4
S4. (4)

We consider Dirac fermion DM in this paper. For the
Majorana fermion DM case, we have to multiply a factor
1/2 to the invisible decay rate of Higgses, and it results in
a factor 2 larger σSI

p relative to the case of Dirac fermion
DM. In general, the singlet scalar S can develop a nonzero
VEV, and we have to shift the field as S(x) → 〈S〉+s(x).
Also the SM Higgs will break the EWSB spontanesouly.
The detailed expressions for the relations among various
parameters can be found in Ref. [8], to which we refer
the details.
After all, there are two scalar bosons, a mixture of the

SM Higgs boson h and the singlet scalar s. The physical
states are defined after the SO(2) rotation:

H1 = h cosα− s sinα,

H2 = h sinα+ s cosα.

Note that there is a minus sign in one term which
orginates from SO(2) nature of the rotation matrix in
the scalar sector. This minus sign plays an important
role in the direct detection cross section of the DM scat-
tering on nucleon, since the contributions of H1 and H2

to σp interferes destructively [8]. This is a very generic
phenomenon in both SFDM and VDM cases [8, 18] [28].
The invisible and the non-SM branching fractions of

Higgs decay and the DM-proton scattering cross section
within the renormalizable SFDM model are given as fol-
lows:

Binv
i =

(1− κi(α))Γinv
i

κi(α)ΓSM
i + (1− κi(α))Γinv

i + Γjj
i

(5)

BnonSM
i =

Γjj
i

κi(α)ΓSM
i + (1− κi(α))Γinv

i + Γjj
i

(6)

σSI
p =

m2
r

π

(

λψsαcα mp

vH

)2

F(mψ, {mi}, v)f2
p (7)

where κi(α) = c2α, s
2
α for i = 1, 2, the decay rates of Higgs

particles are given by

ΓSM
i = Γh(mi) (8)

Γinv
i =

λ2
ψ

8π
mi

(

1−
4m2

ψ

m2
i

)3/2

(9)

Γjj
i =

1

32πmi
λ2
ijj

(

1−
4m2

j

m2
i

)1/2

(10)

with λijj which is given by

λ122 = λHSvHc3α + 2 (3λH − λHS) vHcαs
2
α (11)

−2 [µ′
S + 3 (λS − λHS) vS ] c

2
αsα − λHSvSs

3
α

λ211 = λHSvSc
3
α + 2 (3λH − λHS) vHc2αsα (12)

2 [µ′
S + 3 (λS − λHS) vS ] cαs

2
α + λHSvHs3α

and

F =
1

4m2
ψv

2

[

∑

i

(

1

m2
i

−
1

4m2
ψv

2 +m2
i

)

(13)

−
2

(m2
2 −m2

1)

∑

i

(−1)i−1 ln

(

1 +
4m2

ψv
2

m2
i

)]

with v being the lab velocity of DM, and mr ≡
mψmp/ (mψ +mp) and fp =

∑

q=u,d,s fq + 2
9
fQ with

fq being the hadronic matrix element and fQ = 1 −
∑

q=u,d,s fq. We take the fp = 0.326 from a lattice cal-

culation [12]. Note that the channel,“h → φφ∗ → φbb̄” is
also possible, and the associated decay rate is

Γh→φbb̄ ∼
(λ122sα)

2

3 (2π)5

(

mb

mh

)2 (mh −mφ)
5

mhm5
φ

(14)

This is smaller than ΓSM
h by many orders of magnitude,

and can be ignored safely.
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Lower panel: m2 = 100, 200, 500, 1000GeV for dashed lines
from bottom to top. The balck dotted line is EFT prediction.
Dark-gray and gray region are the exclusion regions of LUX
[15] and projected XENON1T (gray) [16].

Let us compare these results with those obtained in
the EFT:

(Binv
h )EFT =

(

Γinv
h

)

EFT

ΓSM
h +

(

Γinv
h

)

EFT

(15)

(σSI
p )EFT =

m2
r

π

[

λψH mp

Λm2
h

]2

f2
p (16)

where

(Γinv
h )EFT =

1

8π

(

λψHvH
Λ

)2

mh

(

1−
4m2

ψ

m2
h

)3/2

. (17)

Recent analysises of LHC experiments impose a bound
[1, 2] on the branching fraction of SM-like Higgs decay
to invisible particles as [2]

Binv
h < 0.51 at 95%CL (18)

(see also Ref. [13] for more involved analysis in the pres-
ence of extra singlet-like scalar boson that mixes with the
SM Higgs boson). In the renormalizable model described
by Eq. (4), the LHC bound on Binv

h can be translated di-
rectly to a constraint on σSI

p by the relation,

σSI
p = c4αm

4
hF(mψ, {mi}, v)

×
Binv

h ΓSM
h

(

1−Binv
h

)

8m2
r

m5
hβ

3
ψ

(

mp

vH

)2

f2
p (19)

where βψ =
√

1− 4m2
ψ/m

2
h. Here we set B

nonSM
1 = 0 for

simplicity, and denoted Binv
1 as Binv

h . On the other hand,
in the EFT described by Eq. (2) with

(

Binv
h

)

EFT
→ Binv

h ,
one finds

(σpSI)EFT
=

Binv
h ΓSM

h

1−Binv
h

8m2
r

m5
hβ

3
ψ

(

mp

vH

)2

f2
p (20)

which was used in the analysis’s of ATLAS [1] and CMS
[2]. Now it is clear from Eqs. (19) and (20) that, con-
trary to

(

σSI
p

)

EFT
of EFT, σSI

p of a full theory of Eq. (4)

has additional factors, c4αm
4
hF , which involves two extra

parameters, (α, m2). Note that, in the limit α is very
small so that we can make cosα $ 1, and m2 % m1

so that we can drop 1/m2
2 term in the σSI

p , Eq. (19)
for σSI

p approaches to Eq. (20) for
(

σSI
p

)

EFT
. However,

if one of these two assumptions is not valid, one can-
not make a definitive prediction for the σSI

p . Therefore
the bounds on the σSI

p derived by the ATLAS and the
CMS Collaborations should be taken with caution. Ba-
sically one cannot make model-independent connections
between Binv

h (= Binv
1 ) and σSI

p in the Higgs portal SFDM
model. This is clearly shown in Fig. 1 where colored solid
lines represent the LHC bound on σSI

p of Eq. (7) for var-
ious values for m2. The bound on (σSI

p )EFT of Eq. (16)
was also depicted for comparison. Note that, for low
mψ if m2 < mhcα/

√

1 + c2α, the LHC bound becomes
weaker than the claims made in [1, 2]. Especially, for
m2 ! mhcα/

√

12.3 + c2α, it can not win the direct detec-
tion bound for mψ " 8GeV.

RENORMALIZABLE VDM MODEL

The simplest renormalizable Lagrangian for the Higgs
portal VDM model is given by [14, 18]

m2 = .01, 1, 10, 50, 70 GeV

m2 = 100, 200, 500, 1000 GeV

Model independent comparisons are 
rendered more difficult to come by

LUX

Xenon 1T

LUX

Xenon 1T



Operator Uniqueness and Mixing



Aside from scalar WIMPs each particular spin produces some leading non-relativistic operators 
that are unique to that spin

Two non-relativistic operators, O1 and O10, are ubiquitous, arising for all WIMP spins 0, 1/2, and 1

In five scenarios for spin 0, 1/2, or 1 dark matter, relativistic operators generate unique non-
relativistic operators at leading order.

The operators can produce radically different energy dependence for scattering off different 
nuclear targets.  Thus, a complementary use of different target materials will be helpful in order to 
reliably distinguish between different particle physics model possibilities for WIMP dark matter.

incoming and outgoing WIMP momenta and by ⌥k and ⌥k� the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
⌥q ·⌥v⇥ = 0. Here we will briefly outline the procedure employed in [46] in going from the NR
operators to the final di↵erential WIMP-nucleus cross section.

TABLE I. List of NR e�ective operators described in [46]

O1 1⇤1N

O2 (⌅v⇥)2

O3 i⌅SN · ( �q
mN

⇤ ⌅v⇥)

O4 ⌅S⇤ · ⌅SN

O5 i⌅S⇤ · ( �q
mN

⇤ ⌅v⇥)

O6 ( �q
mN

· ⌅SN )( �q
mN

· ⌅S⇤)

O7 ⌅SN · ⌅v⇥

O8 ⌅S⇤ · ⌅v⇥

O9 i⌅S⇤ · (⌅SN ⇤ �q
mN

)

O10 i �q
mN

· ⌅SN

O11 i �q
mN

· ⌅S⇤

O12 ⌅S⇤ · (⌅SN ⇤ ⌅v⇥)

O13 i(⌅S⇤ · ⌅v⇥)( �q
mN

· ⌅SN )

O14 i(⌅SN · ⌅v⇥)( �q
mN

· ⌅S⇤)

O15 �(⌅S⇤ · �q
mN

)
�
(⌅SN ⇤ ⌅v⇥) · �q

mN

⇥

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
⇤

�=n,p

15⇤

i=1
c�

i O�
i , (4)

where the coe�cients c�
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having di↵erent couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
⇤

⇥=0,1

15⇤

i=1
c⇥

i Oit
⇥ (5)

6
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Standard practice has been to start with effective interaction terms, and then 
reduce in the non-relativistic limit

WEAKLY INTERACTING MASSIVE PARTICLE-NUCLEUS . . . PHYSICAL REVIEW C 89, 065501 (2014)

in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics

1
2jχ + 1

1
2jN + 1

∑

spins

|M|2

≡
∑

k

∑

τ=0,1

∑

τ ′=0,1

Rk

(
#v⊥2
T ,

#q 2

m2
N

,
{
cτ
i c

τ ′

j

})
W ττ ′

k (#q 2b2),

(3)

where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity #v⊥

T and three-momentum transfer #q = #p ′ −
#p = #k − #k′, where #p ( #p ′) is the incoming (outgoing) WIMP
three-momentum and #k (#k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(#x) = c1#̄χ (#x)#χ (#x)#̄N (#x)#N (#x), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,

U (p) =
√

E + m

2m

(
ξ

#σ · #p
E+mχ

ξ

)

∼
(

ξ
#σ · #p
2m

ξ

)

, (5)

where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 #Sχ · #SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors #Sχ and #SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
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over final magnetic quantum numbers.
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where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity #v⊥
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three-momentum and #k (#k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
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where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
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the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 #Sχ · #SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors #Sχ and #SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
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where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity #v⊥
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three-momentum and #k (#k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?
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χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator
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reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
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of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
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and radial operator that can be decomposed with standard
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where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
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coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
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EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
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not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(#x) = c1#̄χ (#x)#χ (#x)#̄N (#x)#N (#x), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,

U (p) =
√

E + m

2m

(
ξ

#σ · #p
E+mχ

ξ

)

∼
(

ξ
#σ · #p
2m

ξ

)

, (5)

where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 #Sχ · #SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors #Sχ and #SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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From the relativistic EFT there are 20 combinations of fermionic bilinears 

From two scalar

and four vector terms

After performing a non-relativistic reduction, these 20 operators can be written in terms of the 15 Oi

2×2

4 × 4
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4
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To calculate cross-sections, one needs to square the amplitude, average over initial spins and sum 
over final states.

+
!q 2

m2
N

Rττ ′
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T ,
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) 〈jN || ∆J;τ (q) ||jN 〉〈jN || ∆J;τ ′(q) ||jN 〉

+
!q 2

m2
N

Rττ ′

∆Σ′(!v⊥2
T ,

!q 2

m2
N

) 〈jN || ∆J;τ (q) ||jN 〉〈jN || Σ′
J;τ ′(q) ||jN 〉

]

}

. (37)

Note that five of the eight terms above are accompanied by a factor of !q 2/m2
N . This is the parameter identified

in Sec. 2.3 that governs the enhancement of the composite operators with respect to the point operators
for those Oi where composite operators contribute. Thus one can read off those response functions that are
generated by composite operators from this factor. The DM particle response functions are determined by
the cτi s,
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The six nuclear operators appearing in Eq. (37), familiar from standard-model electroweak interaction
theory, are constructed from the Bessel spherical harmonics and vector spherical harmonics, MJM (q!x) ≡
jJ (qx)YJM (Ωx) and !MM

JL ≡ jL(qx)!YJLM (Ωx),

MJM ;τ (q) ≡
A
∑

i=1

MJM (q!xi) t
τ (i)

∆JM ;τ (q) ≡
A
∑

i=1

!MM
JJ(q!xi) ·

1

q
!∇i t

τ (i)

Σ′
JM ;τ (q) ≡ −i

A
∑

i=1

{

1

q
!∇i × !MM

JJ(q!xi)

}

· !σ(i) tτ (i)

=
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∑
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√

J

2J + 1
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√
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Σ′′
JM ;τ (q) ≡
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1

q
!∇i MJM (q!xi)

}

· !σ(i) tτ (i)
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Note that five of the eight terms above are accompanied by a factor of !q 2/m2
N . This is the parameter identified

in Sec. 2.3 that governs the enhancement of the composite operators with respect to the point operators
for those Oi where composite operators contribute. Thus one can read off those response functions that are
generated by composite operators from this factor. The DM particle response functions are determined by
the cτi s,
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The six nuclear operators appearing in Eq. (37), familiar from standard-model electroweak interaction
theory, are constructed from the Bessel spherical harmonics and vector spherical harmonics, MJM (q!x) ≡
jJ (qx)YJM (Ωx) and !MM

JL ≡ jL(qx)!YJLM (Ωx),

MJM ;τ (q) ≡
A
∑
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where the coupling coefficients ci may be different for proton and neutrons. The number N of such operators
depends on the generality of the particle physics description. We find that 10 operators arise if we limit
our consideration to exchanges involving up to spin-1 exchanges and to operators that are the leading-order
nonrelativistic analogs of relativistic operators. Four additional operators arise if more general mediators
are allowed.

This interaction can then be embedded in the nucleus. The procedure we follow here – though we discuss
generalizations in the Appendix – assumes that the nuclear interaction is the sum of the WIMP interactions
with the individual nucleons in the nucleus. The nuclear operators then involve a convolution of the Oi,
whose momenta must now be treated as local operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular and radial operator that can be decomposed with
standard spherical harmonic methods. Because momentum transfers are typically comparable to the inverse
nuclear size, it is crucial to carry through such a multipole decomposition in order to identify the nuclear
responses associated with the various cis. The scattering probability is given by the square of the (Galilean)
invariant amplitude M, a product of WIMP and nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed over final magnetic quantum numbers. The
result can be organized in a way that factorizes the particle and nuclear physics

1

2jχ + 1

1

2jN + 1

∑

spins

|M|2 ≡
∑

k

∑

τ=0,1

∑

τ ′=0,1

Rk

(

!v⊥2
T ,

!q 2

m2
N

,
{

cτi c
τ ′

j

}

)

W ττ ′

k (!q 2b2) (3)

where the sum extends over products of WIMP response functions Rk and nuclear response functions Wk.
The Rk isolate the particle physics: they depend on specific combinations of bilinears in the low-energy
constants of the EFT – the 2N coefficients of Eq. (2) – here labeled by isospin τ (isoscalar, isovector) rather
than the n, p of Eq. (2) (see below). The WIMP response functions also depend on the relative WIMP-
target velocity !v⊥T , defined below for the nucleon (and in Sec. 3.4 for a nucleus), and three-momentum

transfer !q = !p ′ − !p = !k − !k′, where !p (!p ′) is the incoming (outgoing) WIMP three-momentum and !k (!k′)
the incoming (outgoing) nucleon three-momentum. The nuclear response functions Wk can be varied by
experimentalists, if they explore a variety of nuclear targets. The Wk are functions of y ≡ (qb/2)2, where b
is the nuclear size (explicitly the harmonic oscillator parameter if the nuclear wave functions are expanded
in that single-particle basis).

EFT provides an attractive framework for analyzing and comparing direct detection experiments. It
simplifies the analysis of WIMP-matter interactions by exploiting an important small parameter: typical
velocities of the particles comprising the dark matter halo are v/c ∼ 10−3, and thus non-relativistic. Con-
sequently, while there may be a semi-infinite number of candidate ultraviolet theories of WIMP-matter
interactions, many of these theories are operationally indistinguishable at low energies. By organizing the
effective field theory in terms of non-relativistic interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [1, 7], while not sacrificing generality. In constructing the
needed set of independent operators, the equations of motion are employed to remove redundant operators.
The operators themselves are expressed in terms of quantities that are more directly related to scattering
observables at the relevant energy scale, which makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to write operators for arbitrary dark matter spin,
a task that can be rather involved in the relativistic case.

EFT also prevents oversimplification: because it produces a complete set of effective interactions at low
energy, one is guaranteed that the description is general. Provided this interaction is then embedded in
the nucleus faithfully, it will then produce the most general nuclear response consistent with the assumed
symmetries. Consequently some very basic questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on dark matter particle interactions can be obtained
from elastic scattering? Conversely, what redundancies exist among the EFT’s low-energy constants that
cannot be resolved, regardless of the number of elastic-scattering experiments that are done?

2.1 Constructing the Nonrelativistic Operators

Because dark matter-ordinary matter interactions are more commonly described in relativistic notation, we
will begin by considering the nonrelativistic reduction of two familiar relativistic interactions. We consider

4

operator interference is evident
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Equations (37), (38), and (39) comprise the general expression for the WIMP-nucleon spin-averaged transi-
tion probability. M, ∆, Σ′, Σ′′, Φ̃′, and Φ′′ transform as vector charge, vector transverse magnetic, axial
transverse electric, axial longitudinal, vector transverse electric, and vector longitudinal operators, respec-
tively. These are the allowed responses under the assumption that the nuclear ground state is an approximate
eigenstate of P and CP, and thus we have derived the most general form of the cross section.

As we will discuss in more detail in Sec. 5, our Mathematica script assumes that the nuclear wave
functions are of the standard shell model form – expanded over a set Slater determinants – where the
underlying single-particle basis is the harmonic oscillator. In that case Eq. (37) gives the cross section as a

sum of products of WIMP Rττ ′

k (!v⊥2
T , "q 2

m2
N
) and nuclear W ττ ′

k (y) response functions, where y = (qb/2)2 with b

the harmonic oscillator size parameter. That is, the evolution of the nuclear responses with q is determined
by the single dimensionless parameter y. Eq. (37) can then be written compactly as
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(40)

where
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Interference Effects



In the full amplitude, two types of interference effects arise
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Figure 1. In all panels, cyan contours represent 2D 90% confidence intervals from a fit ofm�, � and of
the coupling constants in the legends to the direct detection experiments indicated in parenthesis. In
each panel, colored regions correspond to the 2D profile Likelihood associated with the cyan contours.
Yellow contours denote 2D 90% credible regions obtained by fitting m� and a single coupling constant
to the LUX data.

and Ô14 depend on both the momentum transfer operator and the transverse relative veloc-
ity operator.

All non-interfering operators contribute to the nuclear spin current through the nu-
clear response operators ��

LM ;� and ���
LM ;� , which also appear in the theory of electroweak

scattering from nuclei, and characterize the familiar spin-dependent dark matter-nucleon in-
teraction operator Ô4. At the same time, the operator Ô13 induces a nuclear spin-velocity
current through the nuclear response operator ⇥̃�

LM ;� , which is specific to dark matter-nucleon
interactions.

The top panels in Fig. 1 show the results that we obtain fitting c07, c
1
7, � and m⇥ to

current direct detection experiments. Results are presented in terms of 2D profile Likelihoods
(colored regions) and associated 2D 90% confidence intervals (cyan contours) in the planes

– 12 –

A global analysis of current data shows isoscalar/isovector interference generally makes exclusion 
limits weaker

R. Catena and P. Gondolo, JCAP 1508 (2015), arXiv:1504.06554

incoming and outgoing WIMP momenta and by ⌥k and ⌥k� the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
⌥q ·⌥v⇥ = 0. Here we will briefly outline the procedure employed in [46] in going from the NR
operators to the final di↵erential WIMP-nucleus cross section.

TABLE I. List of NR e�ective operators described in [46]

O1 1⇤1N

O2 (⌅v⇥)2

O3 i⌅SN · ( �q
mN

⇤ ⌅v⇥)

O4 ⌅S⇤ · ⌅SN

O5 i⌅S⇤ · ( �q
mN

⇤ ⌅v⇥)

O6 ( �q
mN

· ⌅SN )( �q
mN

· ⌅S⇤)

O7 ⌅SN · ⌅v⇥

O8 ⌅S⇤ · ⌅v⇥

O9 i⌅S⇤ · (⌅SN ⇤ �q
mN

)

O10 i �q
mN

· ⌅SN

O11 i �q
mN

· ⌅S⇤

O12 ⌅S⇤ · (⌅SN ⇤ ⌅v⇥)

O13 i(⌅S⇤ · ⌅v⇥)( �q
mN

· ⌅SN )

O14 i(⌅SN · ⌅v⇥)( �q
mN

· ⌅S⇤)

O15 �(⌅S⇤ · �q
mN

)
�
(⌅SN ⇤ ⌅v⇥) · �q

mN

⇥

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
⇤

�=n,p

15⇤

i=1
c�

i O�
i , (4)

where the coe�cients c�
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having di↵erent couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
⇤

⇥=0,1

15⇤

i=1
c⇥

i Oit
⇥ (5)

6
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Figure 3. In all panels, green and cyan contours represent 2D 90% confidence intervals from a
global fit of m�, � and of the coupling constants in the legends to all direct detection experiments in
Sec. 4. In each panel, the colored region corresponds to the 2D profile Likelihood associated with the
less stringent exclusion limit at the reference value m� � 100 GeV in that figure. Yellow contours
represent 2D 90% credible regions obtained by fitting m� and a single coupling constant to the LUX
data.

limits in Figs. 1 and 2 reflects the number of q̂ and v̂�
T operators multiplying c�7 , c

�
10, c

�
13

and c�14 in the expressions for l̂�5 and l̂�E in Eq. (2.3). In addition, it also depends on the
relative amplitude of the nuclear response functions W �� �

�� , W �� �
��� and W �� �

⇥̃� integrated over
the relevant signal regions.

5.2 Isoscalar-isovector interference patterns

For any interaction operator in Tab. 1, including operators that do not interfere in pairs as
Ô7, Ô10, Ô13, and Ô14, we observe isoscalar-isovector interference patterns in the rate (2.10).
As an example, let us focus on the operator Ô7. The operator Ô7 contributes to the square
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1
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Interference between operators tends to have a smaller effect



Current experiments constrain some non-standard interactions at the same level or more than the 
standard spin-dependent interaction

R. Catena and P. Gondolo, JCAP 1409 (2014), arXiv:1405.2637
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Figure 4. Same as for Fig. 3, but now for the operators Ô11, Ô12, and Ô15.

modulus of the scattering amplitude as follows

⌃|MNR|2⌥c7spins =
4�

2J + 1

1

8
v⇥2
T

�
(c07)

2W 00
�� (y) + (c17)

2W 11
�� (y) + 2c07c

1
7W

01
�� (y)

⇥
. (5.4)

The last term in (5.4) describes a destructive interference between the isoscalar and isovector
components of the operator Ô7, as once integrated over a typical signal region, it gives a
negative contribution to the total scattering rate. We observe similar interference patterns
for all operators in Tab. 1.

In general destructive interference e⇤ects make direct detection exclusion limits weaker.
For instance, an otherwise excluded value of c07 can remain compatible with observations if
compensated by an appropriately large value of c17, because of the negative ⇤ c07c

1
7 term in

Eq. (5.4).
For this reason, in all figures of this work single coupling constant fits to LUX data

results in stronger exclusion limits for m⇥ � 5 GeV, as in these fits destructive interference
e⇤ects are neglected. For smaller values of m⇥, SuperCDMS, and CDMSlite dominate the
exclusion limit calculation.

5.3 Interfering operators

Interfering operators divide into 4 independent subsets. The first subset consists of the
operators Ô1 = 1⇥N and Ô3 = iŜN · [(q̂/mN ) ⇥ v̂⇥]. The operator Ô1 contributes to the
nuclear vector charge through the nuclear response operator MLM ;� , whereas the operator

Ô3 contributes to the nuclear spin current, and to the nuclear spin-velocity current through
��
LM ;� and ⇥��

LM ;� , respectively. The operators Ô1 and Ô3 generate a transition probability
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Figure 5. 2D 90% confidence intervals (cyan contours) and profile Likelihoods (colored regions) from
a global fit of the model parameters in the legends, � and m� to current direct detection experiments.
Contours are presented in the six planes c04 �m�, c05 �m�, c06 �m�, c14 �m�, c15 �m�, and c16 �m�.
Yellow lines represent 2D 90% credible regions obtained by fitting m� and a single coupling constant
to the LUX data.

proportional to

⌃|MNR|2⌥c1c3spins =
4�

2J + 1

⇧

�� �

⇤
c�1c

� �
1 W �� �

M (y) +
1

8

q2

m2
N

v⇥2
T c�3c

� �
3 W �� �

�� (y)

+
q2

m2
N

�
q2

4m2
N

c�3c
� �
3 W �� �

⇥�� (y) + c�1c
� �
3 W �� �

⇥��M (y)

⇥⌅
. (5.5)

In Eq. (5.5) terms with ⇥ ⇤= ⇥ � describe isoscalar-isovector interference e�ects similar to those
discussed in Sec. 5.2. The term ⇥ c�1c

� �
3 arises from the interference of Ô1 and Ô3. Integrating

Eq. (5.5) over a typical signal region, cancellations between di�erent terms occur, as the
integrated nuclear response functions W �� �

M and W �� �
�� , for ⇥ ⇤= ⇥ �, and W �� �

⇥��M , for ⇥ = ⇥ �, are
negative for many isotopes.

Because of cancellations in (5.5), numerical noise a�ects the exclusion limits derived
simultaneously varying �, m⇥, c01, c

1
1, c

0
3, and c13. To circumvent this problem, while exploring

all interference patterns, here we present exclusion limits obtained in four complementary
ways. In a first analysis we fit m⇥, c01, c

0
3, and � to current dark matter direct detection

experiments. In a second analysis, we simultaneously place limits on the constants c11 and c13
while fitting the same data. Our third and fourth analysis respectively consider the constants
c01 � c11, and c03 � c13 as free parameters in the global fit.

Fig. 3 shows the 2D 90% confidence intervals (colored contours) and profile Likelihoods
(colored regions) resulting from the four analyses described above. To derive the contours
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Hermitian vectors are:

i
↵q

mN
, ↵v⇥ = ↵v + ↵q

2µN
, ↵S⇥, ↵SN , (3)

where ↵q = ↵p� � ↵p = ↵k � ↵k� is the momentum transfer, ↵v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and ↵S⇥ and ↵SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by ↵p and ↵p� the
incoming and outgoing WIMP momenta and by ↵k and ↵k� the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
↵q ·↵v⇥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final di�erential WIMP-nucleus cross section.

TABLE I. List of NR e�ective operators described in [53]

O1 1⇥1N

O2 (⌅v⇥)2

O3 i⌅SN · ( ↵q
mN

⇤ ⌅v⇥)

O4 ⌅S⇥ · ⌅SN

O5 i⌅S⇥ · ( ↵q
mN

⇤ ⌅v⇥)

O6 ( ↵q
mN

· ⌅SN )( ↵q
mN

· ⌅S⇥)

O7 ⌅SN · ⌅v⇥

O8 ⌅S⇥ · ⌅v⇥

O9 i⌅S⇥ · (⌅SN ⇤ ↵q
mN

)

O10 i ↵q
mN

· ⌅SN

O11 i ↵q
mN

· ⌅S⇥

O12 ⌅S⇥ · (⌅SN ⇤ ⌅v⇥)

O13 i(⌅S⇥ · ⌅v⇥)( ↵q
mN

· ⌅SN )

O14 i(⌅SN · ⌅v⇥)( ↵q
mN

· ⌅S⇥)

O15 �(⌅S⇥ · ↵q
mN

)
�
(⌅SN ⇤ ⌅v⇥) · ↵q

mN

⇥

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
⇤

�=n,p

15⇤

i=1
c�

i O�
i , (4)

6

Hermitian vectors are:

i
↵q

mN
, ↵v⇥ = ↵v + ↵q

2µN
, ↵S⇥, ↵SN , (3)

where ↵q = ↵p� � ↵p = ↵k � ↵k� is the momentum transfer, ↵v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and ↵S⇥ and ↵SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by ↵p and ↵p� the
incoming and outgoing WIMP momenta and by ↵k and ↵k� the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
↵q ·↵v⇥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final di�erential WIMP-nucleus cross section.

TABLE I. List of NR e�ective operators described in [53]

O1 1⇥1N

O2 (⌅v⇥)2

O3 i⌅SN · ( ↵q
mN

⇤ ⌅v⇥)

O4 ⌅S⇥ · ⌅SN

O5 i⌅S⇥ · ( ↵q
mN

⇤ ⌅v⇥)

O6 ( ↵q
mN

· ⌅SN )( ↵q
mN

· ⌅S⇥)

O7 ⌅SN · ⌅v⇥

O8 ⌅S⇥ · ⌅v⇥

O9 i⌅S⇥ · (⌅SN ⇤ ↵q
mN

)

O10 i ↵q
mN

· ⌅SN

O11 i ↵q
mN

· ⌅S⇥

O12 ⌅S⇥ · (⌅SN ⇤ ⌅v⇥)

O13 i(⌅S⇥ · ⌅v⇥)( ↵q
mN

· ⌅SN )

O14 i(⌅SN · ⌅v⇥)( ↵q
mN

· ⌅S⇥)

O15 �(⌅S⇥ · ↵q
mN

)
�
(⌅SN ⇤ ⌅v⇥) · ↵q

mN

⇥

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
⇤

�=n,p

15⇤

i=1
c�

i O�
i , (4)
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The scattering probability is a factorized product of particle and nuclear physics responses

where the coupling coefficients ci may be different for proton and neutrons. The number N of such operators
depends on the generality of the particle physics description. We find that 10 operators arise if we limit
our consideration to exchanges involving up to spin-1 exchanges and to operators that are the leading-order
nonrelativistic analogs of relativistic operators. Four additional operators arise if more general mediators
are allowed.

This interaction can then be embedded in the nucleus. The procedure we follow here – though we discuss
generalizations in the Appendix – assumes that the nuclear interaction is the sum of the WIMP interactions
with the individual nucleons in the nucleus. The nuclear operators then involve a convolution of the Oi,
whose momenta must now be treated as local operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular and radial operator that can be decomposed with
standard spherical harmonic methods. Because momentum transfers are typically comparable to the inverse
nuclear size, it is crucial to carry through such a multipole decomposition in order to identify the nuclear
responses associated with the various cis. The scattering probability is given by the square of the (Galilean)
invariant amplitude M, a product of WIMP and nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed over final magnetic quantum numbers. The
result can be organized in a way that factorizes the particle and nuclear physics

1

2jχ + 1

1

2jN + 1

∑

spins

|M|2 ≡
∑

k

∑

τ=0,1

∑

τ ′=0,1

Rk

(

!v⊥2
T ,

!q 2

m2
N

,
{

cτi c
τ ′

j

}

)

W ττ ′

k (!q 2b2) (3)

where the sum extends over products of WIMP response functions Rk and nuclear response functions Wk.
The Rk isolate the particle physics: they depend on specific combinations of bilinears in the low-energy
constants of the EFT – the 2N coefficients of Eq. (2) – here labeled by isospin τ (isoscalar, isovector) rather
than the n, p of Eq. (2) (see below). The WIMP response functions also depend on the relative WIMP-
target velocity !v⊥T , defined below for the nucleon (and in Sec. 3.4 for a nucleus), and three-momentum

transfer !q = !p ′ − !p = !k − !k′, where !p (!p ′) is the incoming (outgoing) WIMP three-momentum and !k (!k′)
the incoming (outgoing) nucleon three-momentum. The nuclear response functions Wk can be varied by
experimentalists, if they explore a variety of nuclear targets. The Wk are functions of y ≡ (qb/2)2, where b
is the nuclear size (explicitly the harmonic oscillator parameter if the nuclear wave functions are expanded
in that single-particle basis).

EFT provides an attractive framework for analyzing and comparing direct detection experiments. It
simplifies the analysis of WIMP-matter interactions by exploiting an important small parameter: typical
velocities of the particles comprising the dark matter halo are v/c ∼ 10−3, and thus non-relativistic. Con-
sequently, while there may be a semi-infinite number of candidate ultraviolet theories of WIMP-matter
interactions, many of these theories are operationally indistinguishable at low energies. By organizing the
effective field theory in terms of non-relativistic interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [1, 7], while not sacrificing generality. In constructing the
needed set of independent operators, the equations of motion are employed to remove redundant operators.
The operators themselves are expressed in terms of quantities that are more directly related to scattering
observables at the relevant energy scale, which makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to write operators for arbitrary dark matter spin,
a task that can be rather involved in the relativistic case.

EFT also prevents oversimplification: because it produces a complete set of effective interactions at low
energy, one is guaranteed that the description is general. Provided this interaction is then embedded in
the nucleus faithfully, it will then produce the most general nuclear response consistent with the assumed
symmetries. Consequently some very basic questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on dark matter particle interactions can be obtained
from elastic scattering? Conversely, what redundancies exist among the EFT’s low-energy constants that
cannot be resolved, regardless of the number of elastic-scattering experiments that are done?

2.1 Constructing the Nonrelativistic Operators

Because dark matter-ordinary matter interactions are more commonly described in relativistic notation, we
will begin by considering the nonrelativistic reduction of two familiar relativistic interactions. We consider

4

particle nuclear

Hermitian vectors are:

i
�q

mN
, �v⇥ = �v + �q

2µN
, �S⇥, �SN , (3)

where �q = �p� � �p = �k � �k� is the momentum transfer, �v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and �S⇥ and �SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by �p and �p� the
incoming and outgoing WIMP momenta and by �k and �k� the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
�q ·�v⇥ = 0. Here we will briefly outline the procedure employed in [51] in going from the NR
operators to the final di�erential WIMP-nucleus cross section.

TABLE I. List of NR e�ective operators described in [51]

O1 1⇥1N

O2 (�v⇥)2

O3 i�SN · ( ⇤q
mN

⇥ �v⇥)

O4 �S⇥ · �SN

O5 i�S⇥ · ( ⇤q
mN

⇥ �v⇥)

O6 ( ⇤q
mN

· �SN )( ⇤q
mN

· �S⇥)

O7 �SN · �v⇥

O8 �S⇥ · �v⇥

O9 i�S⇥ · (�SN ⇥ ⇤q
mN

)

O10 i ⇤q
mN

· �SN

O11 i ⇤q
mN

· �S⇥

O12 �S⇥ · (�SN ⇥ �v⇥)

O13 i(�S⇥ · �v⇥)( ⇤q
mN

· �SN )

O14 i(�SN · �v⇥)( ⇤q
mN

· �S⇥)

O15 �(�S⇥ · ⇤q
mN

)
�
(�SN ⇥ �v⇥) · ⇤q

mN

⇥

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
⇤

�=n,p

15⇤

i=1
c�

i O�
i , (4)

6

where the coe⇥cients c�
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having di�erent couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
⇤

⇥=0,1

15⇤

i=1
c⇥

i Oit
⇥ (5)

where t0 and t1 are the identity matrix and the Pauli matrix �3 respectively. The nucleus is
composed of nucleons, and these can individually interact with the WIMP. This is incorpo-
rated by considering the operator O(j) as an interaction between a single nucleon, j, and
the WIMP, and then summing over the nucleons.

⇤

⇥=0,1

15⇤

i=1
c⇥

i Oit
⇥ ⌅

⇤

⇥=0,1

15⇤

i=1
c⇥

i

A⇤

j=1
Oi(j)t⇥ (j) (6)

where A is the atomic mass number given by the total number of neutrons and protons.
One can do the same reduction with ⇥v�,

⇥v� ⌅ {⇥v⇤ � ⇥vN(i), i = 1, ..., A}

⇥ ⇥v�
T � {⇥̇vN(i), i = 1, ..., A � 1} (7)

where ⇥v⇤ and ⇥vN(i) are the symmetrized combination of incoming and outgoing velocities
for the WIMP and nucleons respectively. ⇥v�

T (here T stands for target, i.e., the nuclear
center-of-mass) is defined as

⇥v�
T = ⇥v⇤ � 1

2A

A⇤

i=1
[⇥vN,in(i) + ⇥vN,out(i)] (8)

This allows for a decomposition of the nucleon velocities into internal velocities ⇥̇vN(i) that
act only on intrinsic nuclear coordinates and ‘in’ and ‘out’ velocities that evolve as a WIMP
scatters o� the detector. As an example, the dot product between ⇥v�

N and ⇥SN can be
rewritten as

⇥v� · ⇥SN ⌅
A⇤

i=1

1
2 [⇥v⇤,in + ⇥v⇤,out � ⇥vN,in(i) � ⇥vN,out(i)] · ⇥SN(i) (9)

= ⇥v�
T ·

A⇤

i=1

⇥SN(i) �
�

A⇤

i=1

1
2 [⇥vN,in(i) + ⇥vN,out(i)] · ⇥SN(i)

⇥

int

(10)

The second term in the curly brackets is internal to the nucleus and acts as an operator on
the ‘in’ and ‘out’ nucleon states. ⇥vN,in can be replaced by ⇥pN,in/M acting on the incoming
state, which can in turn be replaced by i

⇤�⇧/M , and similarly ⇥pN,out/M by �i
�⌅⇧/M on the

7

In general one can write down the non-relativistic Lagrangian

General isospin (isoscalar/isovector) couplings to protons and neutrons is incorporated

Each operator can have distinct couplings to protons and neutrons. Thus the EFT interaction we employ
in this paper takes the form

∑

α=n,p

15
∑

i=1

cαi Oα
i , cα2 ≡ 0. (15)

One can factorize the space-spin and proton/neutron components of Eq. (15) by introducing isospin, which
is also useful as an approximate symmetry of the nuclear wave functions. Thus an equivalent form for our
interaction is

15
∑

i=1

(c0i 1 + c1i τ3)Oi =
∑

τ=0,1

15
∑

i=1

cτi Oit
τ , c02 = c12 ≡ 0, (16)

where the isospin state vectors, operators, and couplings are

|p〉 =
(

1
0

)

|n〉 =
(

0
1

)

1 ≡
(

1 0
0 1

)

τ3 ≡
(

1 0
0 −1

)

c0i =
1

2
(cpi + cni ) c1i =

1

2
(cpi − cni ) (17)

and where the isospin operators are defined by

t0 ≡ 1 t1 ≡ τ3. (18)

The EFT has a total of 28 parameters, associated with 14 space/spin operators each of which can have
distinct couplings to protons and neutrons. If we exclude operators that are not associated with spin-0 or
spin-1 mediators, 10 space/spin operators and 20 couplings remain.

2.2 Units: Inputing the cis into the Mathematica Script

The interactions of Eqs. (4) and (7) are very similar to familiar vector-vector and axial vector-axial vector
interactions of the standard model. For example, the replacement

c4O4t
1 ≡ c4O4τ3 → GF√

2
O4τ± (19)

where GF ∼ 1.166× 10−5 GeV−2 is the Fermi constant and τ± is the isospin raising or lowering operator,
yields the Gamow-Teller interaction familiar in low-energy charged-current neutrino scattering off nuclei.
GF defines a standard-model weak interaction mass scale

mv ≡ 〈v〉 = (2GF )
−1/2 = 246.2 GeV (20)

where 〈v〉 is the Higgs vacuum expectation value.
Much of the theoretical motivation for WIMP searches is connected with the “WIMP miracle,” that

weakly interacting massive particles will naturally freeze out in the early universe, when their annihilation
rate falls behind the expansion rate, to produce a relic density today consistent with the dark matter density.
The experimental program is focused on probing at and beyond the weak scale for dark matter interactions. It
is a natural scale, then, for characterizing the strengths of interactions now being constrained by experiments.
Consequently, in our Mathematica script all of the cis are input in weak-interaction units, defined as

input ci = 1 ⇒ ci = 1/m2
v (21)

Thus an input of ci = 10, 1, and 0.1 converts to ci = 10/m2
v, 1/m2

v, and 0.1/m2
v, producing interactions of

strength 10, 1, and 1/10th of weak, and cross sections 100, 1, and 1/100th of weak, respectively.
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The effective field theory approach is valid for mediators more massive than the 
momentum exchanged

c = 1 = � (1)

(2)
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⇤
1 +

1

2

�v

c

⇥2
+ O((v/c)4)

⌅
(9)

(10)

KE = E �m0c
2 =

1

2
m0v

2 + m0c
2O((v/c)4) (11)

(12)

�t ⇥ 1/�E ⇥ 1/M (13)

(14)

n⇧ p + e� + ⇥̄e (15)

(16)

m2
� ⌅ q2 = (p⇥ � p)2 (17)

(18)

⇤(p) ⇤(p⇥) (19)

(20)

q(k) q(k⇥) (21)

1

c = 1 = � (1)

(2)

E2 = m2c4 + |p|2c2 =⌃ E2 = m2 + |p|2 (3)

(4)

v ⇤ c (5)

(6)
v

c
(7)

(8)

E = m0c
2� = m0c

2

⇤
1 +

1

2

�v

c

⇥2
+ O((v/c)4)

⌅
(9)

(10)

KE = E �m0c
2 =

1

2
m0v

2 + m0c
2O((v/c)4) (11)

(12)

�t ⇥ 1/�E ⇥ 1/M (13)

(14)

n⇧ p + e� + ⇥̄e (15)

(16)

m2
� ⌅ q2 = (p⇥ � p)2 (17)

(18)

⇤(p) ⇤(p⇥) (19)

(20)

q(k) q(k⇥) (21)

1

c = 1 = � (1)

(2)

E2 = m2c4 + |p|2c2 =⌃ E2 = m2 + |p|2 (3)

(4)

v ⇤ c (5)

(6)
v

c
(7)

(8)

E = m0c
2� = m0c

2

⇤
1 +

1

2

�v

c

⇥2
+ O((v/c)4)

⌅
(9)

(10)

KE = E �m0c
2 =

1

2
m0v

2 + m0c
2O((v/c)4) (11)

(12)

�t ⇥ 1/�E ⇥ 1/M (13)

(14)

n⇧ p + e� + ⇥̄e (15)

(16)

m2
� ⌅ q2 = (p⇥ � p)2 (17)

(18)

⌅(p) ⌅(p⇥) (19)

(20)

q(k) q(k⇥) (21)

(22)

⇤(q) (23)

(24)

(25)

1

c = 1 = � (1)

(2)

E2 = m2c4 + |p|2c2 =⌃ E2 = m2 + |p|2 (3)

(4)

v ⇤ c (5)

(6)
v

c
(7)

(8)

E = m0c
2� = m0c

2

⇤
1 +

1

2

�v

c

⇥2
+ O((v/c)4)

⌅
(9)

(10)

KE = E �m0c
2 =

1

2
m0v

2 + m0c
2O((v/c)4) (11)

(12)

�t ⇥ 1/�E ⇥ 1/M (13)

(14)

n⇧ p + e� + ⇥̄e (15)

(16)

m2
� ⌅ q2 = (p⇥ � p)2 (17)

(18)

⇤(p) ⇤(p⇥) (19)

1

1

HW 1

Ei =
m�v2

2
Emax =

m�v2esc
2

Emin =
ER

r
(1)

q =
�

2mTER =
�

mTEir(1� cos�)

q

mN
=

⇤
2mTER

m2
N

⇥
⇥

2ERA

mN
� .01

⇤
A � 0.1

⌅n,p =
µ2
n,pf

2
n,p

⇤
⇧(p) ⇧(p�)

1

HW 1

Ei =
m�v2

2
Emax =

m�v2esc
2

Emin =
ER

r
(1)

q =
�

2mTER =
�

mTEir(1� cos�)

q

mN
=

⇤
2mTER

m2
N

⇥
⇥

2ERA

mN
� .01

⇤
A � 0.1

⌅n,p =
µ2
n,pf

2
n,p

⇤
⇧(p) ⇧(p�)

above assumptions is given by

LS⇥q = ⇧µS†⇧µS � m2
SS†S � ⇥S

2 (S†S)2

+1
2⇧µ⇤⇧µ⇤ � 1

2m2
⇥⇤2 � m⇥µ1

3 ⇤3 � µ2
4 ⇤4

+iq̄D/ q � mq q̄q

�g1mSS†S⇤ � g2
2 S†S⇤2 � h1q̄q⇤ � ih2q̄�5q⇤, (19)

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is

LSGq = ⇧µS†⇧µS � m2
SS†S � ⇥S

2 (S†S)2

�1
4Gµ�Gµ� + 1

2m2
GGµGµ � ⇥G

4 (GµGµ)2

+iq̄ /Dq � mq q̄q

�g3
2 S†SGµGµ � ig4(S†⇧µS � ⇧µS†S)Gµ

�h3(q̄�µq)Gµ � h4(q̄�µ�5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by ⌅ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (⇤) and vector mediator (Gµ) cases respectively are given below,

L⇤⇥q = i⌅̄ /D⌅ � m⇤⌅̄⌅

+1
2⇧µ⇤⇧µ⇤ � 1

2m2
⇥⇤2 � m⇥µ1

3 ⇤3 � µ2
4 ⇤4

+iq̄D/ q � mq q̄q

�⇥1⇤⌅̄⌅ � i⇥2⇤⌅̄�5⌅ � h1⇤q̄q � ih2⇤q̄�5q, (21)
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Ratio of rates for 500GeV spin-1/2 WIMP off Xe and Ge including astrophysical uncertainties
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FIG. 5. Ratio of rates in xenon and germanium, illustrating the discriminating power of having

multiple nuclear targets. For a 50GeV spin-1
2 WIMP with uncharged mediator (left) and a 50GeV

spin-1 WIMP with uncharged mediator (right), the shaded regions show the upper and lower

bounds due to the astrophysical parameters

di�erential event rates in these detectors, they can produce radically di�erent energy
dependence for scattering o� di�erent nuclear targets. Thus, a complementary use
of di�erent target materials will be necessary to reliably distinguish between di�erent
particle physics model possibilities for WIMP dark matter.

While current detectors have only yielded upper limits, with new generations of larger
detectors with greater energy resolution and lower thresholds coming online, the search for
WIMP dark matter has never been so vibrant and promising. The tools we have provided
here should help experimenters to probe the most useful parameter space, to interpret any
non-zero signals in terms of constraints on fundamental models, and should allow theorists
who build fundamental models to frame predictions in an accurate and simple way so that
they might be directly compared with experiment.
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