

# Simplified Models

# See nearly everyone else's talk

B.M. 16

James Dent University of Louisiana at Lafayette

# Outline

## An example

Properties

Portals

Mapping onto Direct Detection

Neutrino Floor

**Connecting Scales** 

#### An introductory example

contact interactions take the form heavy mediator and couplings  $\frac{1}{\Lambda^2} \left( \overline{\chi} \Gamma_{\chi} \chi \right) \left( \overline{f} \Gamma_f f \right) \qquad \Lambda = \frac{M}{\sqrt{q_1 q_2}}$ 

The validity may break down even before hitting the scale of new physics

for example: unitarity violation from  $W_L$  scattering

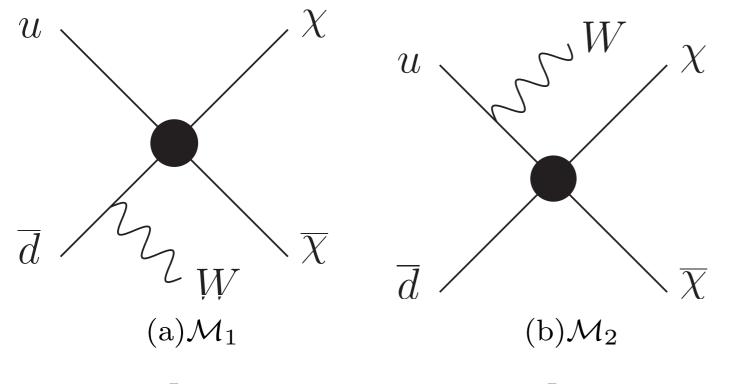
Various contact operators have been studied that do not respect  $SU(2)_L$ 

$$\frac{m_q}{\Lambda^3} \left( \overline{\chi} \chi \right) \left( \overline{q} q \right) = \frac{m_q}{\Lambda^3} \left( \overline{\chi} \chi \right) \left( \overline{q}_L q_R + h.c. \right)$$
$$\frac{1}{\Lambda^2} \left( \overline{\chi} \gamma^\mu \chi \right) \left( \overline{u} \gamma_\mu u + \xi \overline{d} \gamma_\mu d \right)$$

which respects SU(2)<sub>L</sub> for  $\xi = 1$ 

$$\frac{1}{\Lambda^2} \left( \overline{\chi} \gamma^\mu \chi \right) \left( \overline{q} \gamma_\mu q \right) = \frac{1}{\Lambda^2} \left( \overline{\chi} \gamma^\mu \chi \right) \left( \overline{q}_L \gamma_\mu q_L + \overline{q}_R \gamma_\mu q_R \right)$$

N.F. Bell, Y. Cai, JBD, R.K. Leane, and T.J. Weiler, 1503.07874



$$\frac{1}{\Lambda^2} \left( \overline{\chi} \gamma^\mu \chi \right) \left( \overline{u} \gamma_\mu u + \xi \overline{d} \gamma_\mu d \right)$$

enhancement for  $\xi \neq 1$ 

due to longitudinal W production

at high energy the polarization vector is

$$\epsilon_{\alpha}^{L} = \frac{q_{\alpha}}{m_{W}} + \mathcal{O}\left(\frac{m_{W}}{E}\right) \sim \frac{\sqrt{s}}{m_{W}}$$

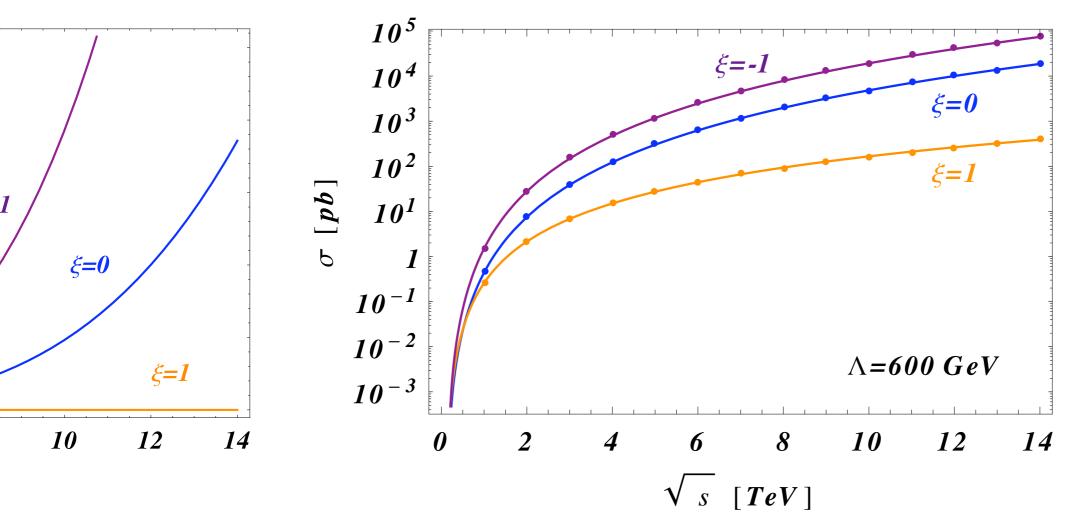
which contributes to the polarization sum

$$\sum_{\lambda} \epsilon_{\alpha}^{\lambda} \epsilon_{\beta}^{\lambda *} = -g_{\alpha\beta} + \frac{q_{\alpha}q_{\beta}}{m_{W}^{2}}$$

$$\epsilon^L_\alpha \epsilon^L_\beta * \approx q_\alpha q_\beta / m_W^2 \sim s / m_W^2$$

Ward identity  $\mathcal{M} \equiv \mathcal{M}^{\alpha} \epsilon_{\alpha}^{\lambda}(q) \equiv (\mathcal{M}_{1}^{\alpha} + \mathcal{M}_{2}^{\alpha}) \epsilon_{\alpha}^{\lambda}(q)$ 

$$q_{\alpha}\mathcal{M}^{\alpha} = \frac{g_W}{\Lambda^2} \left[ \bar{v}(p_2) \left(1-\xi\right) \gamma^{\mu} \frac{P_L}{\sqrt{2}} u(p_1) \right] \left[ \bar{u}(k_1) \gamma_{\mu} v(k_2) \right]$$



At LHC energies the cross sections are dominated by the unphysical terms arising from the longitudinal polarization

W

 $u \setminus \chi$ 

$$q_{\alpha}q_{\beta}/m_W^2 \sim s/m_W^2$$

A simplified model  
A simplified model  

$$\xi = 0$$

$$K = f \overline{Q_L} \eta \chi_R + h.c$$

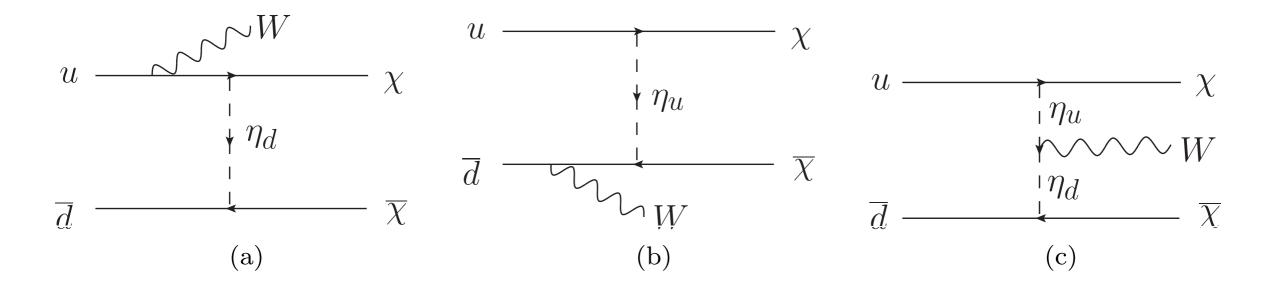
$$f \overline{Q_L} \eta \chi_R$$

Mass splitting controlled by  $v_{EW}$ 

$$m_{\eta_d}^2 = m_2^2 + (\lambda_3 + \lambda_4) v_{\rm EW}^2,$$
  
$$m_{\eta_u}^2 = m_2^2 + \lambda_3 v_{\rm EW}^2,$$

$$\xi = 1/(1 + \delta m_{\eta}^2/\Lambda^2) = 1/(1 + \lambda_4 v_{EW}^2/\Lambda^2)$$

Now mono-*W* proceeds through the gauge invariant diagrams



(c) same dim-8 order as the gauge violating effects and  $W_L$  only arises for the case of mass splitting

other completions can produce different values of

For example, charging DM and the SM Higgs under a new U(1), and integrating out the gauge boson provides a negative  $\xi$ 

Resolve the mediator, with mediator searches becoming a priority at colliders

Respect gauge invariance and unitarity, providing further model constraints

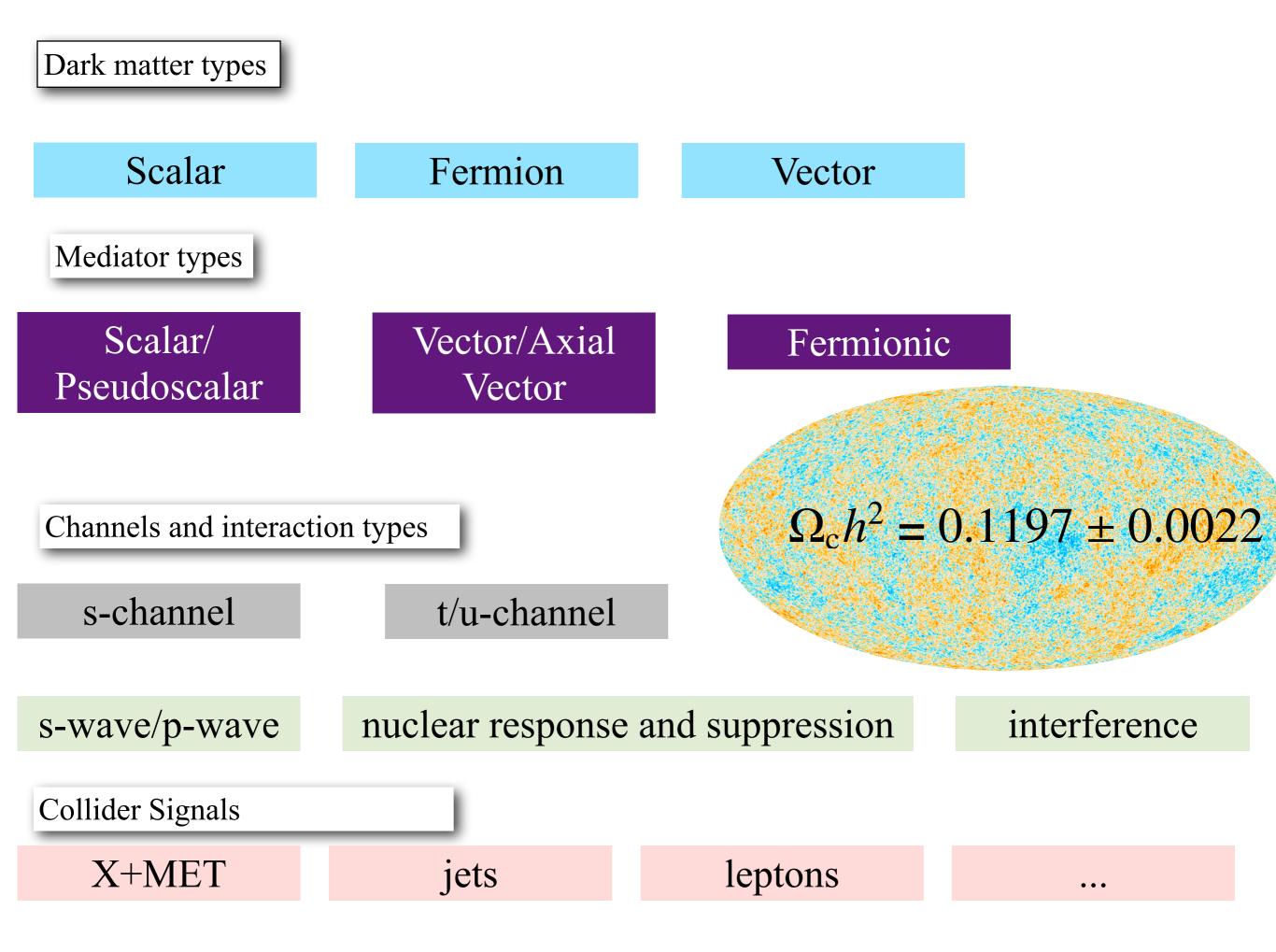
Flavor Violation constraints (MFV)

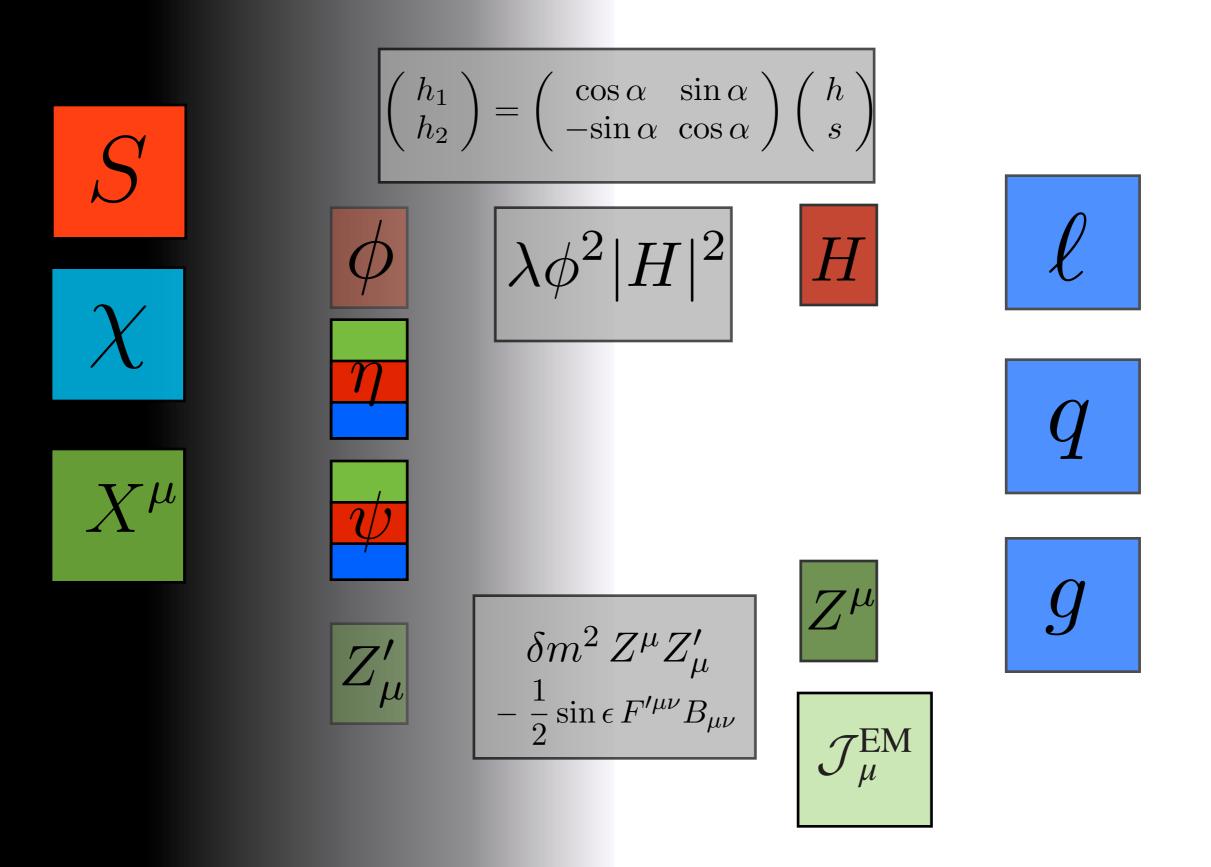
Provide a bridge between contact operators and complete models

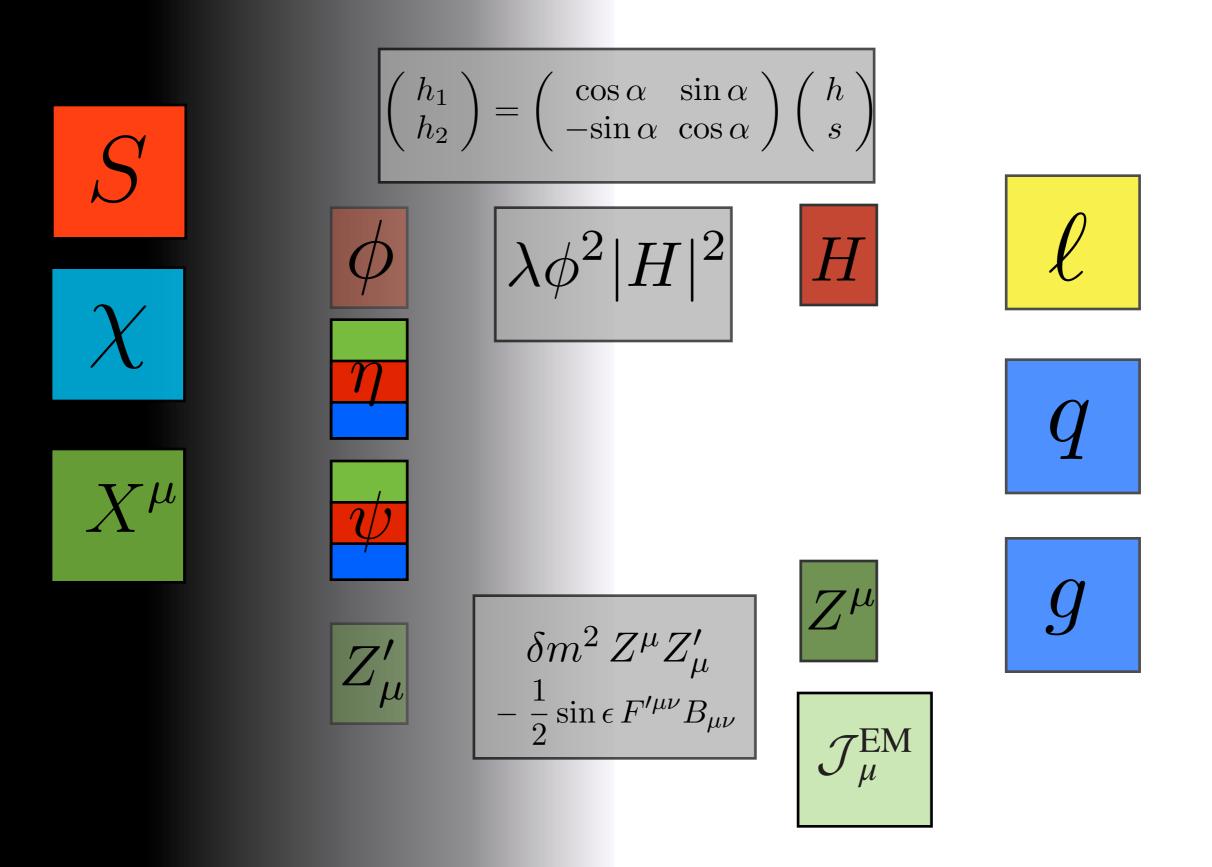
Allow a focus on a smaller set of parameters

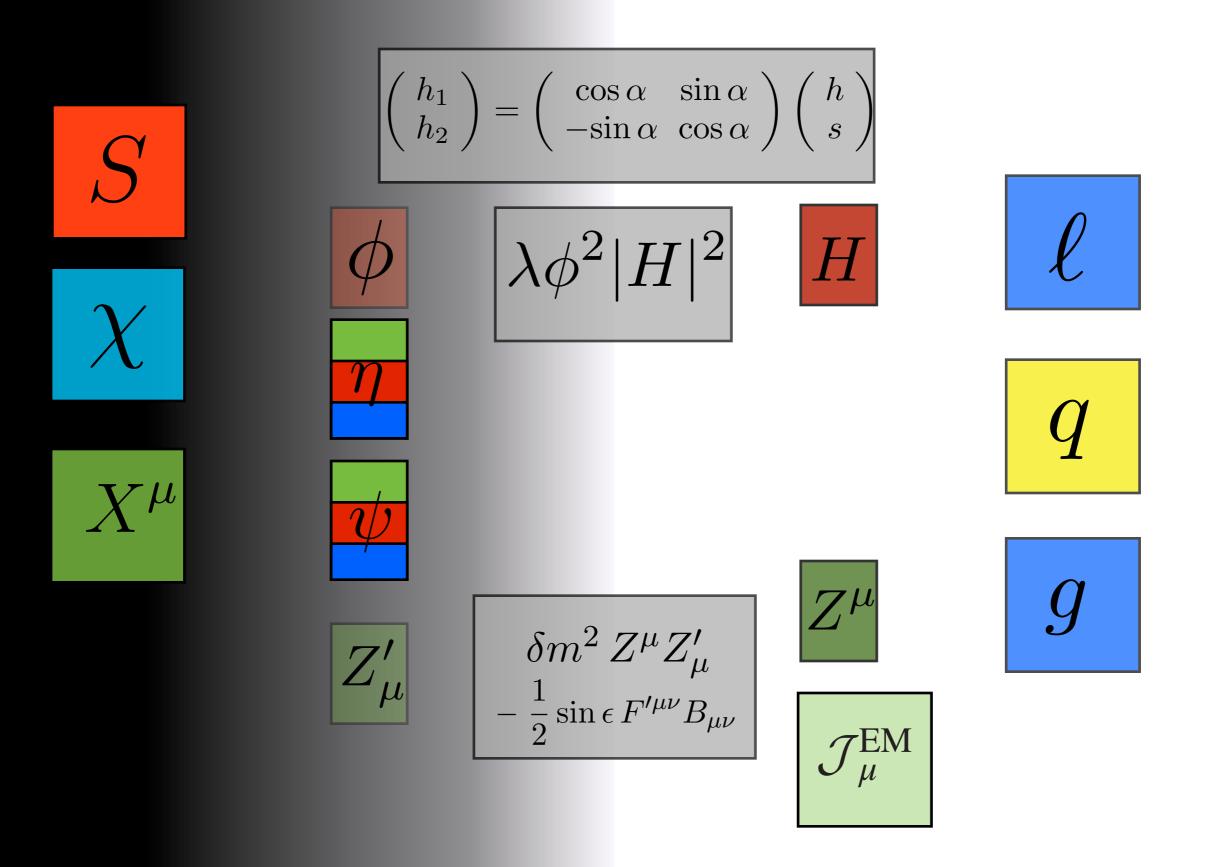
Lend themselves to a systematic study

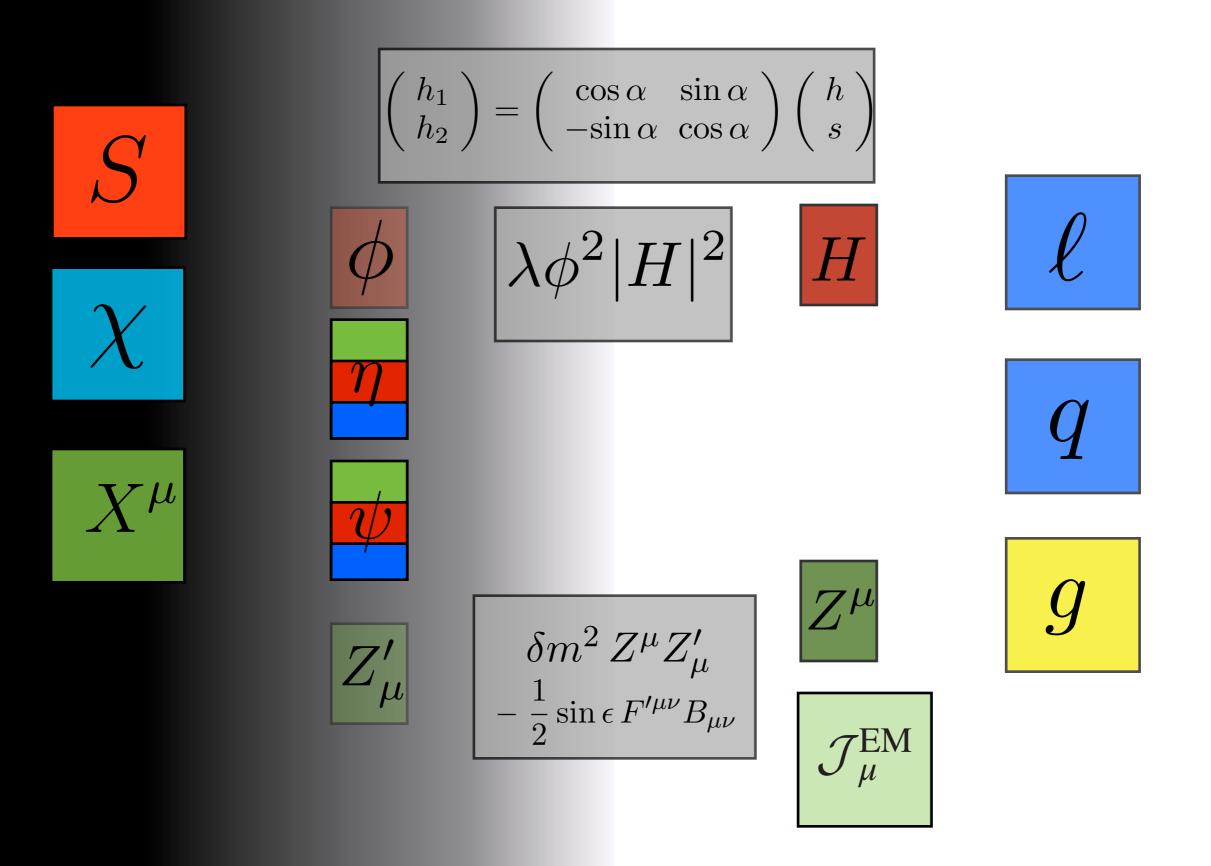
D. Abercrombie, et al., 1507.00966 J. Abdallah, et al., 1506.03116

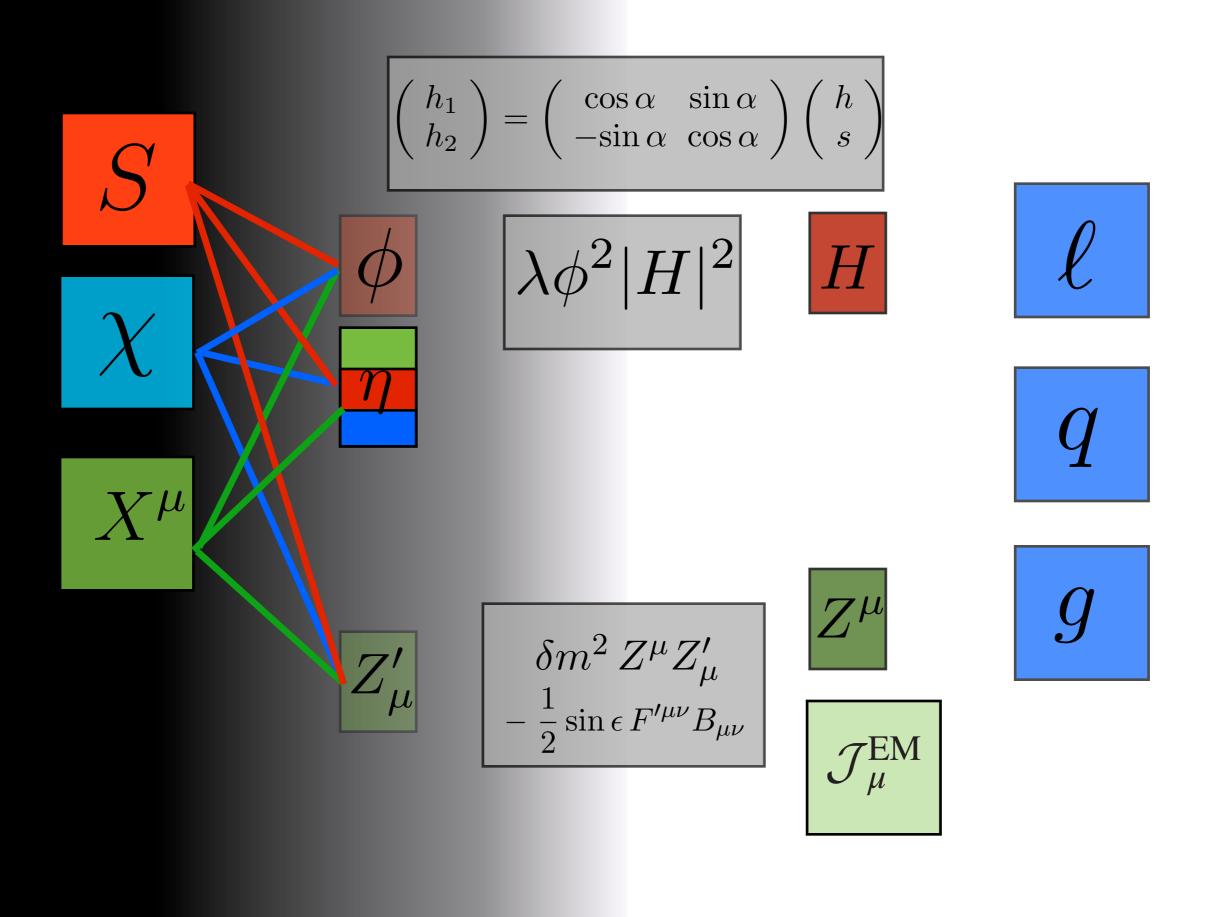












## **DM-SM** Connections

$$\begin{split} \mathcal{L}_{\text{scalar}} \supset &-\frac{1}{2} m_{\text{MED}}^2 S^2 - g_{\text{DM}} S \, \bar{\chi} \chi - \sum_q g_{SM}^q S \, \bar{q} q - m_{\text{DM}} \bar{\chi} \chi \,, \\ \mathcal{L}_{\text{pseudo-scalar}} \supset &-\frac{1}{2} m_{\text{MED}}^2 P^2 - i g_{\text{DM}} P \, \bar{\chi} \gamma^5 \chi - \sum_q i g_{SM}^q P \, \bar{q} \gamma^5 q - m_{\text{DM}} \bar{\chi} \chi \,, \\ \mathcal{L}_{\text{vector}} \supset &\frac{1}{2} m_{\text{MED}}^2 Z_{\mu}' Z'^{\mu} - g_{\text{DM}} Z_{\mu}' \bar{\chi} \gamma^{\mu} \chi - \sum_q g_{SM}^q Z_{\mu}' \bar{q} \gamma^{\mu} q - m_{\text{DM}} \bar{\chi} \chi \,, \\ \mathcal{L}_{\text{axial}} \supset &\frac{1}{2} m_{\text{MED}}^2 Z_{\mu}'' Z''^{\mu} - g_{\text{DM}} Z_{\mu}'' \bar{\chi} \gamma^{\mu} \gamma^5 \chi - \sum_q g_{SM}^q Z_{\mu}'' \bar{q} \gamma^{\mu} \gamma^5 q - m_{\text{DM}} \bar{\chi} \chi \,. \end{split}$$

 $\{g_{DM}, g_{SM}, m_{DM}, m_{MED}, \Gamma\}$ 



Fermion/anti-fermion

Boson/anti-boson

## $C: (-1)^{L+S}$ $P: (-1)^{L+1}$ $C: (-1)^{L+S}$ $P: (-1)^{L}$

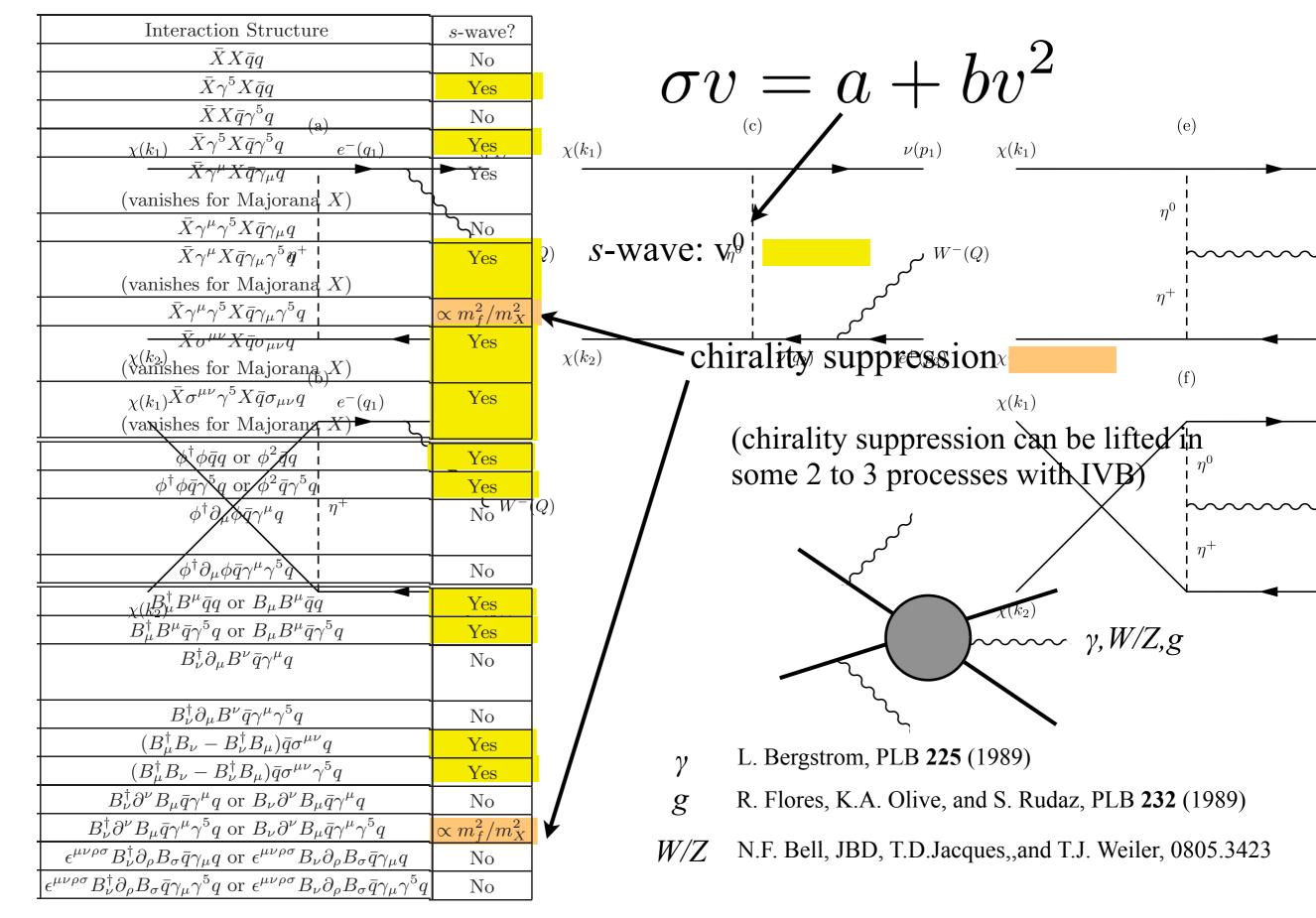
#### Initial state DM

| bilinear                                         | С | Р | J | state                         |
|--------------------------------------------------|---|---|---|-------------------------------|
| $ar{\psi}\psi$                                   | + | + | 0 | S = 1, L = 1                  |
| $\imath ar \psi \gamma^5 \psi$                   | + | - | 0 | S = 0, L = 0                  |
| $ar\psi\gamma^0\psi$                             | - | + | 0 | none                          |
| $ar{\psi}\gamma^i\psi$                           | - | - | 1 | S = 1, L = 0, 2               |
| $ar{\psi}\gamma^0\gamma^5\psi$                   | + | - | 0 | S = 0, L = 0                  |
| $ar{\psi}\gamma^i\gamma^5\psi$                   | + | + | 1 | S = 1, L = 1                  |
| $ar{\psi}\sigma^{0i}\psi$                        | - | - | 1 | S = 1, L = 0, 2               |
| $ar{\psi}\sigma^{ij}\psi$                        | - | + | 1 | S = 0, L = 1                  |
| $\phi^\dagger \phi$                              | + | + | 0 | S = 0, L = 0                  |
| $\imath Im(\phi^\dagger\partial^0\phi)$          | - | + | 0 | none                          |
| $\imath Im(\phi^\dagger\partial^i\phi)$          | - | - | 1 | S = 0, L = 1                  |
| $B^{\dagger}_{\mu}B^{\mu}$                       | + | + | 0 | S = 0, L = 0; S = 2, L = 2    |
| $iIm(B^{\dagger}_{\nu}\partial^{0}B^{\nu})$      | - | + | 0 | none                          |
| $iIm(B^{\dagger}_{\nu}\partial^{i}B^{\nu})$      | - | - | 1 | S = 0, L = 1; S = 2, L = 1, 3 |
| $\iota(B_i^{\dagger}B_j - B_j^{\dagger}B_i)$     | - | + | 1 | S = 1, L = 0, 2               |
| $\imath (B_i^{\dagger} B_0 - B_0^{\dagger} B_i)$ | - | - | 1 | S = 0, L = 1; S = 2, L = 1, 3 |
| $\epsilon^{0ijk}B_i\partial_jB_k$                | + | - | 0 | S = 1, L = 1                  |
| $-\epsilon^{0ijk}B_0\partial_j B_k$              | + | + | 1 | S = 2, L = 2                  |
| $B^{\nu}\partial_{\nu}B_0$                       | + | + | 0 | S = 0, L = 0; S = 2, L = 2    |
| $B^{ u}\partial_{ u}B_{i}$                       | + | - | 1 | S = 1, L = 1                  |

Final State fermions (...bosons)

| S | L | J | $J_z = S_z$ | fermion helicities              |
|---|---|---|-------------|---------------------------------|
| 0 | 0 | 0 | 0           | $f_L,ar{f_R};f_R,ar{f_L}$       |
| 1 | 0 | 1 | 1           | $f_R,ar{f}_R$                   |
| 1 | 0 | 1 | 0           | $f_L,  ar{f}_R;  f_R,  ar{f}_L$ |
| 1 | 0 | 1 | -1          | $f_L,ar{f}_L$                   |
| 0 | 1 | 1 | 0           | $f_L,ar{f}_R;f_R,ar{f}_L$       |
| 1 | 1 | 0 | 0           | $f_L,ar{f}_R;f_R,ar{f}_L$       |
| 1 | 1 | 1 | 1           | $f_R,ar{f}_R$                   |
| 1 | 1 | 1 | 0           | -                               |
| 1 | 1 | 1 | -1          | $f_L,~ar{f}_L$                  |
| 1 | 2 | 1 | 1           | $f_R,ar{f}_R$                   |
|   | 2 | 1 | 0           | $f_L,\ ar{f}_R;\ f_R,\ ar{f}_L$ |
| 1 | 2 | 1 | -1          | $f_L,~ar{f}_L$                  |

J. Kumar and D. Marfatia, 1305.1611



this type of analysis has been applied in the simplified model framework for IDD

A. Berlin, D. Hooper, and S.D. McDermott 1404.0022

Scalar singlet  $\phi$ 

Direct interaction

$$\lambda \phi^2 |H|^2$$

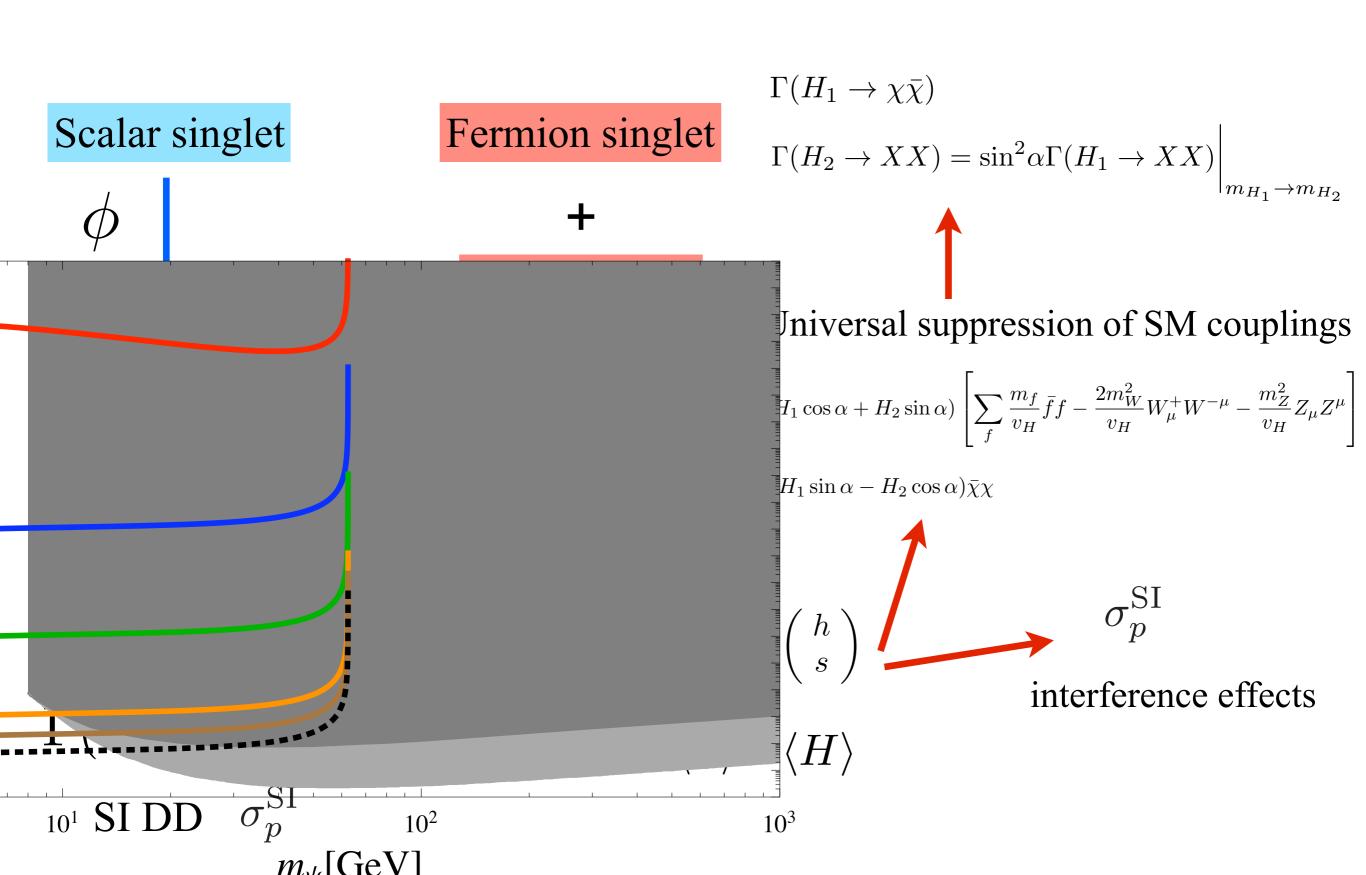
invisible decay

or 
$$m_{\phi} > m_{h}/2$$

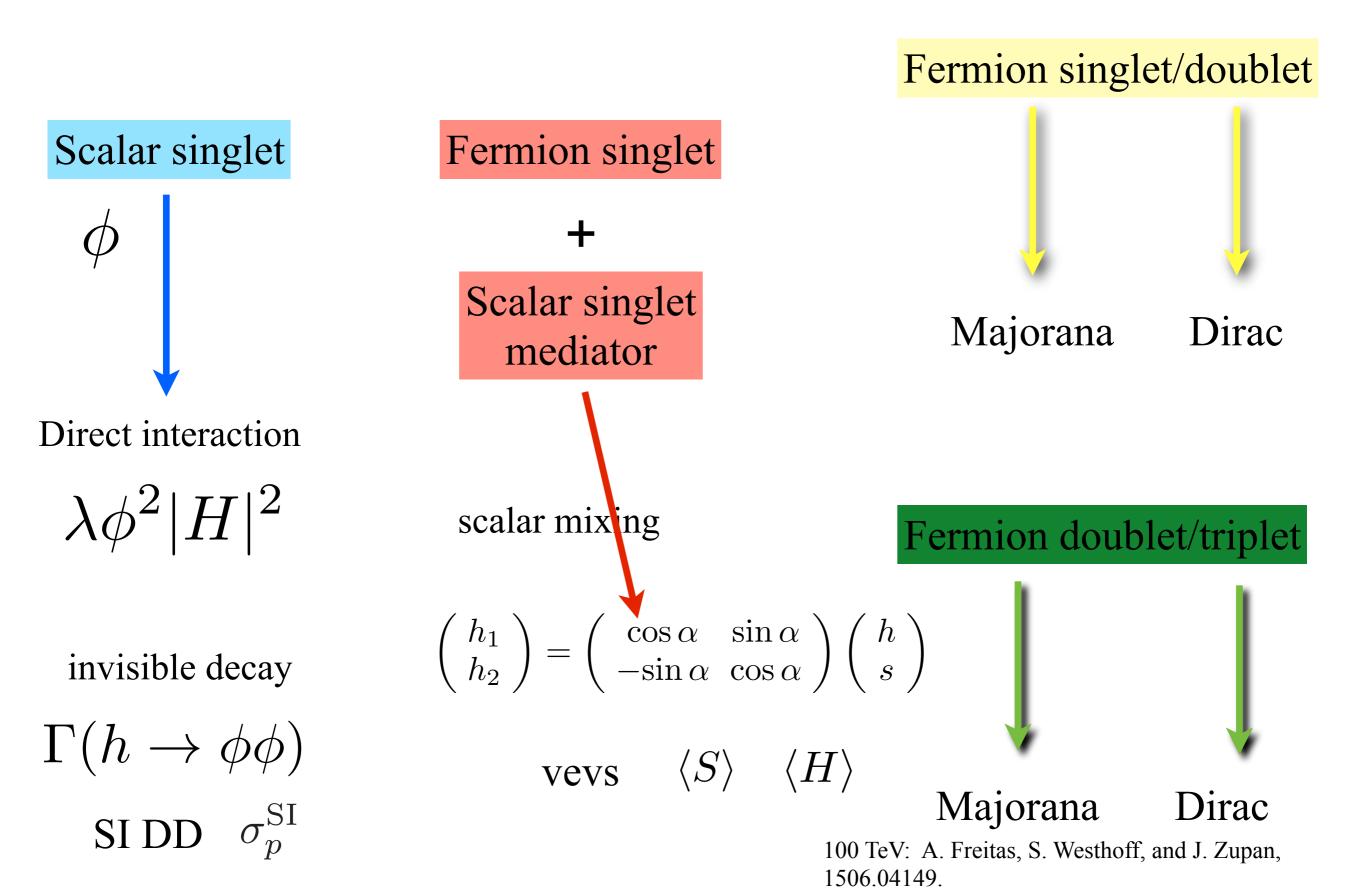
$$\Gamma(h o \phi \phi)$$
  
SIDD  $\sigma_p^{
m SI}$ 

100TeV study, see: N. Craig, H. K. Lou, M. McCullough, and A. Thlapillil, 1412.0258

Higgs portal



Higgs portal



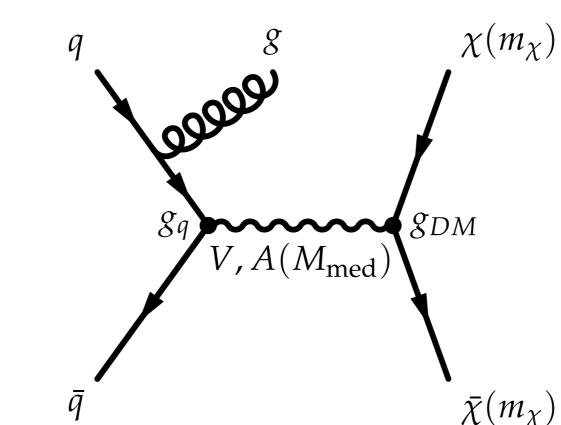
Vector mediator *s*-channel interactions

Introduce a new gauge group U(1)' with general interactions

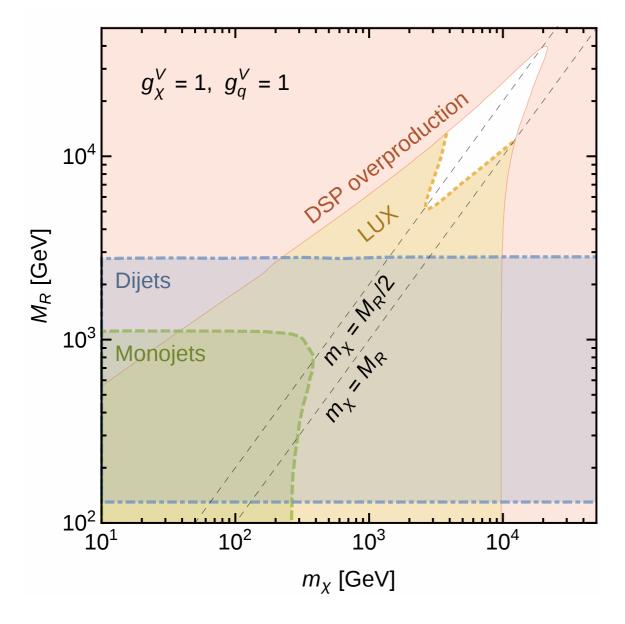
$$\mathcal{L} = -\sum_{f=q,l,\nu} Z^{\prime\mu} \,\bar{f} \left[ g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z^{\prime\mu} \,\bar{\psi} \left[ g_{\rm DM}^V \gamma_\mu + g_{\rm DM}^A \gamma_\mu \gamma^5 \right] \psi$$

$$\mathcal{L} = -\sum_{q,\ell,\nu} Z'_{\mu} \bar{f} \gamma^{\mu} (g_f^V + g_f^A \gamma_5) f - ig_S Z'_{\mu} (S^* \partial^{\mu} S - S \partial^{\mu} S^*)$$

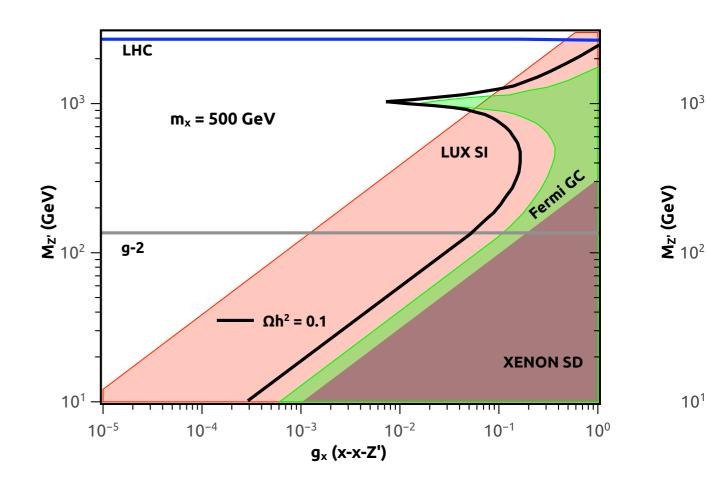
SM V-V DM SM A-V DM SM V-A DM SM A-A DM SM mixture DM



The vector-vector couplings are highly constrained already through SI direct detection bounds from LUX, LHC, and thermal abundance constraints.



M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini, and K. Schmidt-Hoberg, 1503.05916



A. Alves, A. Berlin, S. Profumo, and F.S. Queiroz, 1501.03490



For a non-zero axial coupling of the new vector to fermions unitarity violation in  $Z'_L Z'_L$  scattering will occur unless

$$\sqrt{s} \lesssim \frac{\sqrt{2}\pi m_{Z'}^2}{(g_f^A)^2 m_\psi}$$

J. Shu, 0711.2516

which will then be the bound on the mass of a dark Higgs which gives the vector its mass. Vector portal becomes vector + Higgs portal.

For fermion scattering one finds the unitarity bounds

$$m_f \lesssim \sqrt{\frac{\pi}{2}} \frac{m_Z'}{g_f^A}$$

M. S. Chanowitz, M. A. Furman, and I. Hinchlffe, Nucl. Phys. B153 (1979) 402

M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini, and K. Schmidt-Hoberg, 1503.05916 F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, and S. Vogl, 1510.02110 For dark matter with axial charge, q, a scalar Higgs S with charge -2q can generate mass for the dark matter and vector

$$\mathcal{L}_{\rm DM} = \frac{i}{2} \bar{\psi} \partial \!\!\!/ \psi - \frac{1}{2} g_{\rm DM}^A Z'^\mu \bar{\psi} \gamma^5 \gamma_\mu \psi - \frac{1}{2} y_{\rm DM} \bar{\psi} (P_L S + P_R S^*) \psi ,$$
  
$$\mathcal{L}_S = \left[ (\partial^\mu + i \, g_S \, Z'^\mu) S \right]^\dagger \left[ (\partial_\mu + i \, g_S \, Z'_\mu) S \right] + \mu_s^2 \, S^\dagger S - \lambda_s \left( S^\dagger S \right)^2$$

F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, and S. Vogl, 1510.02110

On the SM side, gauge invariance of the Yukawa terms implies the charge assignments

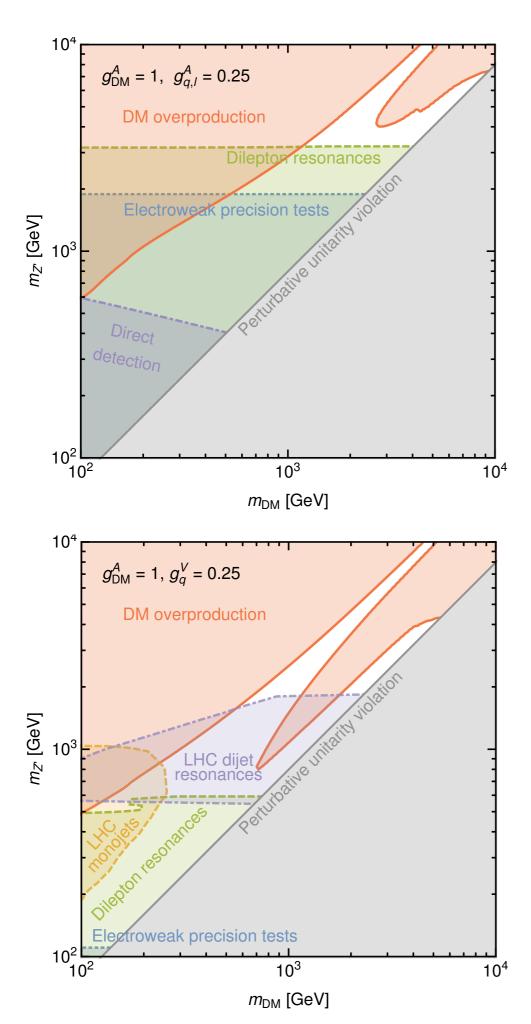
$$q_H = q_{q_L} - q_{u_R} = q_{d_R} - q_{q_L} = q_{e_R} - q_{\ell_L}$$

leading to the V and A couplings

$$g_{f}^{V} = \frac{1}{2}g'(q_{f_{R}} + q_{f_{L}}), \quad g_{f}^{A} = \frac{1}{2}g'(q_{f_{R}} - q_{f_{L}})$$
$$'_{SM} = \frac{1}{2}\left[(D^{\mu}H)^{\dagger}(-ig'q_{H}Z'_{\mu}H) + \text{h.c.}\right] + \frac{g'^{2}q_{H}^{2}}{2}Z'^{\mu}Z'_{\mu}H^{\dagger}H$$
$$-\sum_{f=q,\ell,\nu}g'Z'^{\mu}\left[q_{f_{L}}\bar{f}_{L}\gamma_{\mu}f_{L} + q_{f_{R}}\bar{f}_{R}\gamma_{\mu}f_{R}\right],$$

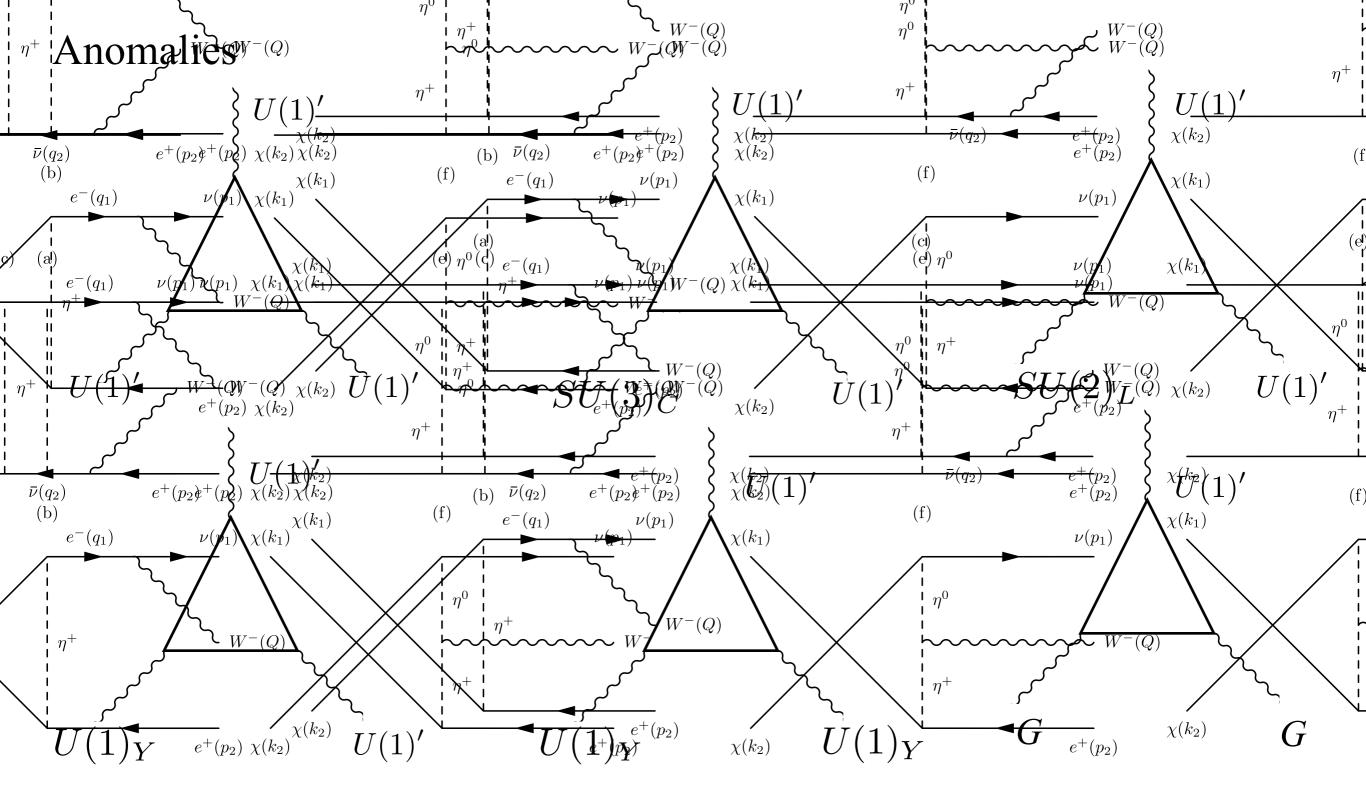
 $g_f^V$  cannot be consistently set to zero for both up and down types

mass mixing Z - Z' leads to EWPT constraints dilepton resonances become constraining



The SM(Axial) DM(Axial) scenario is highly constrained for a thermal relic

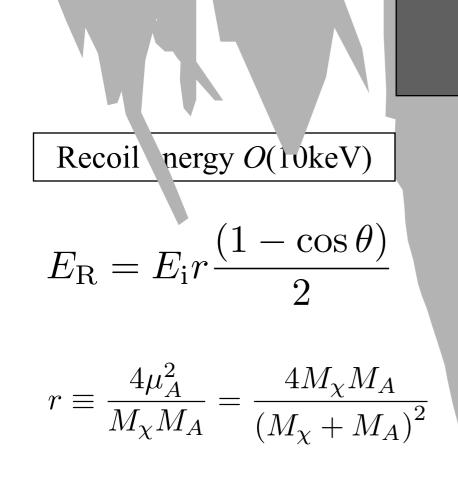
# The SM(Vector) DM(Axial) scenario is highly constrained for a thermal relic



Anomalies should vanish, or be cancelled, for example by new fermions with which are vector-like under the SM and obey the unitarity bound on their masses

M. Carena, A. Daleo, B.A. Dobrescu, and T.P. Tait, hep-ph/0408098 B.A. Dobrescu and C. Frugiuele 1404.3947

D. Hooper, 1411.4079



Kinematics

Orientation

Momentum Exchanged O(<100MeV)

$$q = \sqrt{2m_T E_R}$$

Coherent scattering

$$q < \frac{1}{R_{nucleus}}$$

Incident energy  

$$E_{i} = \frac{m_{\chi}v^{2}}{2}$$
Max energy  $O(100 \text{keV})$   

$$E_{max} = \frac{1}{2}rm_{\chi}v_{esc}^{2}$$
Min energy  

$$v_{\min} = \frac{1}{\sqrt{2E_{R}m_{N}}} \left(\frac{E_{R}m_{N}}{\mu_{\chi N}} + \delta\right)$$

## WIMP-Nucleus scattering cross-section

$$\sigma_{0WN} = \frac{4\mu_A^2}{\pi} \left[ Zf_p + (A - Z)f_n \right]^2 + \frac{32G_F^2\mu_A^2}{\pi} \frac{J + 1}{J} \left( a_p \langle S_p \rangle + a_n \langle S_n \rangle \right)^2$$
Spin-independent
Spin-dependent

formulated in terms of the definition for the scattering cross-section off of a single nucleon

$$\sigma_{n,p} = \frac{\mu_{n,p}^2 f_{n,p}^2}{\pi}$$

In order to account for any momentum dependence, a form factor is introduced

$$\frac{d\sigma_{\rm WN}(q)}{dq^2} = \frac{1}{\pi v^2} |\mathcal{M}|^2 = \frac{\sigma_{\rm 0WN} F^2(q)}{4\mu_A^2 v^2}$$

The differential recoil rate is the primary quantity of interest

$$\frac{dR}{dE_R} = \sum_T \int_{v > v_{min}} \frac{C_T}{M_T} \frac{d\sigma_T}{dE_R} \frac{\rho_0}{m_{\chi}} vf(v,t) d^3v$$
astrophysics input

One must also account for the detector's efficiency and energy resolution.

It has been shown that the standard approach neglects a large set of possible non-relativistic operators beyond the SI/SD ones

$$1_{\chi}1_N$$
  $\vec{S}_{\chi}\cdot\vec{S}_N$   
Spin-independent Spin-dependent

There also exist four more nuclear responses that arise in the most general nucleus-WIMP elastic scattering as compared to the standard approach

$$M, \Phi'', \Sigma', \Delta, \Sigma'', \tilde{\Phi}'$$
$$\vec{S}_{\chi} \cdot \vec{S}_{N} \equiv (\vec{S}_{\chi} \cdot \hat{q})(\vec{S}_{N} \cdot \hat{q}) + (\vec{S}_{\chi} \times \hat{q}) \cdot (\vec{S}_{N} \times \hat{q})$$

A.L. Fitzpatrick, W.C. Haxton, E. Katz, N. Lubbers, and Y. Xu, 1203.3542A.L. Fitzpatrick, W.C. Haxton, E. Katz, N. Lubbers, and Y. Xu, 1211.2818N. Anand, A.L. Fitzpatrick, and W.C. Haxton, Phys.Rev. C89 (2014)

#### There are fifteen combinations of these operators

Spin-independent  $\vec{S}_{\gamma} \cdot \vec{v}^{\perp}$  $\mathcal{O}_8$  $\mathcal{O}_1$  $1_{\chi}1_N$  $i\vec{S}_{\chi}\cdot(\vec{S}_N\times\frac{\vec{q}}{m_N})$  $\mathcal{O}_9$  $(\vec{v}^{\perp})^2$  $\mathcal{O}_2$  $i \frac{\vec{q}}{m_N} \cdot \vec{S}_N$  $\mathcal{O}_{10}$  $i\vec{S}_N\cdot(rac{\vec{q}}{m_N}\times\vec{v}^{\perp})$  $\mathcal{O}_3$  $i \frac{\vec{q}}{m_N} \cdot \vec{S}_{\chi}$  $\mathcal{O}_{11}$ Spin-dependent  $\vec{S}_{\chi} \cdot \vec{S}_N$  $\mathcal{O}_4$  $\vec{S}_{\gamma} \cdot (\vec{S}_N \times \vec{v}^{\perp})$  $\mathcal{O}_{12}$  $i\vec{S}_{\chi}\cdot(rac{\vec{q}}{m_{N}}\times\vec{v}^{\perp})$  $\mathcal{O}_5$  $i(\vec{S}_{\chi}\cdot\vec{v}^{\perp})(rac{\vec{q}}{m_{N}}\cdot\vec{S}_{N})$  $\mathcal{O}_{13}$  $\left(\frac{\vec{q}}{m_N}\cdot\vec{S}_N\right)\left(\frac{\vec{q}}{m_N}\cdot\vec{S}_\chi\right)$  $i(\vec{S}_N \cdot \vec{v}^{\perp})(\frac{\vec{q}}{m_N} \cdot \vec{S}_{\chi})$  $\mathcal{O}_6$  $\mathcal{O}_{14}$  $\mathcal{O}_{15} - (\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N}) \left( (\vec{S}_N \times \vec{v}^{\perp}) \cdot \frac{\vec{q}}{m_N} \right)$  $\vec{S}_N \cdot \vec{v}^{\perp}$  $\mathcal{O}_7$  $\mathcal{O}_{17} \equiv \frac{i\vec{q}}{\cdots} \cdot \mathcal{S} \cdot \vec{v}_{\perp}$ Two additional non-relativistic  $S_{ij} = \frac{1}{2} \left( \epsilon_i^{\dagger} \epsilon_j + \epsilon_j^{\dagger} \epsilon_i \right)$ operators arise in the vector dark matter case

**Effective Action** 

Non-rel limit

**Operator Matching** 

| j  | $\mathcal{L}_{	ext{int}}^{j}$                                                                                                   | Nonrelativistic reduction                                                                                                                                                                         | $\sum_i c_i \mathcal{O}_i$                                                                                                                                                               | P/T |
|----|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1  | $\bar{\chi} \chi \bar{N} N$                                                                                                     | $1_{\chi}1_N$                                                                                                                                                                                     | $\mathcal{O}_1$                                                                                                                                                                          | E/E |
| 2  | $i\bar{\chi}\chi\bar{N}\gamma^5N$                                                                                               | $i rac{ec{q}}{m_N} \cdot ec{S}_N$                                                                                                                                                                | ${\cal O}_{10}$                                                                                                                                                                          | 0/0 |
| 3  | $i \bar{\chi} \gamma^5 \chi \bar{N} N$                                                                                          | $-i\frac{\vec{q}}{m_{\chi}}\cdot\vec{S}_{\chi}$                                                                                                                                                   | $-\frac{m_N}{m_\chi}\mathcal{O}_{11}$                                                                                                                                                    | 0/0 |
| 4  | $\bar{\chi}\gamma^5\chi\bar{N}\gamma^5N$                                                                                        | $-rac{ec{q}}{m_{\chi}}\cdotec{S}_{\chi}rac{ec{q}}{m_{N}}\cdotec{S}_{N}$                                                                                                                         | $-\frac{m_N}{m_\chi}\mathcal{O}_6$                                                                                                                                                       | E/E |
| 5  | $ar{\chi} \gamma^\mu \chi ar{N} \gamma_\mu N$                                                                                   | $1_{\chi} 1_N$                                                                                                                                                                                    | $\mathcal{O}_1$                                                                                                                                                                          | E/E |
| 6  | $ar{\chi} \gamma^\mu \chi ar{N} i \sigma_{\mulpha} rac{q^lpha}{m_{ m M}} N$                                                    | $\frac{\vec{q}^{2}}{2m_N m_{\rm M}} 1_{\chi} 1_N + 2 \big( \frac{\vec{q}}{m_{\chi}} \times \vec{S}_{\chi} + i \vec{v}^{\perp} \big) \cdot \big( \frac{\vec{q}}{m_{\rm M}} \times \vec{S}_N \big)$ | $\frac{\vec{q}^{2}}{2m_N m_M} \mathcal{O}_1 - 2\frac{m_N}{m_M} \mathcal{O}_3 + 2\frac{m_N^2}{m_M m_\chi} \left(\frac{q^2}{m_M^2} \mathcal{O}_4 - \mathcal{O}_6\right)$                   | E/E |
| 7  | $ar{\chi} \gamma^{\mu} \chi ar{N} \gamma_{\mu} \gamma^5 N$                                                                      | $-2\vec{S}_N\cdot\vec{v}^{\perp}+rac{2}{m_{\chi}}i\vec{S}_{\chi}\cdot(\vec{S}_N\times\vec{q})$                                                                                                   | $-2\mathcal{O}_7 + 2\frac{m_N}{m_\chi}\mathcal{O}_9$                                                                                                                                     | O/E |
| 8  | $iar{\chi}\gamma^\mu\chiar{N}i\sigma_{\mulpha}rac{q^lpha}{m_M}\gamma^5N$                                                       | $2irac{ec{q}}{m_{ m M}}\cdotec{S}_N$                                                                                                                                                             | $2rac{m_N}{m_M}\mathcal{O}_{10}$                                                                                                                                                        | 0/0 |
| 9  | $ar{\chi} i \sigma^{\mu u} rac{q_{ u}}{m_{ m M}} \chi ar{N} \gamma_{\mu} N$                                                    | $-\frac{\vec{q}^{2}}{2m_{\chi}m_{\rm M}}1_{\chi}1_{N}-2\big(\frac{\vec{q}}{m_{N}}\times\vec{S}_{N}+i\vec{v}^{\perp}\big)\cdot\big(\frac{\vec{q}}{m_{\rm M}}\times\vec{S}_{\chi}\big)$             | $-\frac{\vec{q}^{2}}{2m_{\chi}m_{M}}\mathcal{O}_{1}+\frac{2m_{N}}{m_{M}}\mathcal{O}_{5}\\-2\frac{m_{N}}{m_{M}}\left(\frac{\vec{q}^{2}}{m_{N}^{2}}\mathcal{O}_{4}-\mathcal{O}_{6}\right)$ | E/E |
| 10 | $ar{\chi}i\sigma^{\mu u}rac{q_{ u}}{m_{ m M}}\chiar{N}i\sigma_{\mulpha}rac{q^{lpha}}{m_{ m M}}N$                              | $4\left(rac{ec{q}}{m_{ m M}}	imesec{S}_{\chi} ight)\cdot\left(rac{ec{q}}{m_{ m M}}	imesec{S}_{N} ight)$                                                                                         | $4\left(rac{ec{q}^2}{m_{ m M}^2}\mathcal{O}_4-rac{m_N^2}{m_{ m M}^2}\mathcal{O}_6 ight)$                                                                                               | E/E |
| 11 | $ar{\chi} i \sigma^{\mu u} rac{q_{ u}}{m_{ m M}} \chi ar{N} \gamma^{\mu} \gamma^5 N$                                           | $4i\left(rac{ec{q}}{m_{ m M}}	imesec{S}_{\chi} ight)\cdotec{S}_{N}$                                                                                                                              | $4\frac{m_N}{m_M}\mathcal{O}_9$                                                                                                                                                          | O/E |
| 12 | $i \bar{\chi} i \sigma^{\mu  u} rac{q_{ u}}{m_{ m M}} \chi ar{N} i \sigma_{\mu lpha} rac{q^{lpha}}{m_{M}} \gamma^{5} N$       | $-\left[i\frac{\vec{q}^{2}}{m_{\chi}m_{\rm M}}-4\vec{v}^{\perp}\cdot\left(\frac{\vec{q}}{m_{\rm M}}\times\vec{S}_{\chi}\right)\right]\frac{\vec{q}}{m_{\rm M}}\cdot\vec{S}_{N}$                   | $-\frac{m_N}{m_\chi}\frac{\vec{q}^2}{m_M^2}\mathcal{O}_{10} - 4\frac{\vec{q}^2}{m_M^2}\mathcal{O}_{12} - 4\frac{m_N^2}{m_M^2}\mathcal{O}_{15}$                                           | O/O |
| 13 | $ar{\chi} \gamma^{\mu} \gamma^5 \chi ar{N} \gamma_{\mu} N$                                                                      | $2ec{v}^{\perp}\cdotec{S}_{\chi}+2iec{S}_{\chi}\cdotig(ec{S}_N	imesrac{ec{q}}{m_N}ig)$                                                                                                           | $2\mathcal{O}_8 + 2\mathcal{O}_9$                                                                                                                                                        | O/E |
| 14 | $ar{\chi} \gamma^{\mu} \gamma^5 \chi ar{N} i \sigma_{\mulpha} rac{q^lpha}{m_{ m M}} N$                                         | $4iec{S}_{\chi}\cdot\left(rac{ec{q}}{m_{ m M}}	imesec{S}_{N} ight)$                                                                                                                              | $-4\frac{m_N}{m_M}\mathcal{O}_9$                                                                                                                                                         | O/E |
| 15 | $ar{\chi} \gamma^{\mu} \gamma^5 \chi ar{N} \gamma^{\mu} \gamma^5 N$                                                             | $-4ec{S}_{\chi}\cdotec{S}_{N}$                                                                                                                                                                    | $-4\mathcal{O}_4$                                                                                                                                                                        | E/E |
| 16 | $i ar{\chi} \gamma^{\mu} \gamma^5 \chi ar{N} i \sigma_{\mulpha} rac{q^{lpha}}{m_{ m M}} \gamma^5 N$                            | $4iec v^\perp\cdotec S_\chirac{ec q}{m_{ m M}}\cdotec S_N$                                                                                                                                       | $4 \frac{m_N}{m_M} \mathcal{O}_{13}$                                                                                                                                                     | E/O |
| 17 | $i ar{\chi} i \sigma^{\mu u} rac{q_{ u}}{m_{ m M}} \gamma^5 \chi ar{N} \gamma_{\mu} N$                                         | $2irac{ec{q}}{m_{ m M}}\cdotec{S}_{\chi}$                                                                                                                                                        | $2rac{m_N}{m_{ m M}}\mathcal{O}_{11}$                                                                                                                                                   | 0/0 |
| 18 | $iar{\chi}i\sigma^{\mu u}rac{q_{ u}}{m_{ m M}}\gamma^5\chiar{N}i\sigma_{\mulpha}rac{q^{lpha}}{m_{ m M}}N$                     | $rac{ec{q}}{m_{ m M}}\cdotec{S}_{\chi}ig[irac{ec{q}^2}{m_{N}m_{ m M}}-4ec{v}^{\perp}\cdotig(rac{ec{q}}{m_{ m M}}	imesec{S}_{N}ig)ig]$                                                          | $\frac{\vec{q}^{2}}{m_{\rm M}^{2}}\mathcal{O}_{11} + 4\frac{m_{N}^{2}}{m_{\rm M}^{2}}\mathcal{O}_{15}$                                                                                   | 0/0 |
| 19 | $iar{\chi}i\sigma^{\mu u}rac{q_{ u}}{m_{ m M}}\gamma^5\chiar{N}\gamma_{\mu}\gamma^5N$                                          | $-4irac{ec{q}}{m_{ m M}}\cdotec{S}_{\chi}ec{v}_{\perp}\cdotec{S}_{N}$                                                                                                                            | $-4\frac{m_N}{m_M}\mathcal{O}_{14}$                                                                                                                                                      | E/O |
| 20 | $i ar{\chi} i \sigma^{\mu u} rac{q_{ u}}{m_{ m M}} \gamma^5 \chi ar{N} i \sigma_{\mulpha} rac{q^{lpha}}{m_{ m M}} \gamma^5 N$ | $4rac{ec{q}}{m_{ m M}}\cdotec{S}_{\chi}rac{ec{q}}{m_{ m M}}\cdotec{S}_{N}$                                                                                                                      | $4\frac{m_N^2}{m_M^2}\mathcal{O}_6$                                                                                                                                                      | E/E |

N. Anand, A.L. Fitzpatrick, and W.C. Haxton, Phys.Rev. C89 (2014)

In the long wavelength limit these correspond to various physical interpretations

$$\begin{split} \Delta_{JM} &\equiv \vec{M}_{JJ}^{M}(qx_{i}) \cdot \frac{1}{q} \vec{\nabla}_{i} & \overline{M} & \text{spin-independent} \\ \Sigma'_{JM} &\equiv -i \left\{ \frac{1}{q} \vec{\nabla}_{i} \times \vec{M}_{JJ}^{M}(q\vec{x}_{i}) \right\} \cdot \vec{\sigma}(i) & \Sigma' & \text{spin-dependent (longiture)} \\ \Sigma'_{JM} &\equiv \left\{ \frac{1}{q} \vec{\nabla}_{i} M_{JM}(q\vec{x}_{i}) \right\} \cdot \vec{\sigma}(i) & \frac{\Phi''}{\text{angular-momentum-dependent}} \\ \tilde{\Phi}'_{JM} &\equiv \left\{ \frac{1}{q} \vec{\nabla}_{i} \times \vec{M}_{JJ}^{M}(q\vec{x}_{i}) \right\} \cdot \left[ \vec{\sigma}(i) \times \frac{1}{q} \vec{\nabla}_{i} \right] + \frac{1}{2} \vec{M}_{JJ}^{M}(q\vec{x}_{i}) \cdot \vec{\sigma}(i) \\ \Phi''_{JM} &\equiv i \left[ \frac{1}{q} \vec{\nabla}_{i} M_{JM}(q\vec{x}_{i}) \right] \cdot \left[ \vec{\sigma}(i) \times \frac{1}{q} \vec{\nabla}_{i} \right] \\ \Phi''_{JM} &\equiv i \left[ \frac{1}{q} \vec{\nabla}_{i} M_{JM}(q\vec{x}_{i}) \right] \cdot \left[ \vec{\sigma}(i) \times \frac{1}{q} \vec{\nabla}_{i} \right] \end{split}$$

| X             |                                     | $rac{4\pi}{2J+1} W_X^{(p,p)}(0)$                     |
|---------------|-------------------------------------|-------------------------------------------------------|
| М             | spin-independent                    | $Z^2$                                                 |
| $\Sigma^{''}$ | spin-dependent (longitudinal)       | $4 rac{J+1}{3J} \langle S_p \rangle^2$               |
| $\Sigma'$     | spin-dependent (transverse)         | $8 rac{J+1}{3J} \langle S_p  angle^2$                |
| $\Delta$      | angular-momentum-dependent          | $\frac{1}{2}\frac{J+1}{3J}\langle L_p \rangle^2$      |
| $\Phi^{''}$   | angular-momentum-and-spin-dependent | $\sim \langle \vec{S}_p \cdot \vec{L}_p \rangle^{2a}$ |

M. Zurek, 1401.3739

| Projection          | Charge/current        | Operator                     | Even J | Odd J |
|---------------------|-----------------------|------------------------------|--------|-------|
| Charge              | Vector charge         | $M_{JM}$                     | E-E    | 0-0   |
| Charge              | Axial-vector charge   | $	ilde{\Omega}_{JM}$         | O-E    | E-O   |
| Longitudinal        | Spin current          | $\Sigma_{JM}^{\prime\prime}$ | 0-0    | E-E   |
| Transverse magnetic | "                     | $\Sigma_{JM}$                | E-O    | O-E   |
| Transverse electric | "                     | $\Sigma'_{JM}$               | 0-0    | E-E   |
| Longitudinal        | Convection current    | $	ilde{\Delta}''_{JM}$       | E-O    | O-E   |
| Transverse magnetic | "                     | $\Delta_{JM}$                | 0-0    | E-E   |
| Transverse electric | "                     | $\Delta'_{JM}$               | E-O    | O-E   |
| Longitudinal        | Spin-velocity current | $\Phi_{JM}^{''}$             | E-E    | 0-0   |
| Transverse magnetic | "                     | $	ilde{\Phi}_{JM}$           | O-E    | E-O   |
| Transverse electric | "                     | $	ilde{\Phi}'_{JM}$          | E-E    | 0-0   |

## Within this framework

- Include general dark matter particle types
- Include general mediator particle types
- Explore possible operator degeneracies
- Determine the dominant operators
- Determine distinguishability at detectors
- Connect to models for astrophysical and collider searches

Simplified models for tree-level, renormalizable interactions have been examined

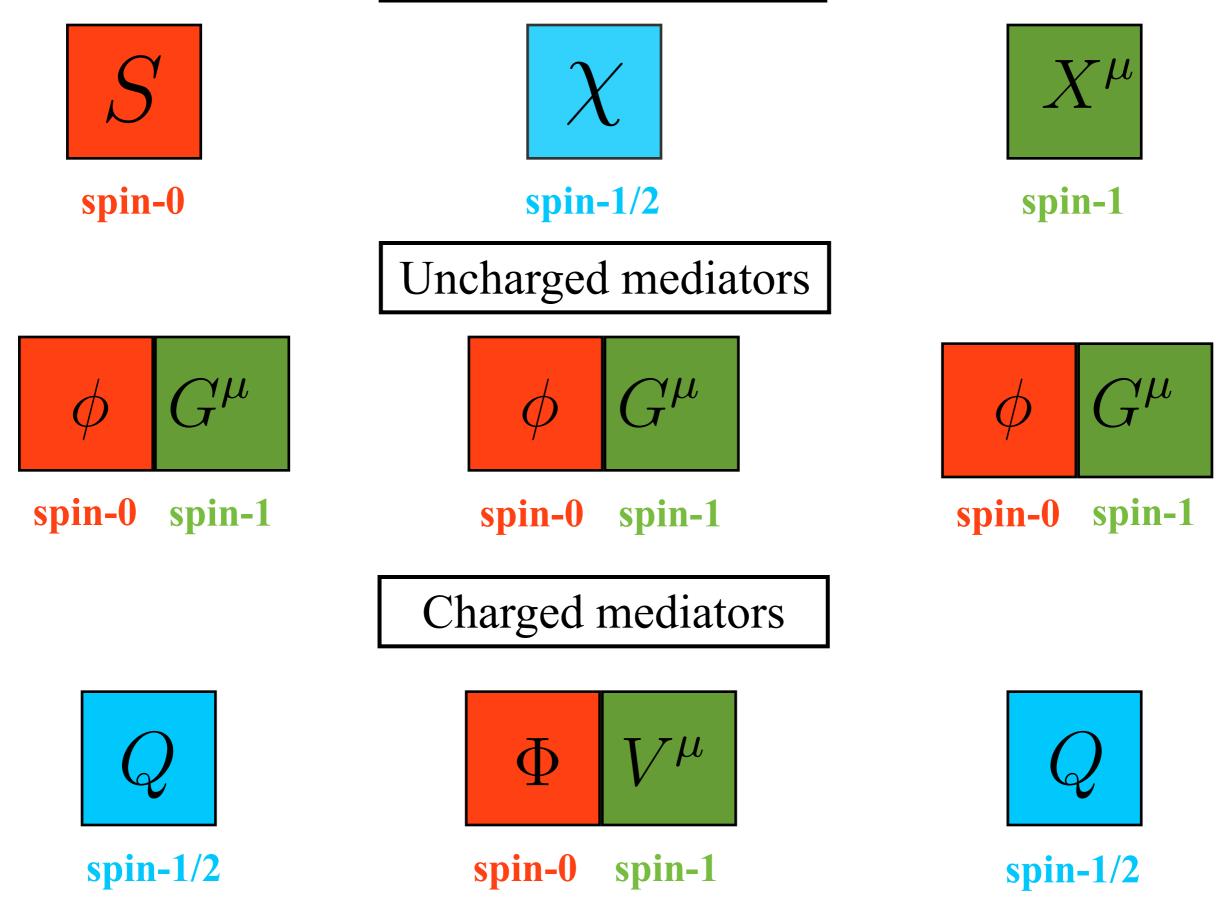
### single dark matter particle, single mediator

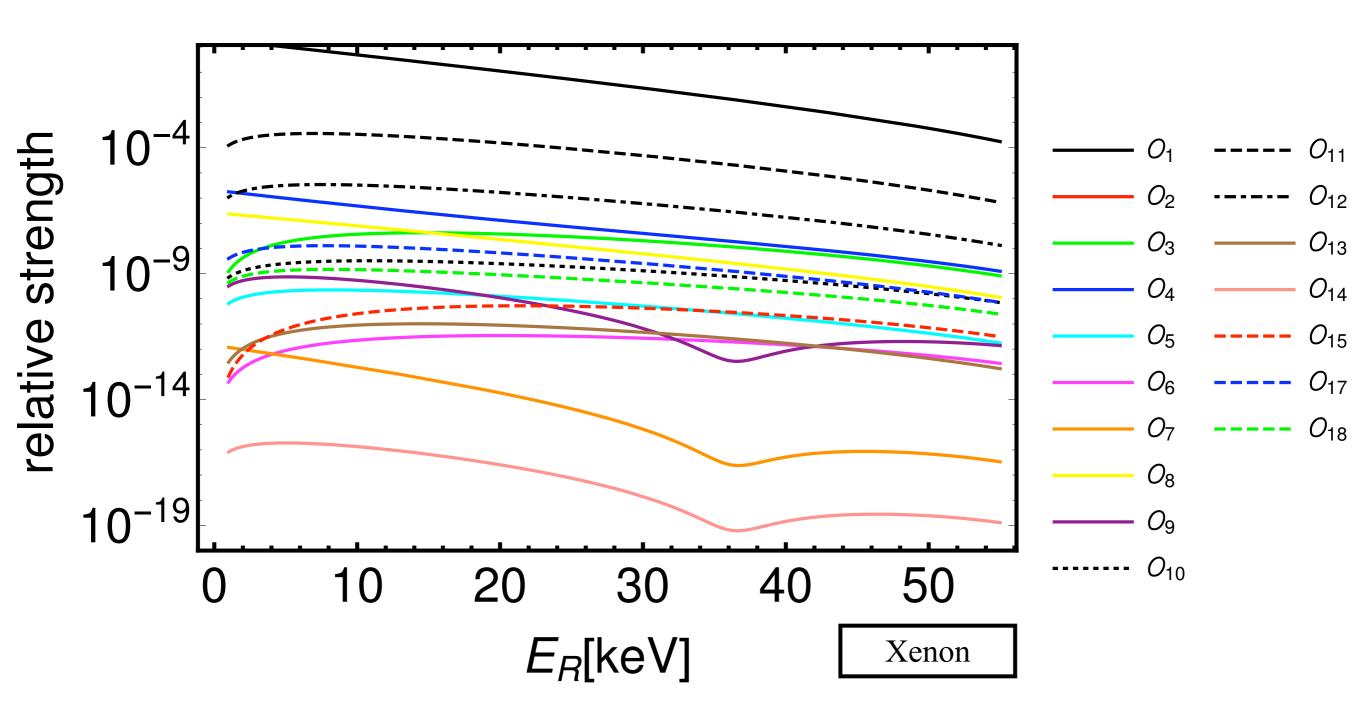
- P. Agrawal, Z. Chacko, C. Kilic, and R.K. Mishra, 1003.1912
- N. Anand, A.L. Fitzpatrick, and W.C. Haxton, Phys.Rev. C89, (2014)
- JBD, L.M. Krauss, J.L. Newstead, and S. Sabharwal, 1505.03117

non-relativistic reduction match onto dark matter and nuclear responses

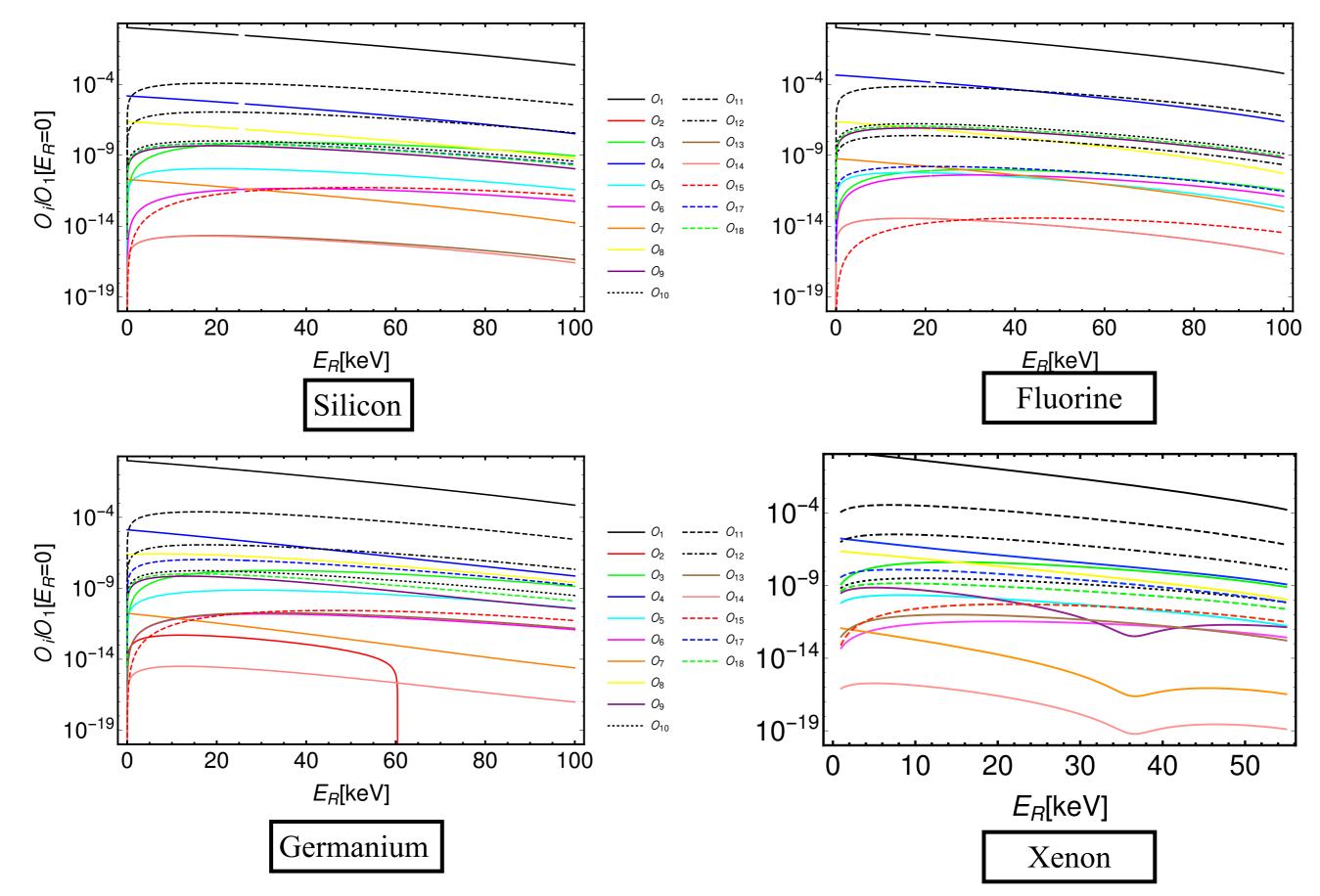


#### Dark Matter

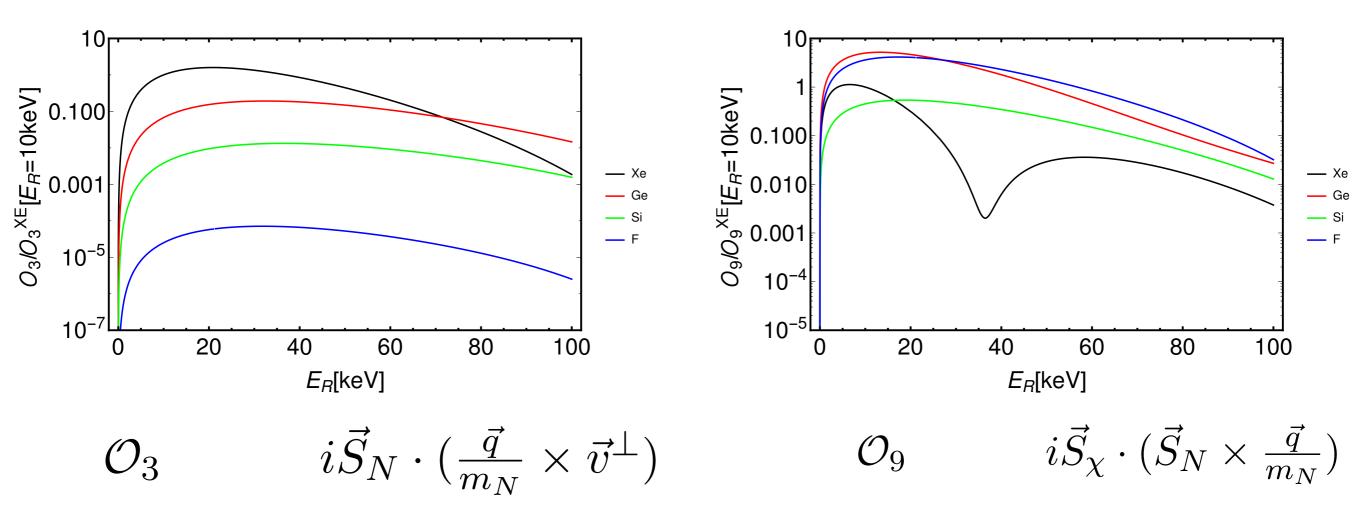




Relative strength of operators, in order to compare which operators dominate when more than one are present



Relative strength of operators, in order to compare which operators dominate when more than one are present



#### Response of a given operator shown for various target elements



spin-0

| EFT form                                                                                                                          | Operator           |                                 | Response                | Suppression         |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------|-------------------------|---------------------|
| $(S^{\dagger}S)(\bar{q}q)$                                                                                                        | $\mathcal{O}_1$    | $1_{\chi}1_N$                   | M                       |                     |
| $(S^{\dagger}S)(\bar{q}\gamma^{5}q)$ $i(S^{\dagger}\partial_{\mu}S - \partial_{\mu}S^{\dagger}S)(\bar{q}\gamma^{\mu}\gamma^{5}q)$ | $\mathcal{O}_{10}$ | $irac{ec{q}}{m_N}\cdotec{S}_N$ | $\Sigma^{\prime\prime}$ | $\frac{q^2}{m_N^2}$ |



| EFT form                                                      | Operator           | Response                                  | Suppression         |
|---------------------------------------------------------------|--------------------|-------------------------------------------|---------------------|
| $ar{\chi}\chiar{q}q  ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$ | $\mathcal{O}_1$    | M                                         |                     |
| $ar{\chi}\gamma^{\mu}\gamma^5\chiar{q}\gamma_{\mu}\gamma^5q$  | $\mathcal{O}_4$    | $\Sigma^{\prime\prime}$ $\Sigma^{\prime}$ |                     |
| $ar{\chi}\chiar{q}\gamma^5 q$                                 | $\mathcal{O}_{10}$ | $\Sigma^{\prime\prime}$                   | $\frac{q^2}{m_N^2}$ |



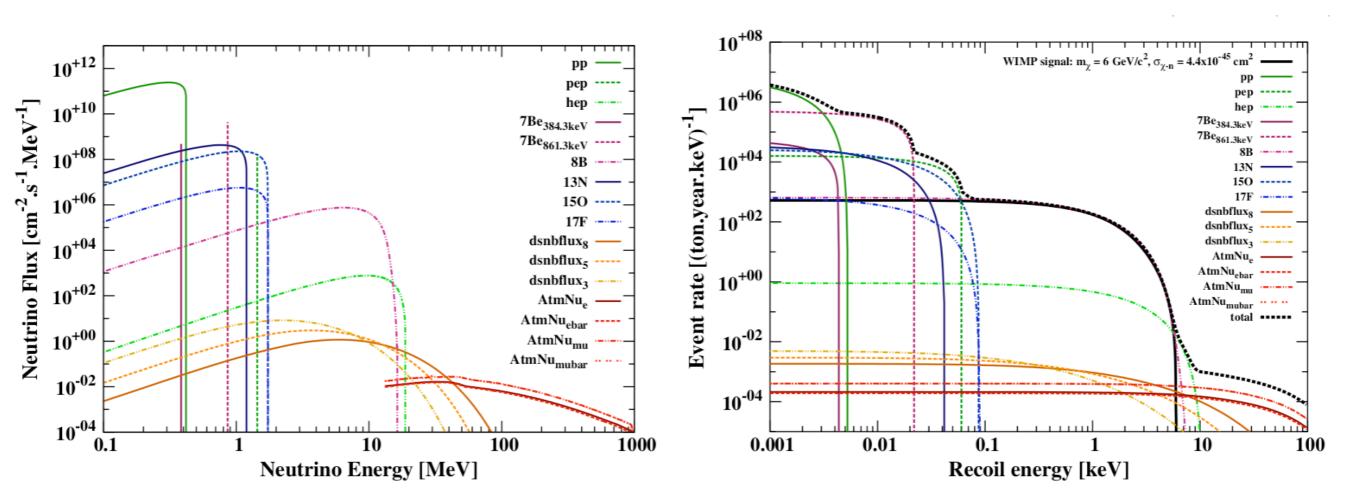
| EFT form                                             | Operator                           | Response                                                           | Suppression                                          |
|------------------------------------------------------|------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|
| $ar{\chi}\gamma^5\chiar{q}q$                         | $\mathcal{O}_{11}$                 | M                                                                  | $\frac{q^2}{m_N^2}$                                  |
| $ar{\chi}\gamma^5\chiar{q}\gamma^5q$                 | $\mathcal{O}_6$                    | $\Sigma^{\prime\prime}$                                            | $q^2 \frac{q^4}{m_N^4}$                              |
| $ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu\gamma^5 q$    | $\mathcal{O}_9$<br>$\mathcal{O}_7$ | $\sum'$                                                            | $\left \frac{\frac{q}{m_N^2}}{v_T^{\perp 2}}\right $ |
| $ar{\chi}\gamma^{\mu}\gamma^5\chiar{q}\gamma_{\mu}q$ | $\mathcal{O}_8$<br>$\mathcal{O}_9$ | $\begin{array}{c} \Delta \\ \Sigma' \\ \Delta \Sigma' \end{array}$ | $\frac{q^2}{m_N^2}$                                  |



The ultimate reach and extent of direct detection experiments?

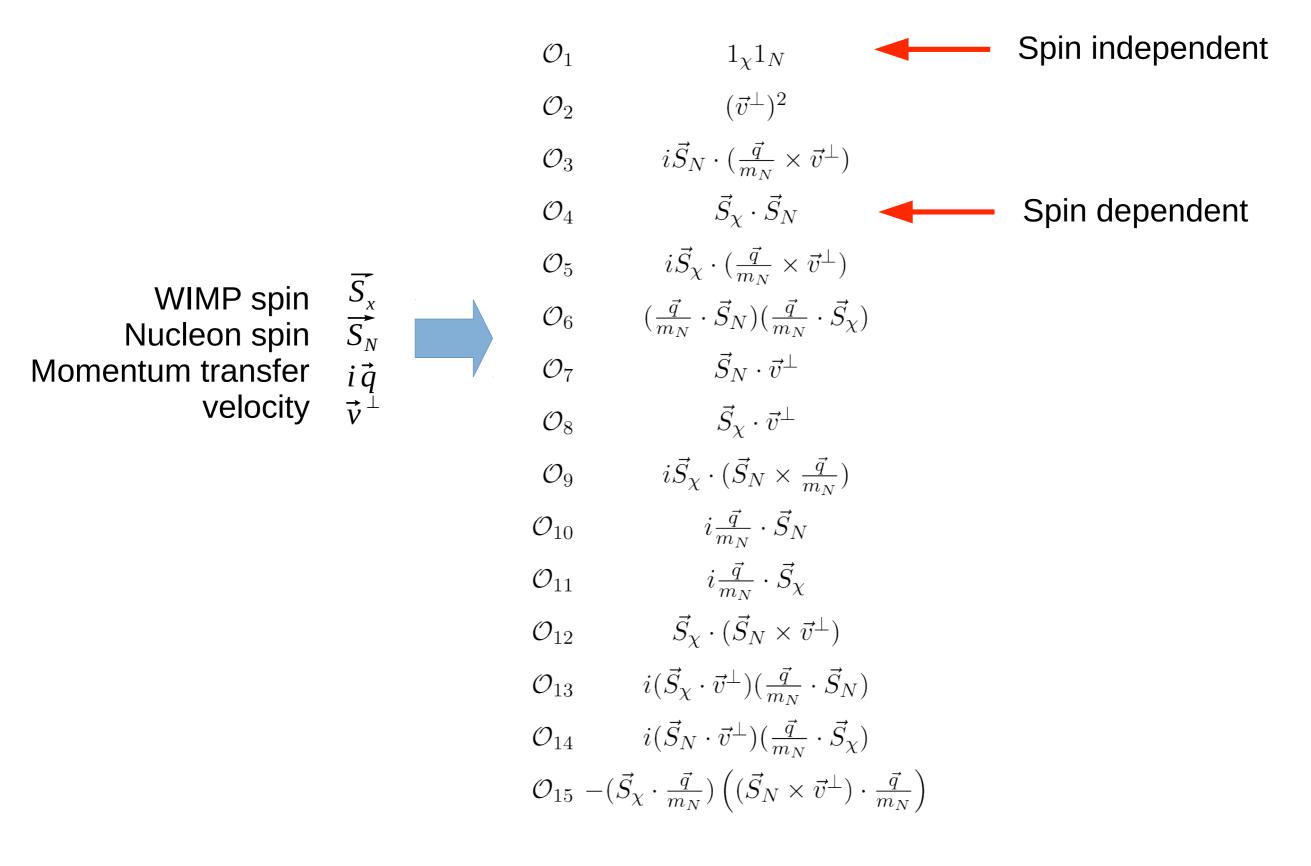
### Background neutrino rate

Both coherent nuclear elastic scattering  $\rightarrow$  at worst practically indistinguishable



Ruppin et al. 1408.3581

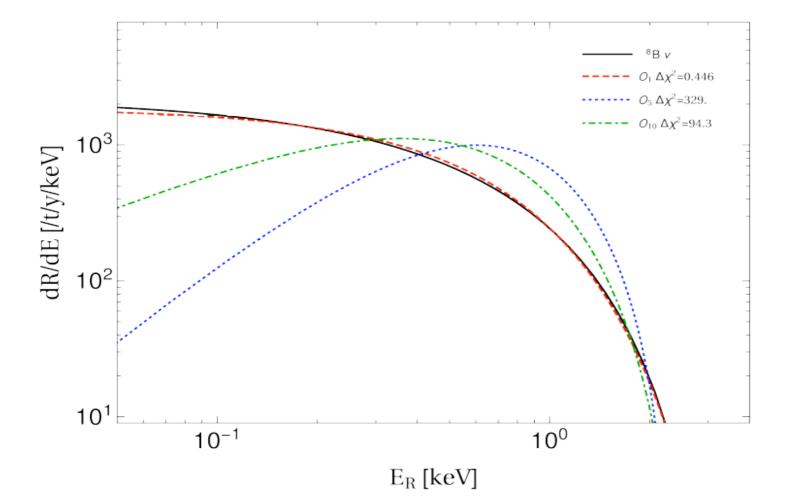
### Non-relativistic EFT for DD



# EFT fits to neutrino rate

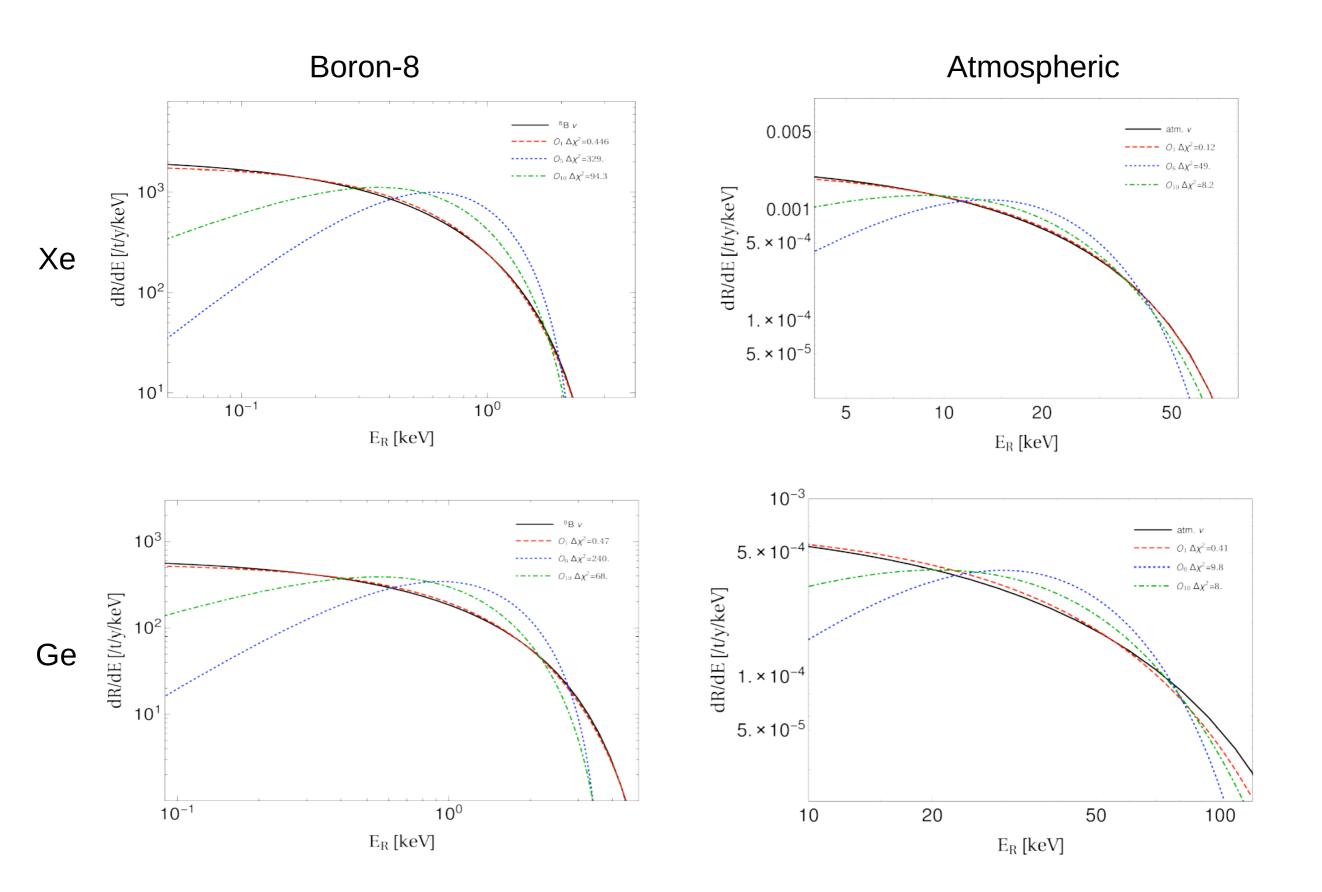
Find best fit with a binned Poisson likelihood:

$$\mathcal{L} = \prod_{i=1}^{b} \frac{\nu_i^{n_i} e^{\nu_i}}{n_i!}$$



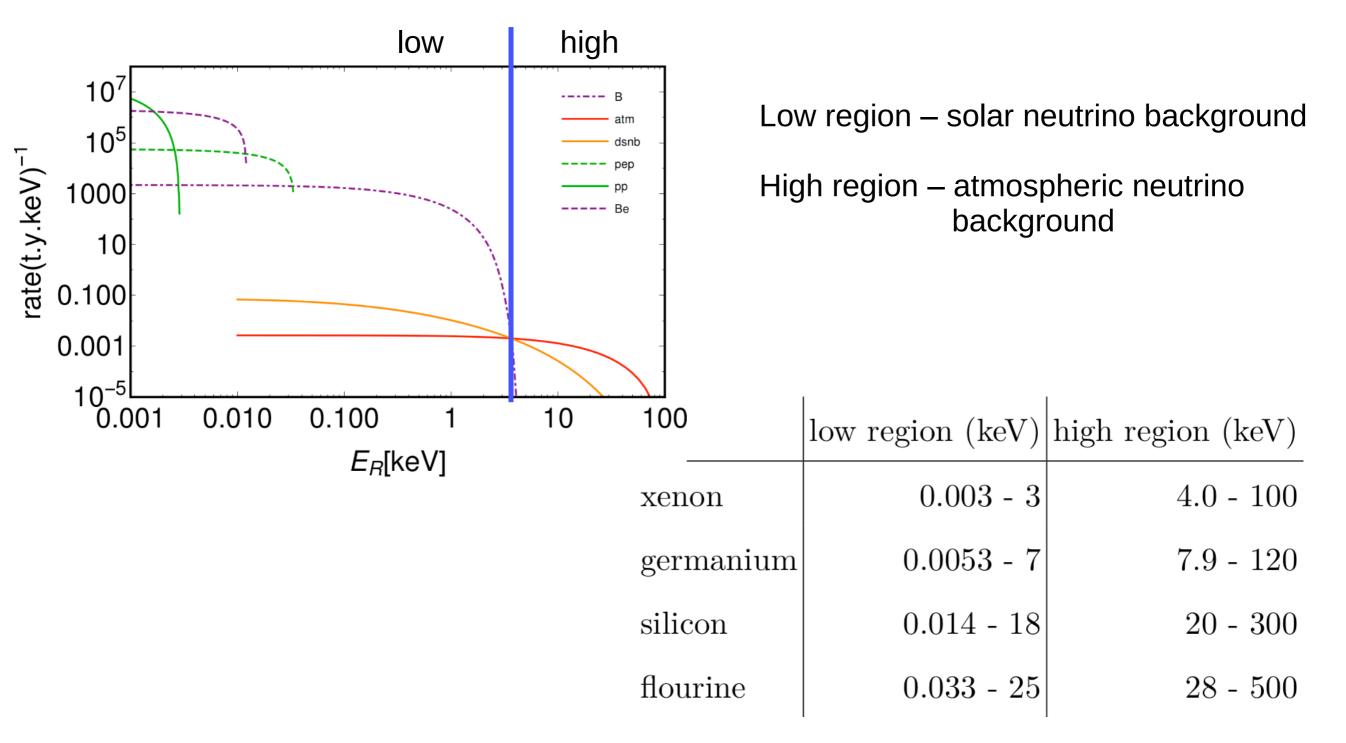
|                                     | Operator             | Mass~(GeV) | Exp. (t.y) |  |  |
|-------------------------------------|----------------------|------------|------------|--|--|
|                                     | $\mathcal{O}_1$      | 6          | 2.9        |  |  |
|                                     | $\mathcal{O}_4$      | 6          | 3.5        |  |  |
|                                     | $\mathcal{O}_7$      | 6.2        | 4.3        |  |  |
|                                     | $\mathcal{O}_8$      | 6.3        | 3.6        |  |  |
| $q^2$                               | $^2$ and $q^2 v_T^2$ |            |            |  |  |
|                                     | $\mathcal{O}_5$      | 4.8        | 0.43       |  |  |
|                                     | $\mathcal{O}_9$      | 4.6        | 0.34       |  |  |
|                                     | $\mathcal{O}_{10}$   | 4.6        | 0.36       |  |  |
|                                     | $\mathcal{O}_{11}$   | 4.6        | 0.40       |  |  |
|                                     | $\mathcal{O}_{12}$   | 4.6        | 0.44       |  |  |
|                                     | $\mathcal{O}_{14}$   | 4.8        | 0.43       |  |  |
| $q^2 v_T^2$ , $q^4$ and $q^4 v_T^2$ |                      |            |            |  |  |
|                                     | $\mathcal{O}_3$      | 4.2        | 0.27       |  |  |
|                                     | $\mathcal{O}_6$      | 4.2        | 0.29       |  |  |
|                                     | $\mathcal{O}_{13}$   | 4.2        | 0.27       |  |  |
|                                     | $\mathcal{O}_{15}$   | 4.1        | 0.21       |  |  |
|                                     |                      |            |            |  |  |

### Fits to neutrino rate



### Two regions of interest

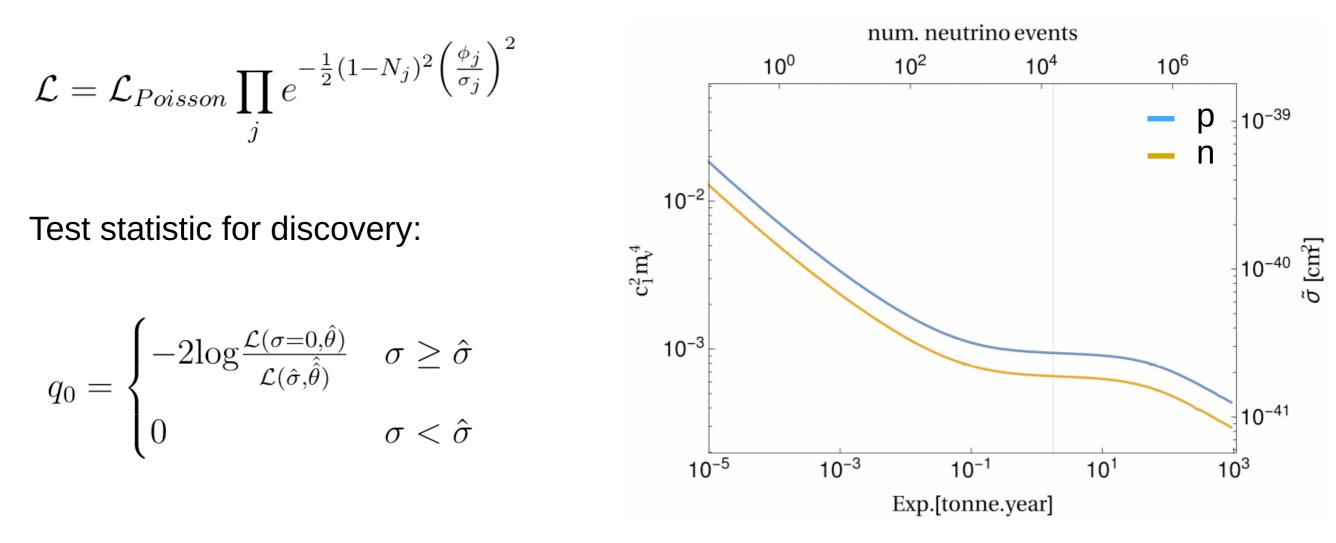
Neutrino rates in xenon:



# Discovery evolution

Include flux uncertainty in likelihood:

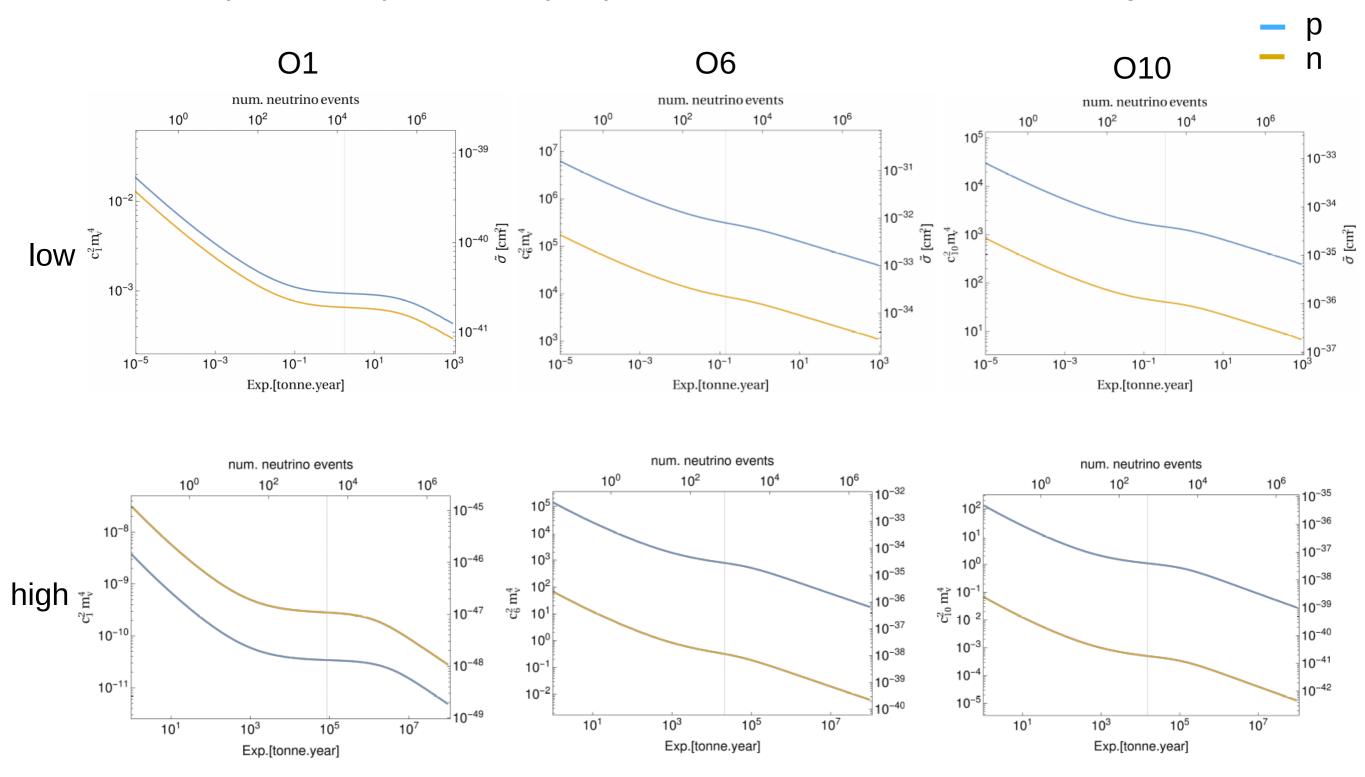
Xenon-low O1 (SI):



For a given exposure, find the cross section which produces a  $3\sigma$  deviation from the null hypothesis 90% of the time

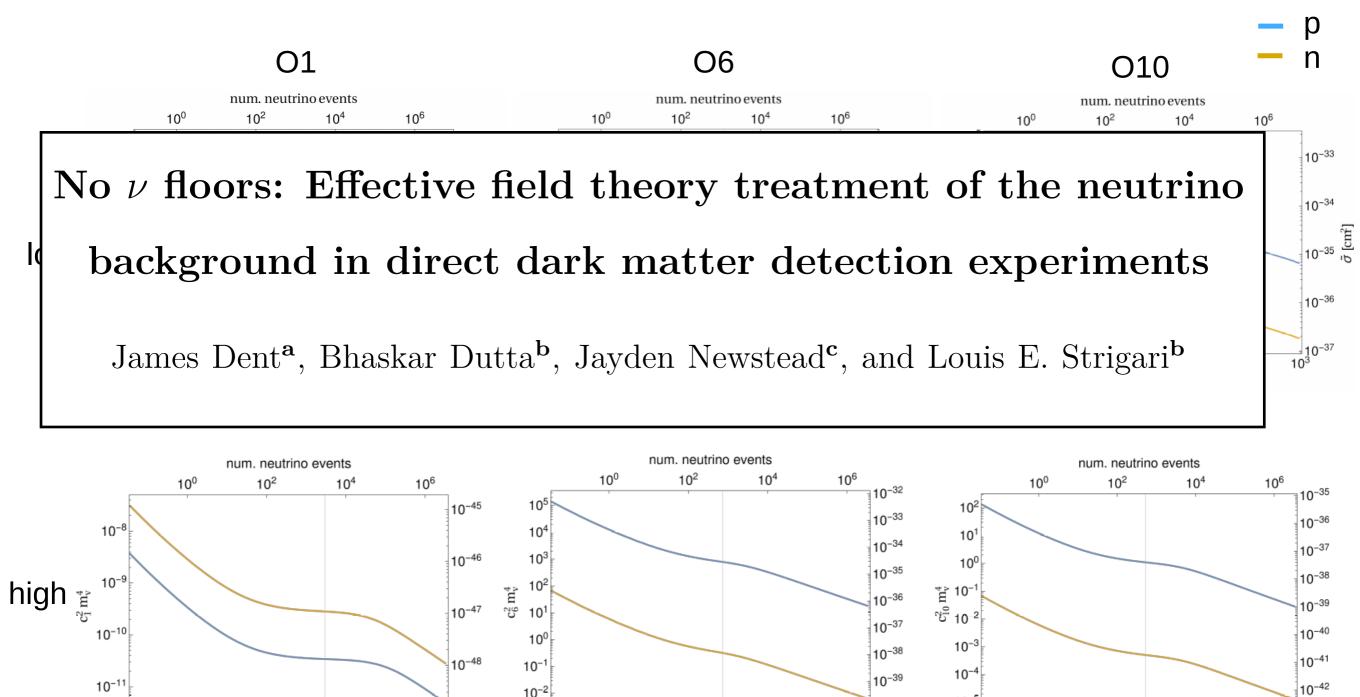
### Discovery evolution

Group 2 and 3 operators only experience a weak saturation – no strong nu-floor



# Discovery evolution

Group 2 and 3 operators only experience a weak saturation – no strong nu-floor



10<sup>3</sup>

10<sup>5</sup>

Exp.[tonne.year]

10<sup>1</sup>

10<sup>-49</sup>

10<sup>7</sup>

10<sup>1</sup>

10<sup>3</sup>

Exp.[tonne.year]

10<sup>5</sup>

10-5

10<sup>1</sup>

10<sup>3</sup>

10<sup>5</sup>

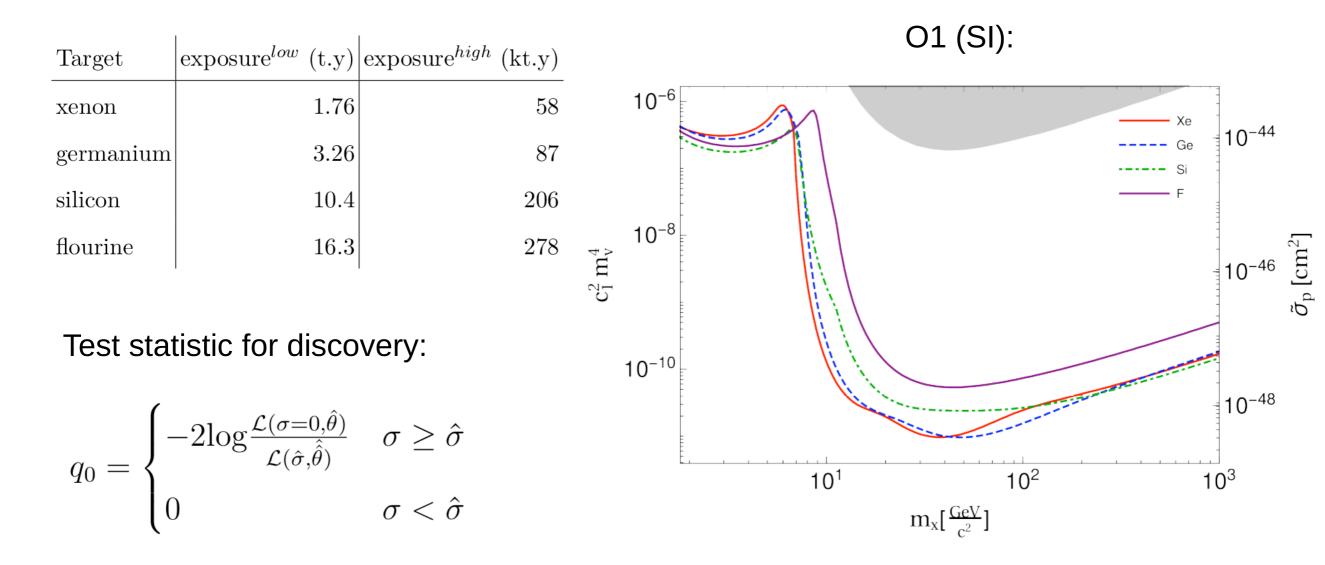
Exp.[tonne.year]

10<sup>7</sup>

10<sup>-40</sup>

10<sup>7</sup>

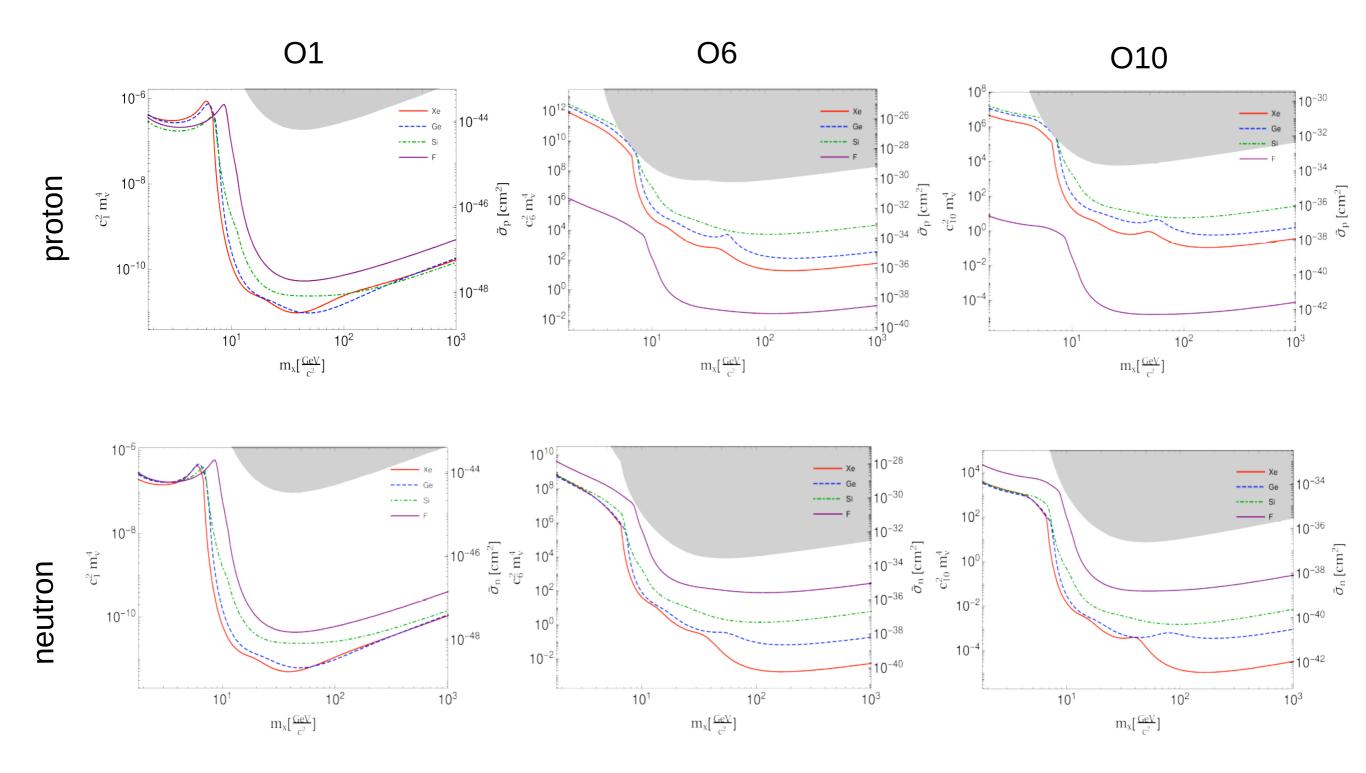
# Discovery limits



For saturated exposure, find the cross section which produces a  $3\sigma$  deviation from the null hypothesis 90% of the time

### Discovery limits

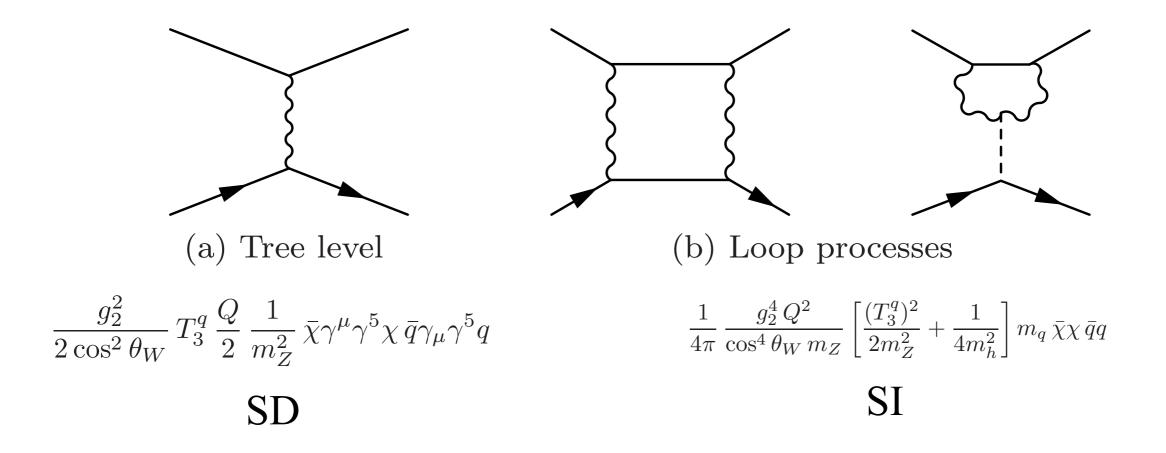
Group 2 and 3 operators only experience a weak saturation – no strong nu-floor





#### Operator Uniqueness

An issue that arises is whether tree level interactions with one type of operator as dominant become sub-dominant when loop/running effects are included. Does SD dominate?



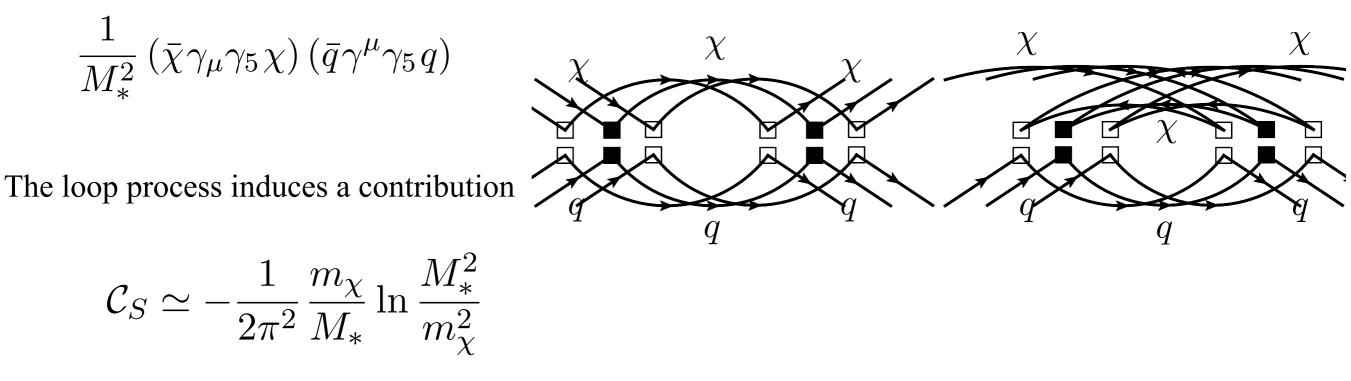
Once Higgs and/or Z-mixing arise, SI elastic scattering can be generated, dependent on the DM-mediator coupling strength.

For vector exchange, the loop induced SI can be competitive, while SD remains dominant for pseudoscalar exchange

M. Freytsis and Z. Ligeti, 1012.5317

#### Operator Uniqueness

For example, beginning with a pure axial-vector exchange (SD and kinematically unsuppressed)



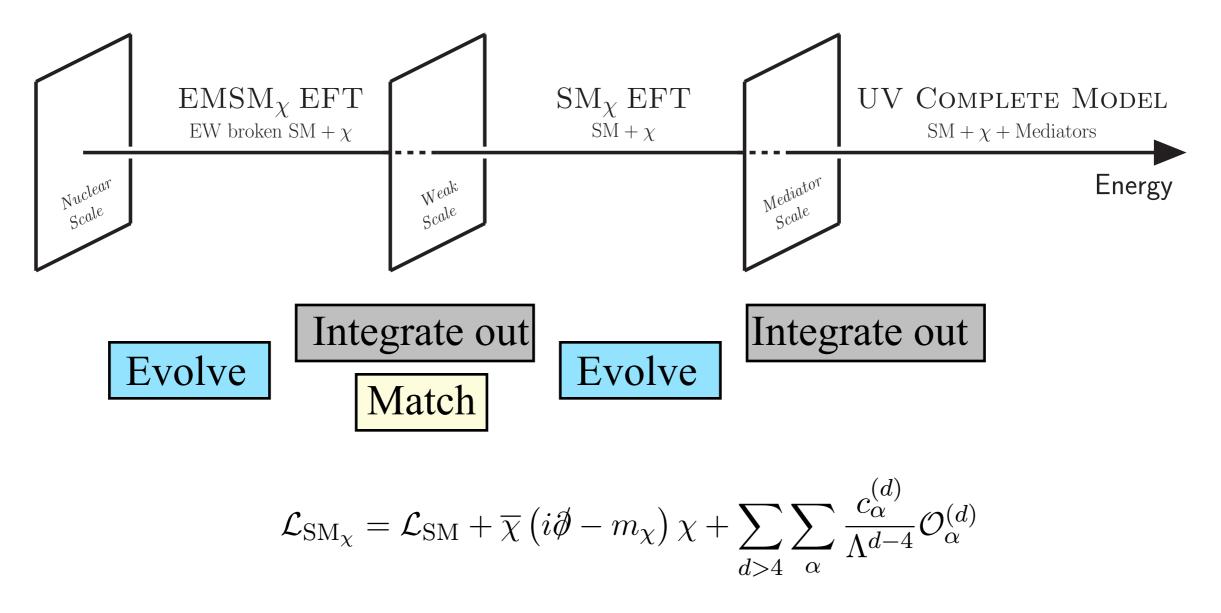
to the spin-independent operator

$$\mathcal{O}_S = \frac{m_q}{M_*^3} \, \mathcal{C}_S \left( \bar{\chi} \chi \right) \left( \bar{q} q \right)$$

$$\sigma_N^{\rm SI} = \frac{f_N^2}{\pi} \frac{m_{\rm red}^2 m_N^2}{M_*^6} \, \mathcal{C}_S^2$$

U. Haisch and F. Kahlhoefer, 1302.4454

In order to fully exploit complementarity between direct detection and collider searches, one needs to properly connect the scale of the mediator mass to the nuclear scale



F. D'Eramo and M. Procura, 1411.3342

R.J. Hill and M.P. Solon, 1409.8290

#### Operator Uniqueness

Another example of mixing was obtained for the Higgs portal interaction

$$\mathcal{L} = \mathcal{L}_{SM} + \bar{\chi} \left( i \partial \!\!\!/ - M_0 \right) \chi + \Lambda^{-1} \left( \cos \theta \ \bar{\chi} \chi + \sin \theta \ \bar{\chi} i \gamma_5 \chi \right) H^{\dagger} H$$
  
After EWSB:  $H^{\dagger} H \longrightarrow \frac{\langle v \rangle^2}{2} + \langle v \rangle h + \frac{h^2}{2}$ 

A chiral rotation and field redefinition is needed for a real mass

$$\chi \to \exp(i\gamma_5 \alpha/2) \chi \quad \Rightarrow \quad \bar{\chi} \to \bar{\chi} \exp(i\gamma_5 \alpha/2)$$

It is found that even for an initially pure pseudoscalar interaction  $\cos \theta = 0$ ,  $\sin \theta = \pm 1$ a scalar term will be generated

$$\Lambda^{-1} \left[ -\frac{\langle v \rangle^2}{2\Lambda M} \,\bar{\chi}\chi \pm \sqrt{1 - \left(\frac{\langle v \rangle^2}{2\Lambda M}\right)^2} \,\bar{\chi}i\gamma_5\chi \right] \left(\langle v \rangle h + h^2/2\right)$$

M.A. Fedderke, J.-Y. Chen, E.W. Kolb, and L.-T. Wang, JHEP 1408 (2014), arXiv:1404.2283

Other work which discusses this effect includes: S. Matsumoto, S. Mukhopadhyay, Y.-L. Sming Tsai, JHEP **1410** (2014), arXiv:1407.1859 R.J. Hill and M.P. Solon, PRD **91** (2015) arXiv:1409.8290

Wilson coefficients are matched at the EWSB scale including effects from integrating out weak scale particles

$$\begin{split} & EMSM_{\chi} \quad \frac{Symbol}{\mathcal{O}_{\Gamma V u}^{(i)}} \quad \overline{\chi}\,\Gamma^{\mu}\chi\,\overline{u^{i}}\gamma_{\mu}u^{i}} \quad \mathcal{O}_{\Gamma V d}^{(i)} \quad \overline{\chi}\,\Gamma^{\mu}\chi\,\overline{d^{i}}\gamma_{\mu}d^{i}} \quad \mathcal{O}_{\Gamma V e}^{(i)} \quad \overline{\chi}\,\Gamma^{\mu}\chi\,\overline{e^{i}}\gamma_{\mu}e^{i}} \\ & \mathcal{O}_{\Gamma A u}^{(i)} \quad \overline{\chi}\,\Gamma^{\mu}\chi\,\overline{u^{i}}\gamma_{\mu}\gamma_{5}u^{i}} \quad \mathcal{O}_{\Gamma A d}^{(i)} \quad \overline{\chi}\,\Gamma^{\mu}\chi\,\overline{d^{i}}\gamma_{\mu}\gamma_{5}d^{i}} \quad \mathcal{O}_{\Gamma A e}^{(i)} \quad \overline{\chi}\,\Gamma^{\mu}\chi\,\overline{e^{i}}\gamma_{\mu}\gamma_{5}e^{i} \end{split} \end{split}$$

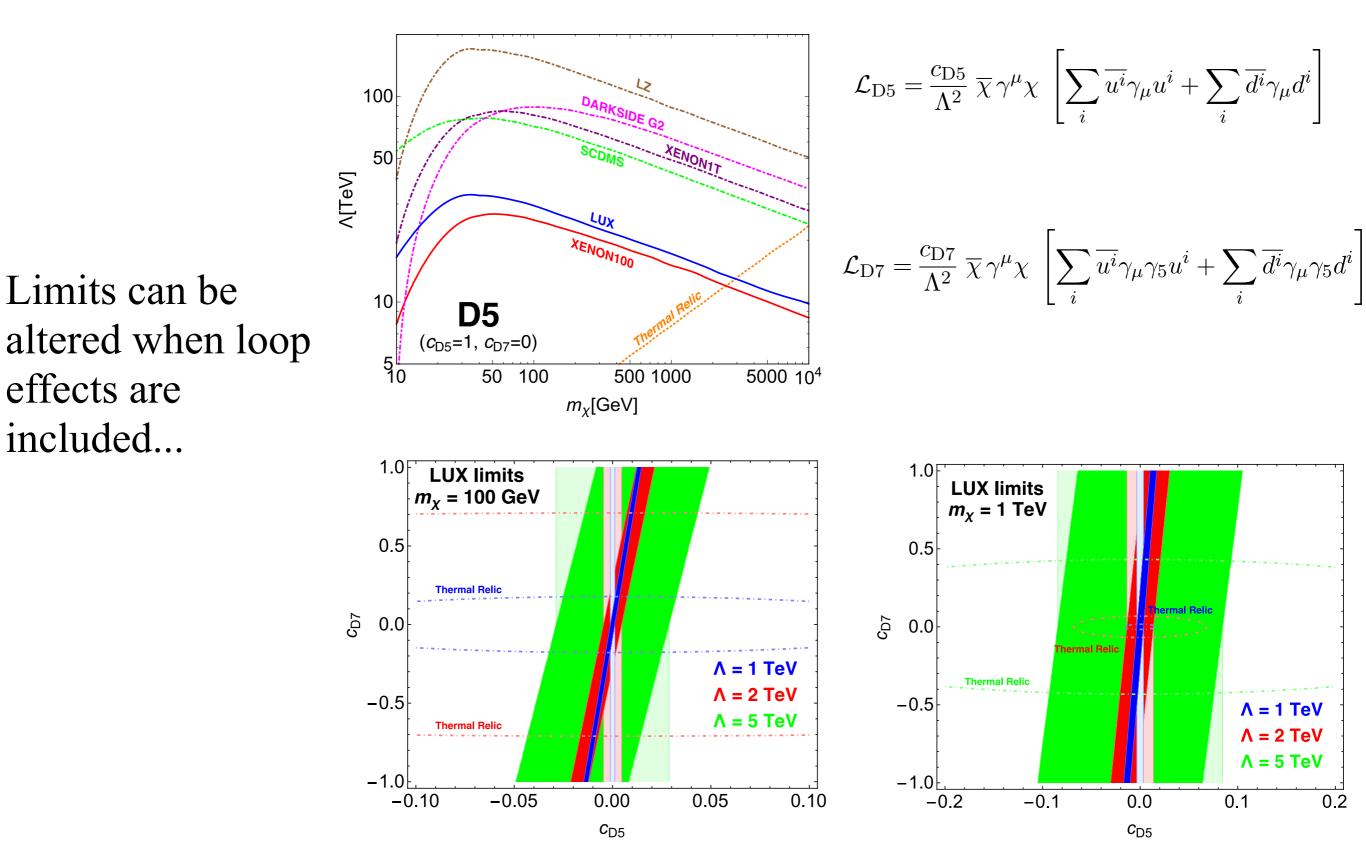
Wilson coefficients are evolved

$$\frac{d \, \mathcal{C}_{\text{EMSM}_{\chi}}}{d \ln \mu} = \gamma_{\text{EMSM}_{\chi}} \mathcal{C}_{\text{EMSM}_{\chi}}$$

Arrive at Wilson coefficients at the nuclear scale

 $c_N$ 

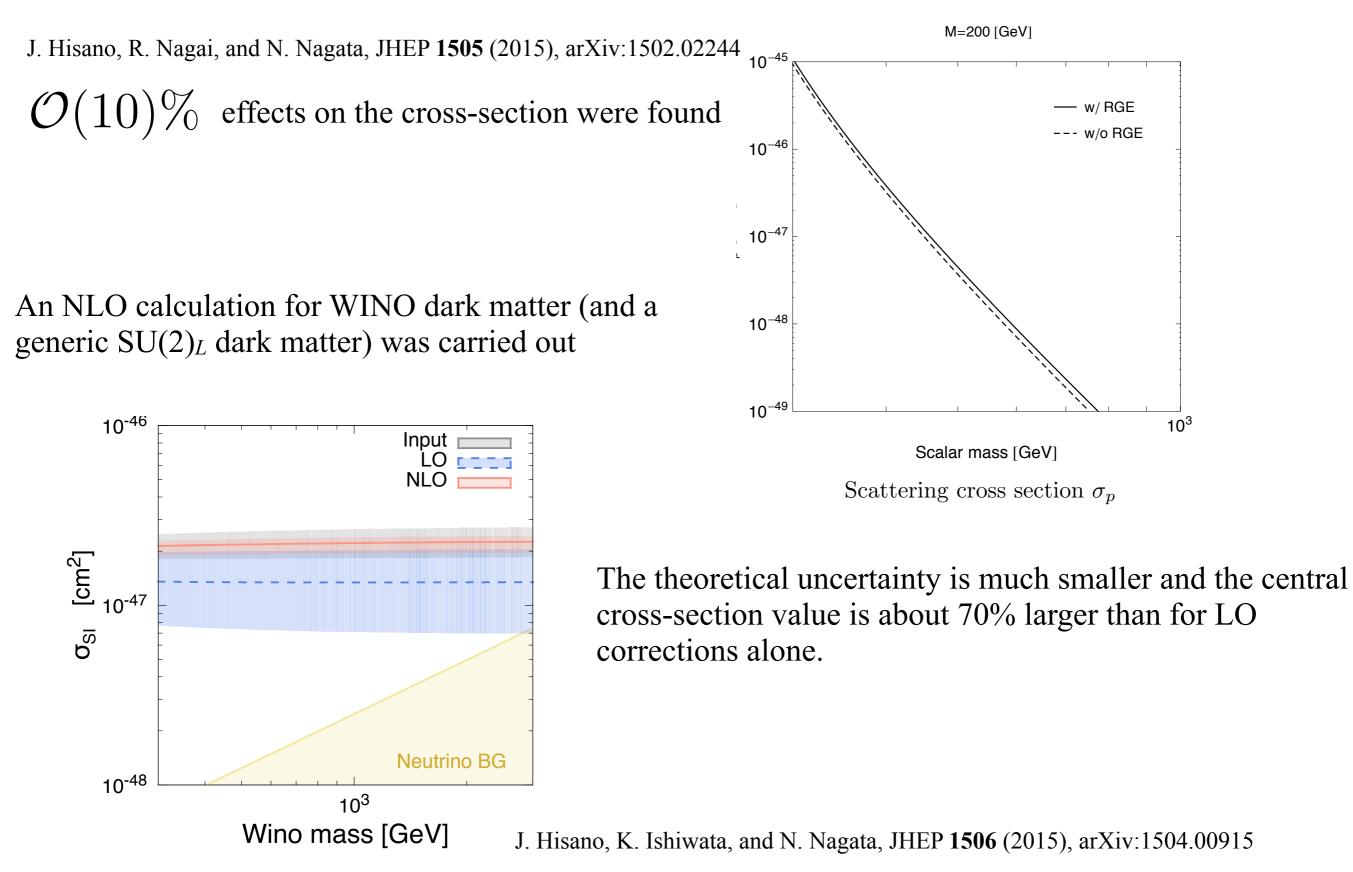
#### **Operator Mixing**

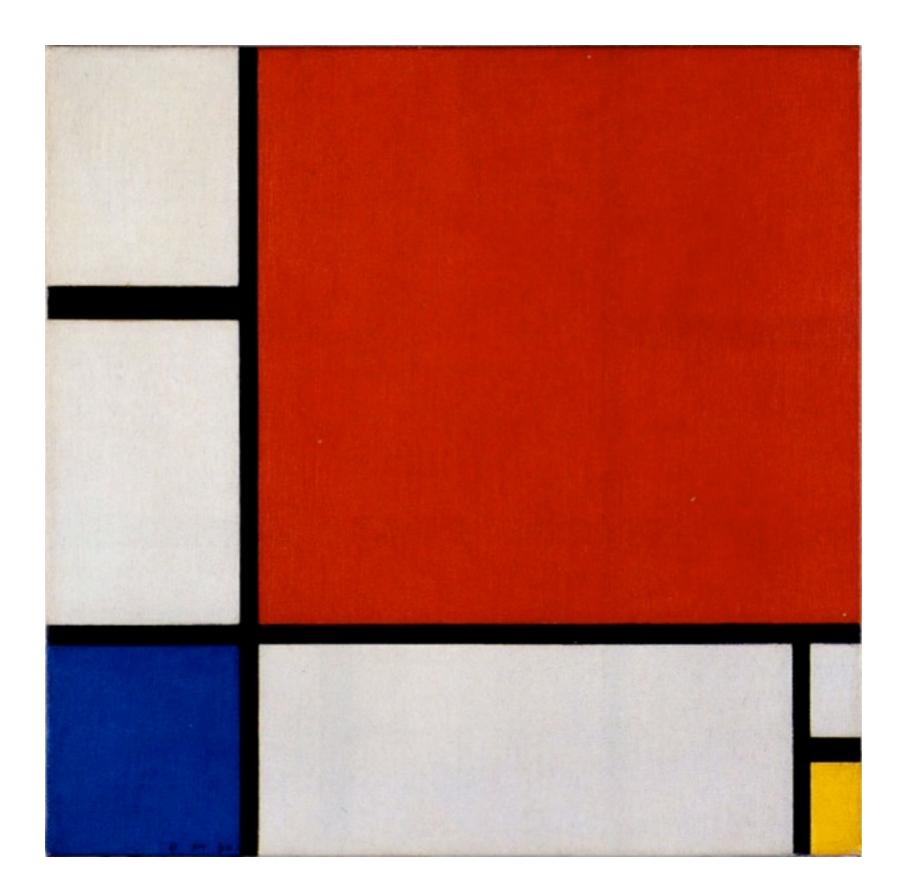


#### Vector and axial-vector current coupling to heavy quarks



Leading order QCD loop effects on the Wilson coefficients for colored mediator exchanges have been calculated for Majorana, scalar, and real vector boson dark matter





#### Summary

but not too simple...consistency

capture some broad features of DM searches

combinatorics

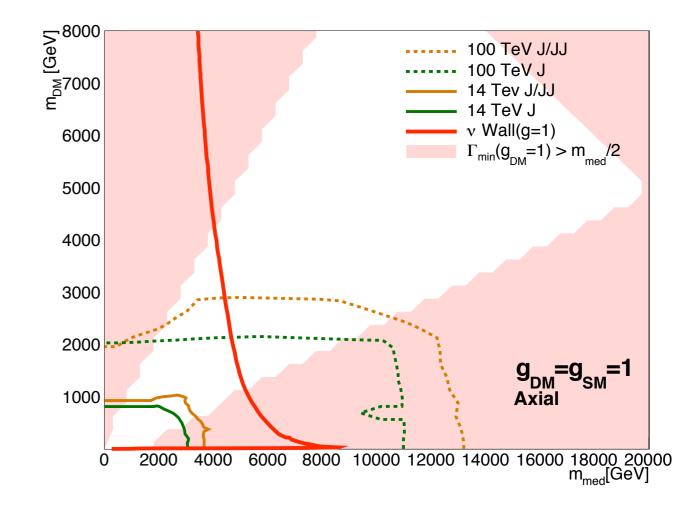
non-standard feature exploration

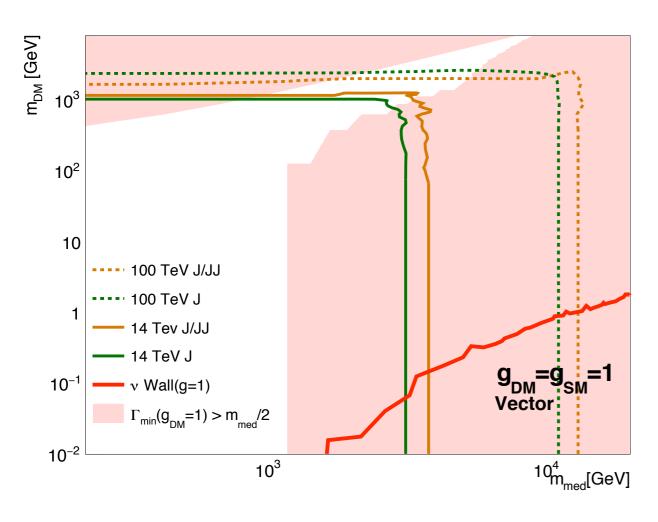
Neutrino Floor?

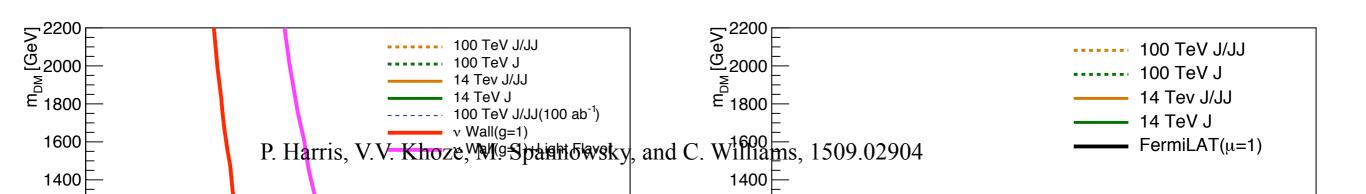
Complimentarity

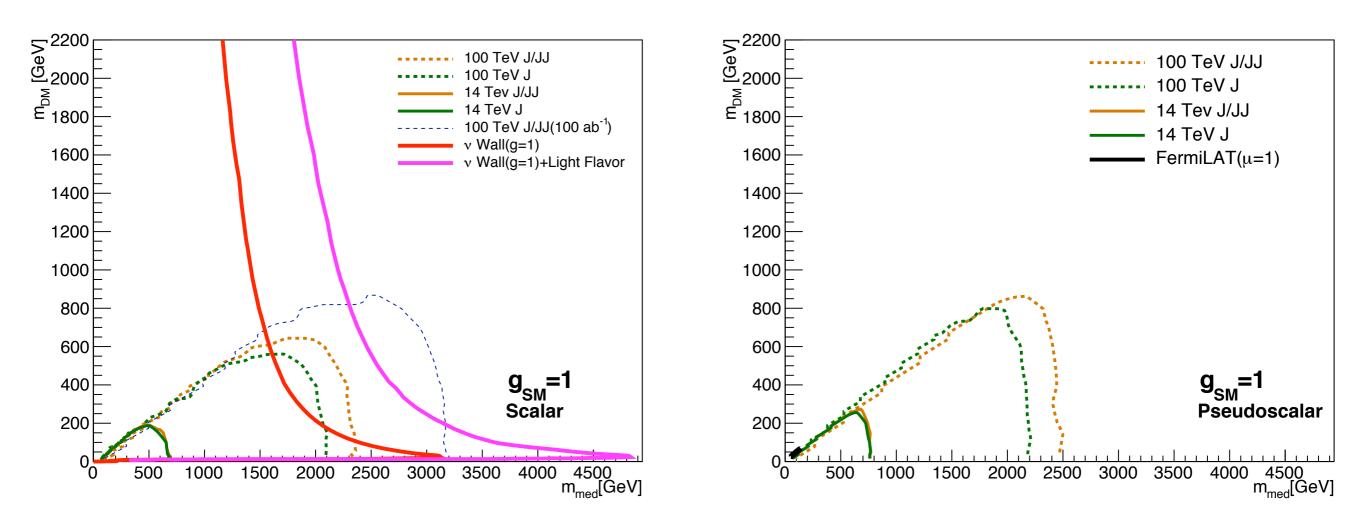
$$\frac{d\sigma(E_{\nu}, E_{r})}{dE_{r}} = \frac{G_{f}^{2}}{4\pi} Q_{\omega}^{2} m_{N} \left(1 - \frac{m_{N} E_{r}}{2E_{\nu}^{2}}\right) F_{SI}^{2}(E_{r})$$

 $Q_{\omega} = N - (1 - 4\sin^2\theta_{\omega})Z$ 

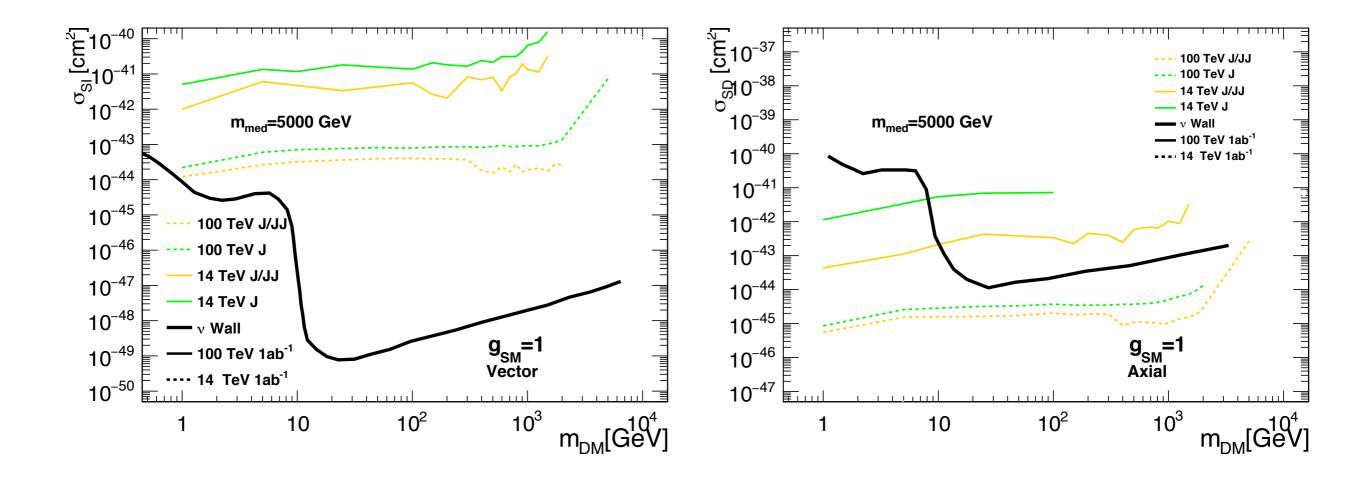


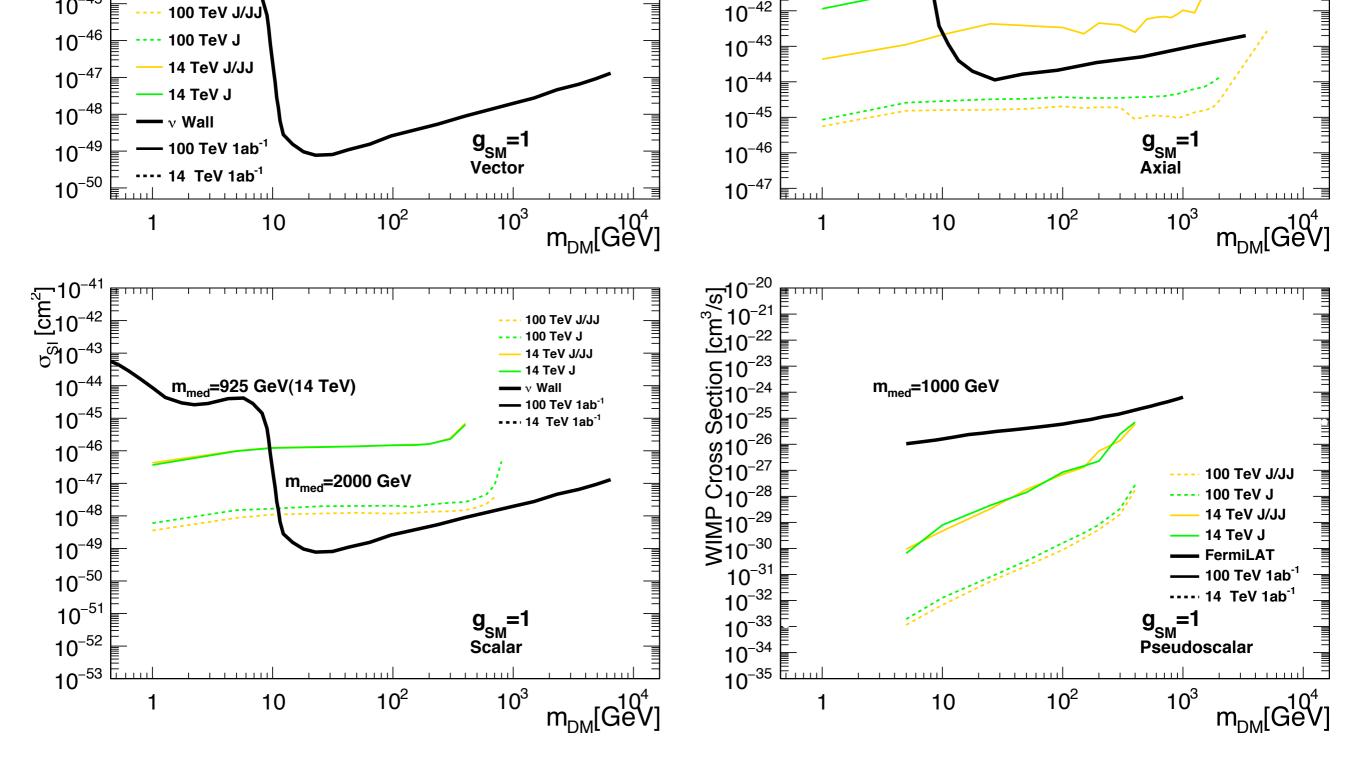


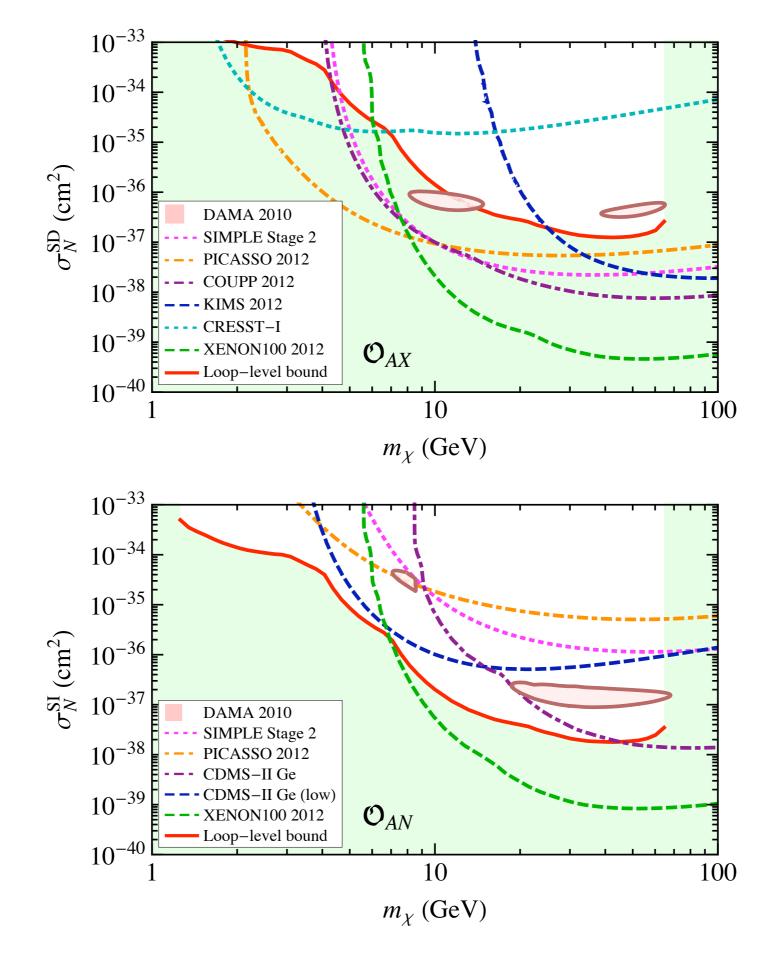




P. Harris, V.V. Khoze, M. Spannowsky, and C. Williams, 1509.02904



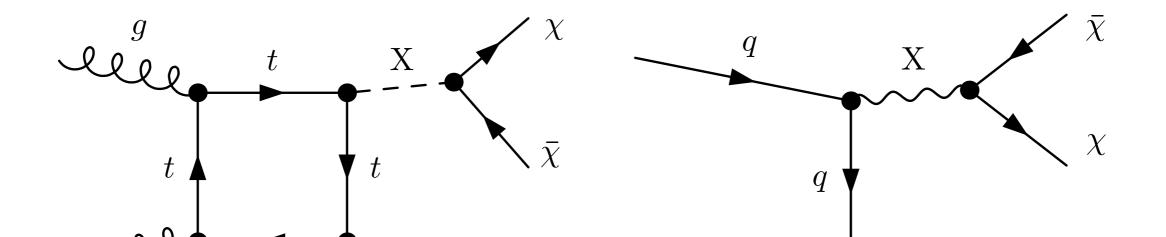


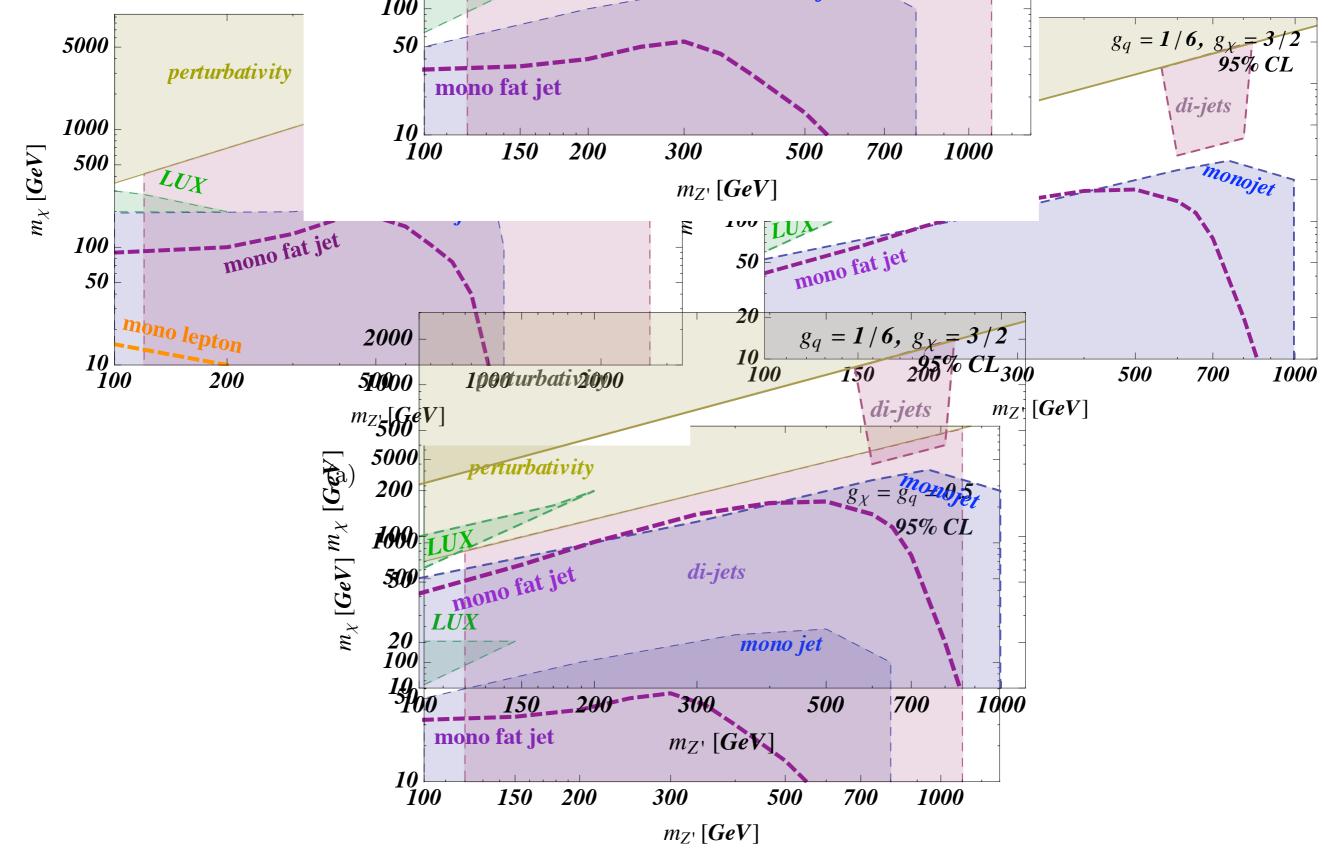


U. Haisch and F. Kahlhoefer, 1302.4454

$$\Gamma_{f\overline{f}}^{V} = \frac{g_{f}^{2}(m_{\text{MED}}^{2} + 2m_{f}^{2})}{12\pi m_{\text{MED}}} \sqrt{1 - \frac{4m_{f}^{2}}{m_{\text{MED}}^{2}}} \quad , \quad \Gamma_{f\overline{f}}^{A} = \frac{g_{f}^{2}(m_{\text{MED}}^{2} - 4m_{f}^{2})}{12\pi m_{\text{MED}}} \sqrt{1 - \frac{4m_{f}^{2}}{m_{\text{MED}}^{2}}}$$

$$\Gamma_{f\overline{f}}^{S} = \frac{g_{f}^{2}}{8\pi} m_{\text{MED}} \left(1 - \frac{4m_{f}^{2}}{m_{\text{MED}}^{2}}\right)^{\frac{3}{2}} \quad , \quad \Gamma_{f\overline{f}}^{P} = \frac{g_{f}^{2}}{8\pi} m_{\text{MED}} \left(1 - \frac{4m_{f}^{2}}{m_{\text{MED}}^{2}}\right)^{\frac{1}{2}}$$





**Figure 5**. Parameter space for the *s*-channel Z' model, for choices of (a)  $g_q = g_{\chi} = 1$  and (b)  $g_q = g_{\chi} = 0.5$  and (c)  $g_q = 1/6$  and  $g_{\chi} = 3/2$ . Exclusions are shown as shaded regions for LUX and for mono-jet and di-jets at 8 TeV, and the reaches are shown for the mono lepton ((a) only) and mono fat jet searches at 14 TeV 3000  $fb^{-1}$ . Note differing axes.

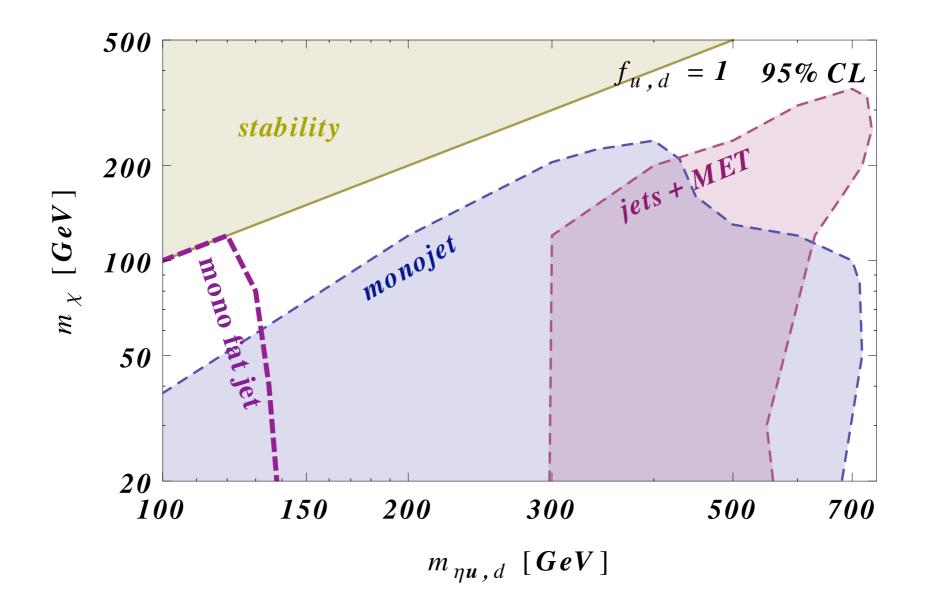


Figure 4. Parameter space for the *t*-channel colored scalar model, for  $f_{u,d} = 1$ . Exclusions are shown as shaded regions for the mono and multi jet at 8 TeV, and the reach is shown for the mono fat jet at 14 TeV 3000  $fb^{-1}$ .

Scalar mediator

| DM bilinear                                                        |                                              | SM fermion bilinear                            |                                                        |                                                     |  |  |  |  |
|--------------------------------------------------------------------|----------------------------------------------|------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
| fermion DM                                                         | $\bar{f}f$                                   | $ar{f}\gamma^5 f$                              | $ar{f}\gamma^\mu f$                                    | $ar{f}\gamma^\mu\gamma^5 f$                         |  |  |  |  |
| $\bar{\chi}\chi$                                                   | $\sigma v \sim v^2,  \sigma_{\rm SI} \sim 1$ | $\sigma v \sim v^2,  \sigma_{\rm SD} \sim q^2$ | _                                                      | _                                                   |  |  |  |  |
| $\bar{\chi}\gamma^5\chi$                                           | $\sigma v \sim 1,  \sigma_{ m SI} \sim q^2$  | $\sigma v \sim 1,  \sigma_{ m SD} \sim q^4$    | _                                                      | _                                                   |  |  |  |  |
| $\left  \bar{\chi} \gamma^{\mu} \chi \text{ (Dirac only)} \right $ | —                                            |                                                | $\sigma v \sim 1,  \sigma_{\rm SI} \sim 1$             | $\sigma v \sim 1,  \sigma_{ m SD} \sim v_{\perp}^2$ |  |  |  |  |
| $\bar{\chi}\gamma^{\mu}\gamma^{5}\chi$                             | _                                            |                                                | $\sigma v \sim v^2,  \sigma_{\rm SI} \sim v_{\perp}^2$ | $\sigma v \sim 1,  \sigma_{ m SD} \sim 1$           |  |  |  |  |

| DM bilinear                                                                            |                                            | SM fermion bilinear                         |                                                                  |                                                        |  |  |  |
|----------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|--|--|--|
| scalar DM                                                                              | $\overline{f}f$                            | $ar{f}\gamma^5 f$                           | $ar{f}\gamma^\mu f$                                              | $ar{f}\gamma^\mu\gamma^5 f$                            |  |  |  |
| $\phi^\dagger \phi$                                                                    | $\sigma v \sim 1,  \sigma_{\rm SI} \sim 1$ | $\sigma v \sim 1,  \sigma_{ m SD} \sim q^2$ | _                                                                | _                                                      |  |  |  |
| $\phi^{\dagger} \overset{\leftrightarrow}{\partial_{\mu}} \phi \text{ (complex only)}$ | _                                          |                                             | $\sigma v \sim v^2,  \sigma_{\rm SI} \sim 1$                     | $\sigma v \sim v^2,  \sigma_{\rm SD} \sim v_{\perp}^2$ |  |  |  |
| vector DM                                                                              | $\bar{f}f$                                 | $ar{f}\gamma^5 f$                           | $ar{f}\gamma^\mu f$                                              | $ar{f}\gamma^\mu\gamma^5 f$                            |  |  |  |
| $X^{\mu}X^{\dagger}_{\mu}$                                                             | $\sigma v \sim 1,  \sigma_{\rm SI} \sim 1$ | $\sigma v \sim 1,  \sigma_{ m SD} \sim q^2$ | _                                                                | _                                                      |  |  |  |
| $X^{\nu}\partial_{\nu}X^{\dagger}_{\mu}$                                               | —                                          |                                             | $\sigma v \sim v^2,  \sigma_{\rm SI} \sim q^2 \cdot v_{\perp}^2$ | $\sigma v \sim v^2,  \sigma_{\rm SD} \sim q^2$         |  |  |  |

| DM               | Mediator    | Interaction                  | Assessment                             |
|------------------|-------------|------------------------------|----------------------------------------|
| Dirac Fermion    | Spin-0      | $1\pm\gamma^5$               | $\sigma v \sim 1$ , LHC OK             |
| Dirac Fermion    | Spin-1      | $\gamma^{\mu}(1\pm\gamma^5)$ | $\sigma v \sim 1$ , LHC OK             |
| Majorana Fermion | Spin-0      | $1\pm\gamma^5$               | $\sigma v \sim v^2$                    |
| Majorana Fermion | Spin-1      | $\gamma^{\mu}(1\pm\gamma^5)$ | $\sigma v \sim v^2$                    |
| Real Scalar      | Spin-1/2    | $1\pm\gamma^5$               | $\sigma v \sim 1,  {\rm LHC}$ Excluded |
| Complex Scalar   | Spin- $1/2$ | $1\pm\gamma^5$               | $\sigma v \sim v^2$                    |
| Real Vector      | Spin- $1/2$ | $\gamma^{\mu}(1\pm\gamma^5)$ | $\sigma v \sim 1$ , LHC OK             |
| Complex Vector   | Spin- $1/2$ | $\gamma^{\mu}(1\pm\gamma^5)$ | $\sigma v \sim 1$ , LHC OK             |

| Model  | DM               | Mediator                | Interactions                                                                             | Elastic                                                                            | Near F | uture Reach? |
|--------|------------------|-------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------|--------------|
| Number |                  | Mediator                |                                                                                          | Scattering                                                                         | Direct | LHC          |
| 1      | Dirac Fermion    | Spin-0                  | $\bar{\chi}\gamma^5\chi,ar{f}f$                                                          | $\sigma_{\rm SI} \sim (q/2m_\chi)^2 \; ({\rm scalar})$                             | No     | Maybe        |
| 1      | Majorana Fermion | Spin-0                  | $\bar{\chi}\gamma^5\chi,ar{f}f$                                                          | $\sigma_{\rm SI} \sim (q/2m_{\chi})^2 \; ({\rm scalar})$                           | No     | Maybe        |
| 2      | Dirac Fermion    | Spin-0                  | $ar{\chi}\gamma^5\chi,ar{f}\gamma^5f$                                                    | $\sigma_{\rm SD} \sim (q^2/4m_n m_\chi)^2$                                         | Never  | Maybe        |
| 2      | Majorana Fermion | Spin-0                  | $\bar{\chi}\gamma^5\chi,\bar{f}\gamma^5f$                                                | $\sigma_{\rm SD} \sim (q^2/4m_n m_\chi)^2$                                         | Never  | Maybe        |
| 3      | Dirac Fermion    | Spin-1                  | $\bar{\chi}\gamma^{\mu}\chi,\bar{b}\gamma_{\mu}b$                                        | $\sigma_{\rm SI} \sim \text{loop (vector)}$                                        | Yes    | Maybe        |
| 4      | Dirac Fermion    | Spin-1                  | $\left  \bar{\chi} \gamma^{\mu} \chi,  \bar{f} \gamma_{\mu} \gamma^5 f \right $          | $\sigma_{\rm SD} \sim (q/2m_n)^2 \text{ or} \\ \sigma_{\rm SD} \sim (q/2m_\chi)^2$ | Never  | Maybe        |
| 5      | Dirac Fermion    | Spin-1                  | $\overline{\bar{\chi}\gamma^{\mu}\gamma^{5}\chi,\bar{f}\gamma_{\mu}\gamma^{5}f}$         | $\sigma_{\rm SD} \sim 1$                                                           | Yes    | Maybe        |
| 5      | Majorana Fermion | Spin-1                  | $\left  \bar{\chi} \gamma^{\mu} \gamma^5 \chi,  \bar{f} \gamma_{\mu} \gamma^5 f \right $ | $\sigma_{\rm SD} \sim 1$                                                           | Yes    | Maybe        |
| 6      | Complex Scalar   | Spin-0                  | $\phi^{\dagger}\phi,ar{f}\gamma^{5}f$                                                    | $\sigma_{\rm SD} \sim (q/2m_n)^2$                                                  | No     | Maybe        |
| 6      | Real Scalar      | Spin-0                  | $\phi^2,ar{f}\gamma^5 f$                                                                 | $\sigma_{\rm SD} \sim (q/2m_n)^2$                                                  | No     | Maybe        |
| 6      | Complex Vector   | Spin-0                  | $B^{\dagger}_{\mu}B^{\mu},  \bar{f}\gamma^5 f$                                           | $\sigma_{\rm SD} \sim (q/2m_n)^2$                                                  | No     | Maybe        |
| 6      | Real Vector      | Spin-0                  | $B_{\mu}B^{\mu},  \bar{f}\gamma^5 f$                                                     | $\sigma_{\rm SD} \sim (q/2m_n)^2$                                                  | No     | Maybe        |
| 7      | Dirac Fermion    | Spin-0 ( <i>t</i> -ch.) | $ar{\chi}(1\pm\gamma^5)b$                                                                | $\sigma_{\rm SI} \sim \text{loop (vector)}$                                        | Yes    | Yes          |
| 7      | Dirac Fermion    | Spin-1 $(t-ch.)$        | $\bar{\chi}\gamma^{\mu}(1\pm\gamma^5)b$                                                  | $\sigma_{\rm SI} \sim \text{loop (vector)}$                                        | Yes    | Yes          |
| 8      | Complex Vector   | Spin-1/2 (t-ch.)        | $X^{\dagger}_{\mu}\gamma^{\mu}(1\pm\gamma^5)b$                                           | $\sigma_{\rm SI} \sim \text{loop (vector)}$                                        | Yes    | Yes          |
| 8      | Real Vector      | Spin-1/2 (t-ch.)        | $X_{\mu}\gamma^{\mu}(1\pm\gamma^5)b$                                                     | $\sigma_{\rm SI} \sim \text{loop (vector)}$                                        | Yes    | Yes          |

| $\langle S \rangle_{\rm DM}$ | Type     | Interaction                                                                                                    | Elastic             | Kinematic                       |
|------------------------------|----------|----------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------|
|                              | туре     |                                                                                                                | Scattering          | Suppression                     |
| 1/2                          | Dirac    | $\bar{\chi}\gamma^5\chiar{q}q$                                                                                 | SI (scalar)         | $(q/2m_{\chi})^2$               |
| 1/2                          | Majorana | $ar{\chi}\gamma^5\chiar{q}q$                                                                                   | SI (scalar)         | $(q/2m_{\chi})^2$               |
| 1/2                          | Dirac    | $\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$                                                                       | SD                  | $(q^2/4m_nm_\chi)^2$            |
| 1/2                          | Majorana | $\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$                                                                       | SD                  | $(q^2/4m_nm_\chi)^2$            |
| 1/2                          | Dirac    | $\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$                                                               | SI (vector)         | 1                               |
| 1/2                          | Dirac    | $\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$                                                     | SD                  | $(q/2m_n)^2$ or $(q/2m_\chi)^2$ |
| 1/2                          | Dirac    | $\left \bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q\right $                              | $\operatorname{SD}$ | 1                               |
| 1/2                          | Majorana | $\left \bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q\right.$                              | SD                  | 1                               |
| 0                            | Complex  | $\phi^{\dagger}\phi\bar{q}q$                                                                                   | SI (scalar)         | 1                               |
| 0                            | Real     | $\phi^2 ar q q$                                                                                                | SI (scalar)         | 1                               |
| 0                            | Complex  | $\phi^{\dagger}\phi ar{q}\gamma^5 q$                                                                           | SD (scalar)         | $(q/2m_n)^2$                    |
| 0                            | Real     | $\phi^2 \bar{q} \gamma^5 q$                                                                                    | SD (scalar)         | $(q/2m_n)^2$                    |
| 1                            | Complex  | $B^{\dagger}_{\mu}B^{\mu}\bar{q}q$                                                                             | SI (scalar)         | 1                               |
| 1                            | Real     | $B_{\mu}B^{\mu}\bar{q}q$                                                                                       | SI (scalar)         | 1                               |
| 1                            | Complex  | $ \begin{array}{c} B^{\dagger}_{\mu}B^{\mu}\bar{q}\gamma^{5}q\\ B_{\mu}B^{\mu}\bar{q}\gamma^{5}q \end{array} $ | SD                  | $(q/2m_n)^2$                    |
| 1                            | Real     | $B_{\mu}B^{\mu}\bar{q}\gamma^{5}q$                                                                             | SD                  | $(q/2m_n)^2$                    |

| S | L | J           | С | Р                |
|---|---|-------------|---|------------------|
| 0 | 0 | 0           | + | -                |
| 0 | 1 | 1           | - | $\left +\right $ |
| 1 | 0 | 1           | - | -                |
| 1 | 1 | $0,\!1,\!2$ | + | $\left +\right $ |
| 1 | 2 | $1,\!2,\!3$ | - | -                |
| 1 | 3 | $2,\!3,\!4$ | + | +                |

| S | L | J                   | С | Р |
|---|---|---------------------|---|---|
| 0 | 0 | 0                   | + | + |
| 0 | 1 | 1                   | - | - |
| 1 | 0 | 1                   | - | + |
| 1 | 1 | $0,\!1,\!2$         | + | - |
| 1 | 2 | $1,\!2,\!3$         | - | + |
| 2 | 0 | 2                   | + | + |
| 2 | 1 | $1,\!2,\!3$         | - | - |
| 2 | 2 | $0,\!1,\!2,\!3,\!4$ | + | + |
| 2 | 3 | $1,\!2,\!3,\!4,\!5$ | - | - |
| 2 | 4 | $2,\!3,\!4,\!5,\!6$ | + | + |

| bilinear                                    | С | Р | J | state                         |
|---------------------------------------------|---|---|---|-------------------------------|
| $-\bar{\psi}\psi$                           | + | + | 0 | S = 1, L = 1                  |
| $i ar{\psi} \gamma^5 \psi$                  | + |   | 0 | S = 0, L = 0                  |
| $ar{\psi}\gamma^0\psi$                      | - | + | 0 | none                          |
| $ar{\psi}\gamma^i\psi$                      | - | - | 1 | S = 1, L = 0, 2               |
| $ar{\psi}\gamma^0\gamma^5\psi$              | + | - | 0 | S = 0, L = 0                  |
| $ar{\psi}\gamma^i\gamma^5\psi$              | + | + | 1 | S = 1, L = 1                  |
| $ar{\psi}\sigma^{0i}\psi$                   | - | - | 1 | S = 1, L = 0, 2               |
| $ar{\psi}\sigma^{ij}\psi$                   | - | + | 1 | S = 0, L = 1                  |
| $\phi^\dagger \phi$                         | + | + | 0 | S = 0, L = 0                  |
| $\imath Im(\phi^\dagger\partial^0\phi)$     | - | + | 0 | none                          |
| $\imath Im(\phi^{\dagger}\partial^{i}\phi)$ | - | - | 1 | S = 0, L = 1                  |
| $B^{\dagger}_{\mu}B^{\mu}$                  | + | + | 0 | S = 0, L = 0; S = 2, L = 2    |
| $iIm(B^{\dagger}_{\nu}\partial^{0}B^{\nu})$ | - | + | 0 | none                          |
| $iIm(B^{\dagger}_{\nu}\partial^{i}B^{\nu})$ | - | - | 1 | S = 0, L = 1; S = 2, L = 1, 3 |
| $i(B_i^{\dagger}B_j - B_j^{\dagger}B_i)$    | - | + | 1 | S = 1, L = 0, 2               |
| $i(B_i^{\dagger}B_0 - B_0^{\dagger}B_i)$    | - | - | 1 | S = 0, L = 1; S = 2, L = 1, 3 |
| $\epsilon^{0ijk}B_i\partial_j B_k$          | + | - | 0 | S = 1, L = 1                  |
| $-\epsilon^{0ijk}B_0\partial_j B_k$         | + | + | 1 | S = 2, L = 2                  |
| $B^{ u}\partial_{ u}B_0$                    | + | + | 0 | S = 0, L = 0; S = 2, L = 2    |
| $B^{\nu}\partial_{\nu}B_{i}$                | + | - | 1 | S = 1, L = 1                  |

| S | L             | J | $J_z = S_z$ | fermion helicities                  |
|---|---------------|---|-------------|-------------------------------------|
| 0 | 0             | 0 | 0           | $f_L,ar{f}_R;f_R,ar{f}_L$           |
| 1 | 0             | 1 | 1           | $f_R,ar{f}_R$                       |
| 1 | 0             | 1 | 0           | $f_L,ar{f}_R;f_R,ar{f}_L$           |
| 1 | 0             | 1 | -1          | $f_L,ar{f}_L$                       |
| 0 | 1             | 1 | 0           | $f_L,ar{f}_R;f_R,ar{f}_L$           |
| 1 | 1             | 0 | 0           | $f_L,ar{f}_R;f_R,ar{f}_L$           |
| 1 | 1             | 1 | 1           | $f_R,ar{f}_R$                       |
| 1 | 1             | 1 | 0           | -                                   |
| 1 | 1             | 1 | -1          | $f_L,~ar{f}_L$                      |
| 1 | 2             | 1 | 1           | $f_R,  ar{f}_R$                     |
| 1 | $\frac{2}{2}$ | 1 | 0           | $f_L,  \bar{f}_R;  f_R,  \bar{f}_L$ |
| 1 | 2             | 1 | -1          | $f_L,ar{f}_L$                       |

| Name | Interaction Structure                                                                                                                                                                                       | $\sigma_{\rm SI}$ suppression           | $\sigma_{\rm SD}$ suppression           | s-wave?               |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------|
| F1   | $ar{X}Xar{q}q$                                                                                                                                                                                              | 1                                       | $q^2 v^{\perp 2}$ (SM)                  | No                    |
| F2   | $ar{X}\gamma^5 Xar{q}q$                                                                                                                                                                                     | $q^2$ (DM)                              | $q^2 v^{\perp 2}$ (SM); $q^2$ (DM)      | Yes                   |
| F3   | $ar{X}Xar{q}\gamma^5 q$                                                                                                                                                                                     | 0                                       | $q^2$ (SM)                              | No                    |
| F4   | $ar{X}\gamma^5 Xar{q}\gamma^5 q$                                                                                                                                                                            | 0                                       | $q^2$ (SM); $q^2$ (DM)                  | Yes                   |
| F5   | $ar{X}\gamma^\mu Xar{q}\gamma_\mu q$                                                                                                                                                                        | 1                                       | $q^2 v^{\perp 2}$ (SM)                  | Yes                   |
|      | (vanishes for Majorana $X$ )                                                                                                                                                                                |                                         | $q^2$ (SM); $q^2$ or $v^{\perp 2}$ (DM) |                       |
| F6   | $ar{X}\gamma^{\mu}\gamma^{5}Xar{q}\gamma_{\mu}q$                                                                                                                                                            | $v^{\perp 2}$ (SM or DM)                | $q^2$ (SM)                              | No                    |
| F7   | $ar{X}\gamma^\mu Xar{q}\gamma_\mu\gamma^5 q$                                                                                                                                                                | $q^2 v^{\perp 2}$ (SM); $q^2$ (DM)      | $v^{\perp 2}$ (SM)                      | Yes                   |
|      | (vanishes for Majorana $X$ )                                                                                                                                                                                |                                         | $v^{\perp 2}$ or $q^2$ (DM)             |                       |
| F8   | $ar{X}\gamma^{\mu}\gamma^{5}Xar{q}\gamma_{\mu}\gamma^{5}q$                                                                                                                                                  | $q^2 v^{\perp 2}$ (SM)                  | 1                                       | $\propto m_f^2/m_X^2$ |
| F9   | $\bar{X}\sigma^{\mu u}X\bar{q}\sigma_{\mu u}q$                                                                                                                                                              | $q^2$ (SM); $q^2$ or $v^{\perp 2}$ (DM) | 1                                       | Yes                   |
|      | (vanishes for Majorana $X$ )                                                                                                                                                                                | $q^2 v^{\perp 2}$ (SM)                  |                                         |                       |
| F10  | $ar{X}\sigma^{\mu u}\gamma^5 Xar{q}\sigma_{\mu u}q$                                                                                                                                                         | $q^2$ (SM)                              | $v^{\perp 2}$ (SM)                      | Yes                   |
|      | (vanishes for Majorana $X$ )                                                                                                                                                                                |                                         | $q^2 \text{ or } v^{\perp 2} $ (DM)     |                       |
| S1   | $\phi^{\dagger}\phi ar{q} q$ or $\phi^2 ar{q} q$                                                                                                                                                            | 1                                       | $q^2 v^{\perp 2}$ (SM)                  | Yes                   |
| S2   | $\phi^{\dagger}\phi ar{q}\gamma^5 q ~{ m or}~ \phi^2 ar{q}\gamma^5 q$                                                                                                                                       | 0                                       | $q^2$ (SM)                              | Yes                   |
| S3   | $\phi^\dagger \partial_\mu \phi ar q \gamma^\mu q$                                                                                                                                                          | 1                                       | $q^2 v^{\perp 2}$ (SM)                  | No                    |
|      |                                                                                                                                                                                                             |                                         | $q^2$ (SM); $v^{\perp 2}$ (DM)          |                       |
| S4   | $\phi^\dagger \partial_\mu \phi ar q \gamma^\mu \gamma^5 q$                                                                                                                                                 | 0                                       | $v^{\perp 2}$ (SM or DM)                | No                    |
| V1   | $B^{\dagger}_{\mu}B^{\mu}\bar{q}q$ or $B_{\mu}B^{\mu}\bar{q}q$                                                                                                                                              | 1                                       | $q^2 v^{\perp 2}$ (SM)                  | Yes                   |
| V2   | $B^{\dagger}_{\mu}B^{\mu}\bar{q}\gamma^{5}q \text{ or } B_{\mu}B^{\mu}\bar{q}\gamma^{5}q$                                                                                                                   | 0                                       | $q^2$ (SM)                              | Yes                   |
| V3   | $B^{\dagger}_{ u}\partial_{\mu}B^{ u}\bar{q}\gamma^{\mu}q$                                                                                                                                                  | 1                                       | $q^2 v^{\perp 2}$ (SM)                  | No                    |
|      |                                                                                                                                                                                                             |                                         | $q^2$ (SM); $v^{\perp 2}$ (DM)          |                       |
| V4   | $B^{\dagger}_{ u}\partial_{\mu}B^{ u}ar{q}\gamma^{\mu}\gamma^{5}q$                                                                                                                                          | 0                                       | $v^{\perp 2}$ (SM or DM)                | No                    |
| V5   | $(B^{\dagger}_{\mu}B_{\nu} - B^{\dagger}_{\nu}B_{\mu})\bar{q}\sigma^{\mu\nu}q$                                                                                                                              | $q^2 v^{\perp 2}$ (SM)                  | 1                                       | Yes                   |
| V6   | $(B^{\dagger}_{\mu}B_{\nu} - B^{\dagger}_{\nu}B_{\mu})\bar{q}\sigma^{\mu\nu}\gamma^{5}q$                                                                                                                    | $q^2$ (SM)                              | $v^{\perp 2}$ (SM)                      | Yes                   |
| V7   | $B^{\dagger}_{\nu}\partial^{\nu}B_{\mu}\bar{q}\gamma^{\mu}q \text{ or } B_{\nu}\partial^{\nu}B_{\mu}\bar{q}\gamma^{\mu}q$                                                                                   | $v^{\perp 2}$ (SM); $q^2$ (DM)          | $q^2$ (SM); $q^2$ (DM)                  | No                    |
| V8   | $B^{\dagger}_{\nu}\partial^{\nu}B_{\mu}\bar{q}\gamma^{\mu}\gamma^{5}q \text{ or } B_{\nu}\partial^{\nu}B_{\mu}\bar{q}\gamma^{\mu}\gamma^{5}q$                                                               | $q^2 v^{\perp 2}$ (SM); $q^2$ (DM)      | $q^2 (\mathrm{DM})$                     | $\propto m_f^2/m_X^2$ |
| V9   | $\epsilon^{\mu\nu\rho\sigma}B^{\dagger}_{\nu}\partial_{\rho}B_{\sigma}\bar{q}\gamma_{\mu}q \text{ or } \epsilon^{\mu\nu\rho\sigma}B_{\nu}\partial_{\rho}B_{\sigma}\bar{q}\gamma_{\mu}q$                     | $v^{\perp 2}$ (DM or SM)                | $q^2 (SM)$                              | No                    |
| V10  | $\epsilon^{\mu\nu\rho\sigma}B^{\dagger}_{\nu}\partial_{\rho}B_{\sigma}\bar{q}\gamma_{\mu}\gamma^{5}q \text{ or } \epsilon^{\mu\nu\rho\sigma}B_{\nu}\partial_{\rho}B_{\sigma}\bar{q}\gamma_{\mu}\gamma^{5}q$ | $q^2 v^{\perp 2}$ (SM)                  | 1                                       | No                    |

| J | $S_{init}$ | $L_{init}$ | $S_{final}$ | L <sub>final</sub> | Interaction structure                                                                                                  |
|---|------------|------------|-------------|--------------------|------------------------------------------------------------------------------------------------------------------------|
| 0 | 0          | 0          | 0           | 0                  | $ar{X}\gamma^5 Xar{q}\gamma^5 q,ar{X}\gamma^0\gamma^5 Xar{q}\gamma^0\gamma^5 q$                                        |
| 0 | 0          | 0          | 1           | 1                  | $ar{X}\gamma^5 Xar{q}q$                                                                                                |
| 0 | 1          | 1          | 0           | 0                  | $ar{X}Xar{q}\gamma^5 q$                                                                                                |
| 0 | 1          | 1          | 1           | 1                  | $ar{X}Xar{q}q$                                                                                                         |
| 1 | 0          | 1          | 0           | 1                  | $ar{X}\sigma^{ij}Xar{q}\sigma^{ij}q$                                                                                   |
| 1 | 0          | 1          | 1           | 0                  | $ar{X}\sigma^{ij}Xar{q}\sigma^{ij}\gamma^5 q$                                                                          |
| 1 | 1          | 0          | 0           | 1                  | $ar{X}\sigma^{ij}\gamma^5 Xar{q}\sigma^{ij}q$                                                                          |
| 1 | 1          | 0          | 1           | 0                  | $ar{X}\gamma^i Xar{q}\gamma^i q,  ar{X}\sigma^{ij}\gamma^5 Xar{q}\sigma^{ij}\gamma^5 q$                                |
| 1 | 1          | 1          | 1           | 1                  | $ar{X}\gamma^i\gamma^5Xar{q}\gamma^i\gamma^5q$                                                                         |
| 1 | 1          | 0          | 1           | 1                  | $ar{X}\gamma^i Xar{q}\gamma^i\gamma^5 q$                                                                               |
| 1 | 1          | 1          | 1           | 0                  | $ar{X}\gamma^i\gamma^5Xar{q}\gamma^i q$                                                                                |
| 0 | 0          | 0          | 0           | 0                  | $B^{\dagger}_{\mu}B^{\mu}\bar{q}\gamma^{5}q, \ B^{ u}\partial_{ u}B_{0}\bar{q}\gamma^{0}\gamma^{5}q$                   |
| 0 | 0          | 0          | 1           | 1                  | $B^{\dagger}_{\mu}B^{\mu}ar{q}q$                                                                                       |
| 0 | 1          | 1          | 0           | 0                  | $\epsilon^{0ijk}B_i\partial_j B_k\bar{q}\gamma^0\gamma^5q$                                                             |
| 1 | 0          | 1          | 0           | 1                  | $\imath (B_i^{\dagger}B_0 - B_i^{\dagger}B_0) \bar{q} \sigma^{0i} \gamma^5 q$                                          |
| 1 | 0          | 1          | 1           | 0                  | $i(B_i^{\dagger}B_0 - B_i^{\dagger}B_0)\bar{q}\sigma^{0i}q, iIm(B_{\nu}^{\dagger}\partial_i B^{\nu})\bar{q}\gamma^i q$ |
| 1 | 0          | 1          | 1           | 1                  | $\imath Im(B^{\dagger}_{\nu}\partial_i B^{\nu})\bar{q}\gamma^i\gamma^5 q$                                              |
| 1 | 1          | 0          | 0           | 1                  | $\imath (B_i^{\dagger}B_j - B_i^{\dagger}B_j) \bar{q} \sigma^{ij} q$                                                   |
| 1 | 1          | 0          | 1           | 0                  | $i(B_i^{\dagger}B_j - B_i^{\dagger}B_j)\bar{q}\sigma^{ij}\gamma^5 q$                                                   |
| 1 | 1          | 1          | 1           | 0                  | $B^{ u}\partial_{ u}B_{i}ar{q}\gamma^{i}q$                                                                             |
| 1 | 1          | 1          | 1           | 1                  | $B^{ u}\partial_{ u}B_{i}ar{q}\gamma^{i}\gamma^{5}q$                                                                   |
| 1 | 2          | 2          | 1           | 0                  | $\epsilon^{0ijk}B_j\partial_0B_kar q\gamma_i q$                                                                        |
| 1 | 2          | 2          | 1           | 1                  | $\epsilon^{0ijk}B_j\partial_0 B_k\bar{q}\gamma_i\gamma^5 q$                                                            |

|     | Interaction Structure                                          | SI $(S_X$ -dep.)      | SD $(S_X$ -dep.)      | SD $(S_{SM}$ -dep.)   | SI Class | SD Class |
|-----|----------------------------------------------------------------|-----------------------|-----------------------|-----------------------|----------|----------|
| F1  | $\bar{X}X\bar{q}q$                                             | 1                     | 1                     | $S_{\hat{\eta}}$      | 1        | С        |
| F2  | $\bar{X}\gamma^5 X\bar{q}q$                                    | $S_{\hat{q}}$         | $S_{\hat{q}}$         | $S_{\hat{\eta}}$      | 2        | F        |
| F3  | $\bar{X}X\bar{q}\gamma^5q$                                     | -                     | 1                     | $S_{\hat{q}}$         | -        | А        |
| F4  | $\bar{X}\gamma^5 X \bar{q}\gamma^5 q$                          | -                     | $S_{\hat{q}}$         | $S_{\hat{q}}$         | -        | D        |
| F5  | $\bar{X}\gamma^{\mu}X\bar{q}\gamma_{\mu}q$                     | 1                     | 1                     | $S_{\hat{\eta}}$      | 1        | С        |
|     | (vanishes for Majorana $X$ )                                   |                       | $S_{\hat{v}^{\perp}}$ | $S_{\hat{v}^{\perp}}$ |          | Н        |
|     |                                                                |                       | $S_{\hat{\eta}}$      | $S_{\hat{\eta}}$      |          | L        |
| F6  | $\bar{X}\gamma^{\mu}\gamma^{5}X\bar{q}\gamma_{\mu}q$           | $S_{\hat{v}^{\perp}}$ | $S_{\hat{\eta}}$      | $S_{\hat{v}^{\perp}}$ | 3        | K        |
|     |                                                                |                       | $S_{\hat{v}^{\perp}}$ | $S_{\hat{\eta}}$      |          | Ι        |
| F7  | $\bar{X}\gamma^{\mu}X\bar{q}\gamma_{\mu}\gamma^{5}q$           | $S_{\hat{v}^{\perp}}$ | 1                     | $S_{\hat{v}^{\perp}}$ | 3        | В        |
|     | (vanishes for Majorana $X$ )                                   |                       | $S_{\hat{v}^{\perp}}$ | $S_{\hat{\eta}}$      |          | Ι        |
|     |                                                                |                       | $S_{\hat{\eta}}$      | $S_{\hat{v}^{\perp}}$ |          | K        |
| F8  | $\bar{X}\gamma^{\mu}\gamma^{5}X\bar{q}\gamma_{\mu}\gamma^{5}q$ | $S_{\hat{\eta}}$      | $S_{\hat{q}}$         | $S_{\hat{q}}$         | 4        | D        |
|     |                                                                |                       | $S_{\hat{v}^{\perp}}$ | $S_{\hat{v}^{\perp}}$ |          | Н        |
|     |                                                                |                       | $S_{\hat{\eta}}$      | $S_{\hat{\eta}}$      |          | L        |
| F9  | $\bar{X}\sigma^{\mu\nu}X\bar{q}\sigma_{\mu\nu}q$               | $1 , S_{\hat{\eta}}$  | $S_{\hat{q}}$         | $S_{\hat{q}}$         | 1, 4     | D        |
|     | (vanishes for Majorana $X$ )                                   |                       | $S_{\hat{v}^{\perp}}$ | $S_{\hat{v}^{\perp}}$ |          | Н        |
|     |                                                                |                       | $S_{\hat{\eta}}$      | $S_{\hat{\eta}}$      |          | L        |
| F10 | 1 1 1 1                                                        | $S_{\hat{q}}$         | 1                     | $S_{\hat{q}}$         | 2        | А        |
|     | (vanishes for Majorana $X$ )                                   |                       | $S_{\hat{q}}$         | $S_{\hat{\eta}}$      |          | F        |
|     |                                                                |                       | $S_{\hat{\eta}}$      | $S_{\hat{q}}$         |          | J        |

|     | Interaction Structure                                                                                                                                                                                       | SI $(S_X$ -dep.)               | SD $(S_X$ -dep.)               | SD $(S_{SM}$ -dep.)   | SI Class | SD Class |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|-----------------------|----------|----------|
| V1  | $B^{\dagger}_{\mu}B^{\mu}\bar{q}q$ or $B_{\mu}B^{\mu}\bar{q}q$                                                                                                                                              | 1                              | 1                              | $S_{\hat{\eta}}$      | 1        | С        |
| V2  | $B^{\dagger}_{\mu}B^{\mu}\bar{q}\gamma^{5}q$ or $B_{\mu}B^{\mu}\bar{q}\gamma^{5}q$                                                                                                                          | -                              | 1                              | $S_{\hat{q}}$         | -        | А        |
| V3  | $B^{\dagger}_{ u}\partial_{\mu}B^{ u}ar{q}\gamma^{\mu}q$                                                                                                                                                    | 1                              | 1                              | $S_{\hat{\eta}}$      | 1        | С        |
| V4  | $B^{\dagger}_{ u}\partial_{\mu}B^{ u}ar{q}\gamma^{\mu}\gamma^{5}q$                                                                                                                                          | -                              | 1                              | $S_{\hat{v}^{\perp}}$ | 1        | В        |
| V5  | $(B^{\dagger}_{\mu}B_{\nu} - B^{\dagger}_{\nu}B_{\mu})\bar{q}\sigma^{\mu\nu}q$                                                                                                                              | $S_{\hat{\eta}}$               | $S_{\hat{q}}$                  | $S_{\hat{q}}$         | 4        | D        |
|     |                                                                                                                                                                                                             |                                | $S_{\hat{v}^{\perp}}$          | $S_{\hat{v}^{\perp}}$ |          | Н        |
|     |                                                                                                                                                                                                             |                                | $S_{\hat{\eta}}$               | $S_{\hat{\eta}}$      |          | L        |
| V6  | $(B^{\dagger}_{\mu}B_{\nu} - B^{\dagger}_{\nu}B_{\mu})\bar{q}\sigma^{\mu\nu}\gamma^5 q$                                                                                                                     | $S_{\hat{q}}$                  | $S_{\hat{q}}$                  | $S_{\hat{\eta}}$      | 2        | F        |
|     |                                                                                                                                                                                                             |                                | $S_{\hat{\eta}}$               | $S_{\hat{q}}$         |          | J        |
| V7  | $B^{\dagger}_{\nu}\partial^{\nu}B_{\mu}\bar{q}\gamma^{\mu}q$ or $B_{\nu}\partial^{\nu}B_{\mu}\bar{q}\gamma^{\mu}q$                                                                                          | $\Pi_{\hat{q}\hat{v}^{\perp}}$ | $\Pi_{\hat{q}\hat{v}^{\perp}}$ | $S_{\hat{\eta}}$      |          |          |
|     |                                                                                                                                                                                                             |                                | $\Pi_{\hat{q}\hat{\eta}}$      | $S_{\hat{v}^{\perp}}$ |          |          |
| V8  | $B^{\dagger}_{\nu}\partial^{\nu}B_{\mu}\bar{q}\gamma^{\mu}\gamma^{5}q$ or $B_{\nu}\partial^{\nu}B_{\mu}\bar{q}\gamma^{\mu}\gamma^{5}q$                                                                      | $S_{\hat{q}}$                  | $\Pi_{\hat{q}\hat{v}}$         | $S_{\hat{v}}$         | 2        |          |
|     |                                                                                                                                                                                                             | $\Pi_{\hat{q}\hat{\eta}}$      | $\Pi_{\hat{q}\hat{q}}$         | $S_{\hat{q}}$         |          |          |
|     |                                                                                                                                                                                                             |                                | $\Pi_{\hat{q}\hat{\eta}}$      | $S_{\hat{\eta}}$      |          |          |
| V9  | $\epsilon^{\mu\nu\rho\sigma}B^{\dagger}_{\nu}\partial_{\rho}B_{\sigma}\bar{q}\gamma_{\mu}q \text{ or } \epsilon^{\mu\nu\rho\sigma}B_{\nu}\partial_{\rho}B_{\sigma}\bar{q}\gamma_{\mu}q$                     | $S_{\hat{v}^{\perp}}$          | $S_{\hat{v}^{\perp}}$          | $S_{\hat{\eta}}$      | 3        | Ι        |
|     |                                                                                                                                                                                                             |                                | $S_{\hat{\eta}}$               | $S_{\hat{v}^{\perp}}$ |          | K        |
| V10 | $\epsilon^{\mu\nu\rho\sigma}B^{\dagger}_{\nu}\partial_{\rho}B_{\sigma}\bar{q}\gamma_{\mu}\gamma^{5}q \text{ or } \epsilon^{\mu\nu\rho\sigma}B_{\nu}\partial_{\rho}B_{\sigma}\bar{q}\gamma_{\mu}\gamma^{5}q$ | $S_{\hat{\eta}}$               | $S_{\hat{q}}$                  | $S_{\hat{q}}$         | 4        | D        |
|     |                                                                                                                                                                                                             |                                | $S_{\hat{v}^{\perp}}$          | $S_{\hat{v}^{\perp}}$ |          | Н        |
|     |                                                                                                                                                                                                             |                                | $S_{\hat{\eta}}$               | $S_{\hat{\eta}}$      |          | L        |

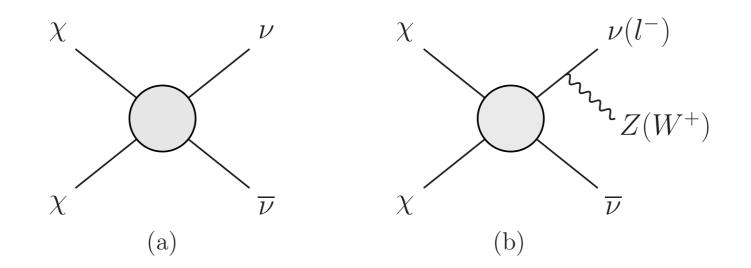
|    | Powers of $q$ and $v^{\perp}$ | Interaction structures                                                                                                                                                                         |
|----|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SI | 0                             | $(ar{X}Xar{q}q,ar{X}\gamma^\mu Xar{q}\gamma_\mu q)$                                                                                                                                            |
|    | 2                             | $(\bar{X}\gamma^5 X\bar{q}q, \bar{X}\sigma^{\mu\nu}\gamma^5 X\bar{q}\sigma_{\mu\nu}q), \bar{X}\gamma^{\mu}\gamma^5 X\bar{q}\gamma_{\mu}q$                                                      |
|    | 4                             | $(\bar{X}\gamma^{\mu}\gamma^{5}X\bar{q}\gamma_{\mu}\gamma^{5}q,\bar{X}\sigma^{\mu\nu}X\bar{q}\sigma_{\mu\nu}q)$                                                                                |
|    | 6                             | $ar{X}\gamma^\mu Xar{q}\gamma_\mu\gamma^5 q$                                                                                                                                                   |
| SD | 0                             | $(\bar{X}\gamma^{\mu}\gamma^{5}X\bar{q}\gamma_{\mu}\gamma^{5}q, \bar{X}\sigma^{\mu\nu}X\bar{q}\sigma_{\mu\nu}q)$                                                                               |
|    | 2                             | $(\bar{X}X\bar{q}\gamma^5 q, \bar{X}\sigma^{\mu\nu}\gamma^5 X\bar{q}\sigma_{\mu\nu}q), (\bar{X}\gamma^{\mu}\gamma^5 X\bar{q}\gamma_{\mu}q, \bar{X}\gamma^{\mu}X\bar{q}\gamma_{\mu}\gamma^5 q)$ |
|    | 4                             | $(\bar{X}X\bar{q}q,\bar{X}\gamma^{\mu}X\bar{q}\gamma_{\mu}q),\bar{X}\gamma^5X\bar{q}\gamma^5q$                                                                                                 |
|    | 6                             | $ar{X}\gamma^5 Xar{q}q$                                                                                                                                                                        |

| Operator | Structure                                                                                                                                                              | Dim $D$ |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| V1       | $(1/\Lambda)B^{\dagger}_{\mu}B^{\mu}\bar{q}q$                                                                                                                          | 5       |
| V2       | $(1/\Lambda)\imath B^{\dagger}_{\mu}B^{\mu}ar{q}\gamma^5 q$                                                                                                            | 5       |
| V3       | $(1/2\Lambda^2)\imath(B^{\dagger}_{\nu}\partial_{\mu}B^{\nu} - B^{\nu}\partial_{\mu}B^{\dagger}_{\nu})\bar{q}\gamma^{\mu}q$                                            | 6       |
| V4       | $(1/2\Lambda^2)\imath(B^{\dagger}_{\nu}\partial_{\mu}B^{\nu} - B^{\nu}\partial_{\mu}B^{\dagger}_{\nu})\bar{q}\gamma^{\mu}\gamma^5 q$                                   | 6       |
| V5       | $(1/\Lambda)\imath B^{\dagger}_{\mu}B_{ u}ar{q}\sigma^{\mu u}q$                                                                                                        | 5       |
| V6       | $(1/\Lambda)B^{\dagger}_{\mu}B_{ u}ar{q}\sigma^{\mu u}\gamma^5q$                                                                                                       | 5       |
| $V7_+$   | $(1/2\Lambda^2)(B^{\dagger}_{\nu}\partial^{\nu}B_{\mu}+B_{\nu}\partial^{\nu}B^{\dagger}_{\mu})\bar{q}\gamma^{\mu}q$                                                    | 6       |
| $V7_{-}$ | $(1/2\Lambda^2)\imath (B^{\dagger}_{\nu}\partial^{\nu}B_{\mu} - B_{\nu}\partial^{\nu}B^{\dagger}_{\mu})\bar{q}\gamma^{\mu}q$                                           | 6       |
| $V8_+$   | $(1/2\Lambda^2)(B^{\dagger}_{\nu}\partial^{\nu}B_{\mu}+B_{\nu}\partial^{\nu}B^{\dagger}_{\mu})\bar{q}\gamma^{\mu}\gamma^5q$                                            | 6       |
| $V8_{-}$ | $(1/2\Lambda^2)\imath(B^{\dagger}_{\nu}\partial^{\nu}B_{\mu}-B_{\nu}\partial^{\nu}B^{\dagger}_{\mu})\bar{q}\gamma^{\mu}\gamma^5q$                                      | 6       |
| $V9_+$   | $(1/2\Lambda^2)\epsilon^{\mu\nu\rho\sigma}(B^{\dagger}_{\nu}\partial_{\rho}B_{\sigma}+B_{\nu}\partial_{\rho}B^{\dagger}_{\sigma})\bar{q}\gamma_{\mu}q$                 | 6       |
| V9_      | $(1/2\Lambda^2)\imath\epsilon^{\mu\nu\rho\sigma}(B^{\dagger}_{\nu}\partial_{\rho}B_{\sigma} - B_{\nu}\partial_{\rho}B^{\dagger}_{\sigma})\bar{q}\gamma_{\mu}q$         | 6       |
| $V10_+$  | $(1/2\Lambda^2)\epsilon^{\mu\nu\rho\sigma}(B^{\dagger}_{\nu}\partial_{\rho}B_{\sigma}+B_{\nu}\partial_{\rho}B^{\dagger}_{\sigma})\bar{q}\gamma_{\mu}\gamma^5q$         | 6       |
| V10_     | $(1/2\Lambda^2)\iota\epsilon^{\mu\nu\rho\sigma}(B^{\dagger}_{\nu}\partial_{\rho}B_{\sigma} - B_{\nu}\partial_{\rho}B^{\dagger}_{\sigma})\bar{q}\gamma_{\mu}\gamma^5 q$ | 6       |

| Operator         | Term                                                                                                                                                                                                                                       | $C_B$  | $P_B$  | J      | State                                            |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------------------------------------------------|
| V1               | $(1/\Lambda)B^{\dagger}_{\mu}B^{\mu}\bar{q}q$                                                                                                                                                                                              | +      | +      | 0      | L = 0, S = 0; L = 2, S = 2                       |
| V2               | $(1/\Lambda)\imath B^{\dagger}_{\mu}B^{\mu}\bar{q}\gamma^{5}q$                                                                                                                                                                             | +      | +      | 0      | L=0,S=0;L=2,S=2                                  |
| V3               | $(1/2\Lambda^2)\imath (B^{\dagger}_{\nu}\partial_i B^{\nu} - B^{\nu}\partial_i B^{\dagger}_{\nu})\bar{q}\gamma^i q$                                                                                                                        | -      | -      | 1      | L = 1, S = 0; L = 1, 3, S = 2                    |
| V4               | $(1/2\Lambda^2)\imath(B^{\dagger}_{\nu}\partial_iB^{\nu}-B^{\nu}\partial_iB^{\dagger}_{\nu})\bar{q}\gamma^i\gamma^5q$                                                                                                                      | -      | -      | 1      | L = 1, S = 0; L = 1, 3, S = 2                    |
| V5               | $ \begin{array}{l} (1/\Lambda)\imath B_i^{\dagger}B_j\bar{q}\sigma^{ij}q \\ (1/2\Lambda)\imath (B_0^{\dagger}B_i-B_i^{\dagger}B_0\bar{q})\bar{q}\sigma^{0i}q \end{array} $                                                                 |        |        |        | L = 0, 2, S = 1<br>L = 1, S = 0; L = 1, 3, S = 2 |
| V6               | $(1/\Lambda)B_i^{\dagger}B_j\bar{q}\sigma^{ij}\gamma^5q(1/2\Lambda)(B_0^{\dagger}B_i-B_i^{\dagger}B_0)\bar{q}\sigma^{0i}\gamma^5q$                                                                                                         | -<br>- | +<br>- | 1<br>1 | L = 0, 2, S = 1<br>L = 1, S = 0; L = 1, 3, S = 2 |
| $V7_+$           | $(1/2\Lambda^2)(B^{\dagger}_{\nu}\partial^{\nu}B_i + B_{\nu}\partial^{\nu}B^{\dagger}_i)\bar{q}\gamma^i q$                                                                                                                                 | +      | -      | 1      | L = 1, S = 1                                     |
| $V7_{-}$         | $(1/2\Lambda^2)\imath (B^{\dagger}_{\nu}\partial^{\nu}B_i - B_{\nu}\partial^{\nu}B^{\dagger}_i)\bar{q}\gamma^i q$                                                                                                                          | -      | -      | 1      | L = 1, S = 0; L = 1, 3, S = 2                    |
| $V8_+$           | $(1/2\Lambda^2)(B^{\dagger}_{\nu}\partial^{\nu}B_i + B_{\nu}\partial^{\nu}B^{\dagger}_i)\bar{q}\gamma^i\gamma^5q$                                                                                                                          | +      | -      | 1      | L=1,S=1                                          |
| $V8_{-}$         | $(1/2\Lambda^2)\imath(B^{\dagger}_{\nu}\partial^{\nu}B_i - B_{\nu}\partial^{\nu}B^{\dagger}_i)\bar{q}\gamma^i\gamma^5q$                                                                                                                    | -      | -      | 1      | L = 1, S = 0; L = 1, 3, S = 2                    |
| $V9_+$           | $(1/2\Lambda^2)\epsilon^{i0jk}(B_0^{\dagger}\partial_j B_k + B_0\partial_j B_k^{\dagger})\bar{q}\gamma_i q$                                                                                                                                | +      | +      | 1      | L = 2, S = 2                                     |
| V9_              | $(1/2\Lambda^2)\iota\epsilon^{i0jk}(B_0^{\dagger}\partial_j B_k - B_0\partial_j B_k^{\dagger})\bar{q}\gamma_i q$<br>$(1/2\Lambda^2)\iota\epsilon^{ij0k}(B_j^{\dagger}\partial_0 B_k - B_j\partial_0 B_k^{\dagger})\bar{q}\gamma_i q$       |        | +<br>+ |        | L = 0, 2, S = 1<br>L = 0, 2, S = 1               |
| V10 <sub>+</sub> | $(1/2\Lambda^2)\epsilon^{i0jk}(B_0^{\dagger}\partial_j B_k + B_0\partial_j B_k^{\dagger})\bar{q}\gamma_i\gamma^5 q$                                                                                                                        |        |        | 1      | L = 0, 2, S = 1<br>L = 2, S = 2                  |
| V10_             | $(1/2\Lambda^2)\epsilon^{i0jk}(B_0^{\dagger}\partial_j B_k - B_0\partial_j B_k^{\dagger})\bar{q}\gamma_i\gamma^5 q$<br>$(1/2\Lambda^2)\epsilon^{ij0k}(B_j^{\dagger}\partial_0 B_k - B_j\partial_0 B_k^{\dagger})\bar{q}\gamma_i\gamma^5 q$ |        |        | 1<br>1 | L = 0, 2, S = 1<br>L = 0, 2, S = 1               |

| Operators                     | Dimension enhancement | Polarization enhancement |
|-------------------------------|-----------------------|--------------------------|
| V1, V2, V5, V6                | $E/\Lambda$           | $(E/m_B)^2$              |
| V3, V4, V7_, V8_              | $(E/\Lambda)^2$       | $(E/m_B)^2$              |
| $V7_+, V8_+, V9_\pm, V10_\pm$ | $(E/\Lambda)^2$       | $E/m_B$                  |

| Operator                      | Constraint                                                                                                                 | Benchmark $\Lambda_{\min}$ (TeV) |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| V1, V2                        | $\frac{E\sqrt{E^2 - m_B^2}}{16\pi^2\Lambda^2} \left(3 + \frac{4E^2}{m_B^4}(E^2 - m_B^2)\right) \le 1$                      | $1.59 \times 10^5$               |
| V3, V4                        | $\frac{E(E^2 - m_B^2)^{3/2}}{72\pi^2 \Lambda^4} \left(3 + \frac{4E^2}{m_B^4} (E^2 - m_B^2)\right) \le 1$                   | 274                              |
| V5, V6                        | $\frac{E\sqrt{E^2 - m_B^2}}{72\pi^2\Lambda^2} \left(\frac{4E^2}{m_B^2} + \frac{2E^2}{m_B^4}(E^2 - m_B^2) - 1\right) \le 1$ | $5.31 \times 10^4$               |
| $\mathrm{V7}_+,\mathrm{V8}_+$ | $\frac{E^3(E^2-m_B^2)^{3/2}}{18\pi^2m_B^2\Lambda^4} \le 1$                                                                 | 8.66                             |
| $V9_+, V10_+$                 | $\frac{E(E^2-m_B^2)^{5/2}}{18\pi^2m_B^2\Lambda^4} \le 1$                                                                   | 8.66                             |
| $V7_{-}, V8_{-}$              | $\frac{E^3(E^2-m_B^2)^{3/2}}{18\pi^2m_B^2\Lambda^4}\left(1+\frac{E^2}{m_B^2}\right) \le 1$                                 | 274                              |
| $V9_{-}, V10_{-}$             | $\frac{E^3(E^2 - m_B^2)^{1/2}}{32\pi^2\Lambda^4} \left(1 + 2\frac{E^2}{m_B^2}\right) \le 1$                                | 8.66                             |



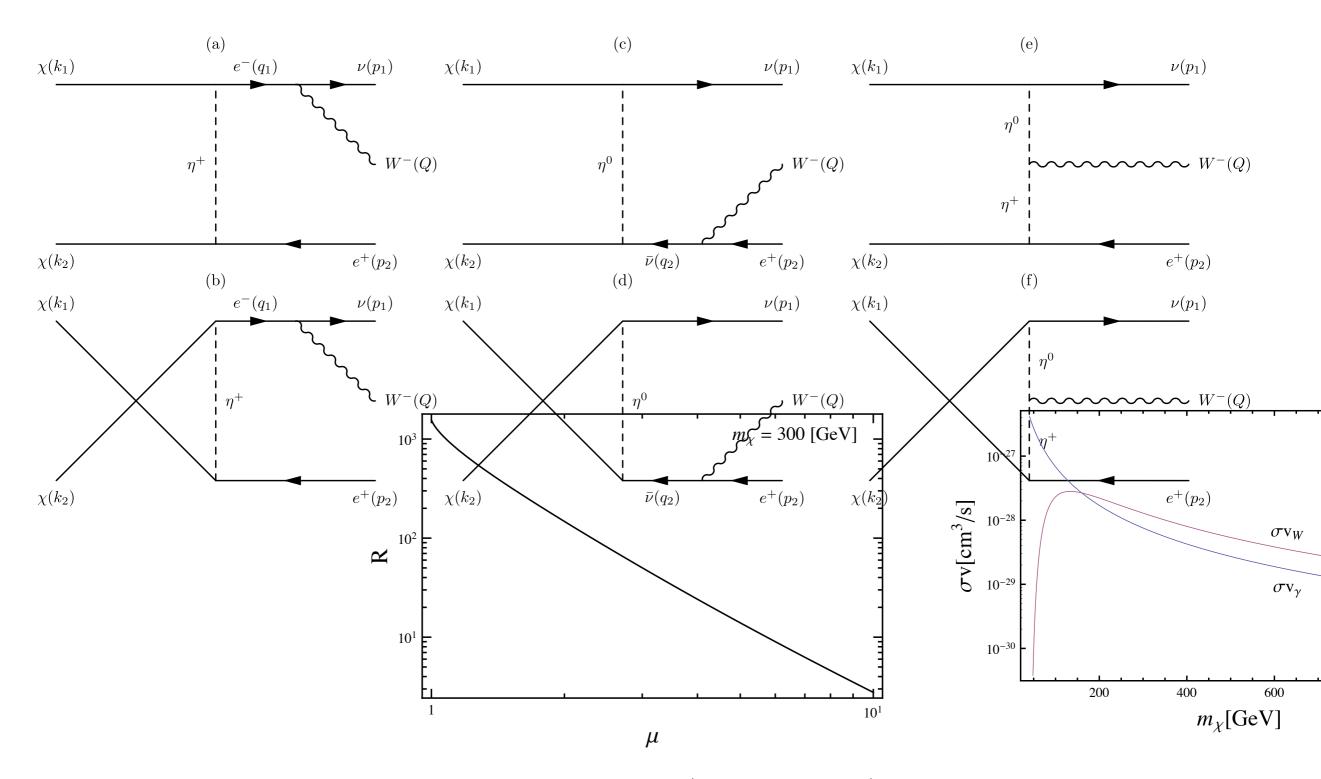
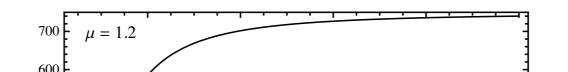
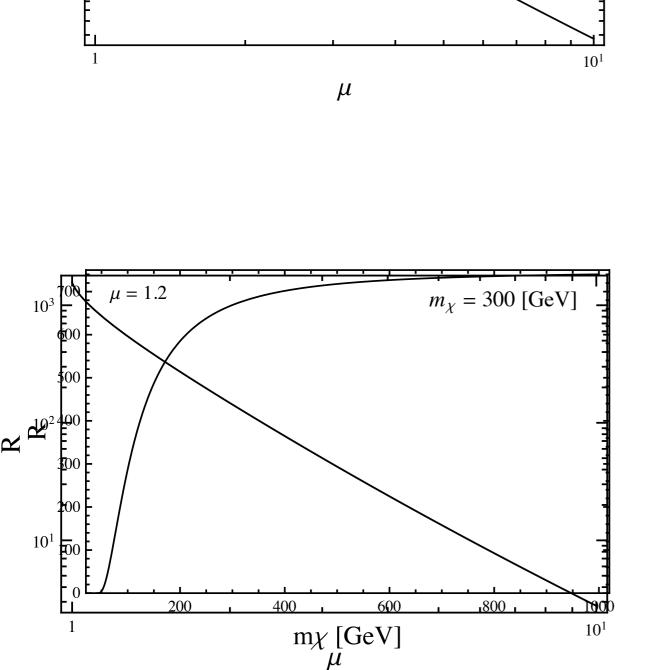
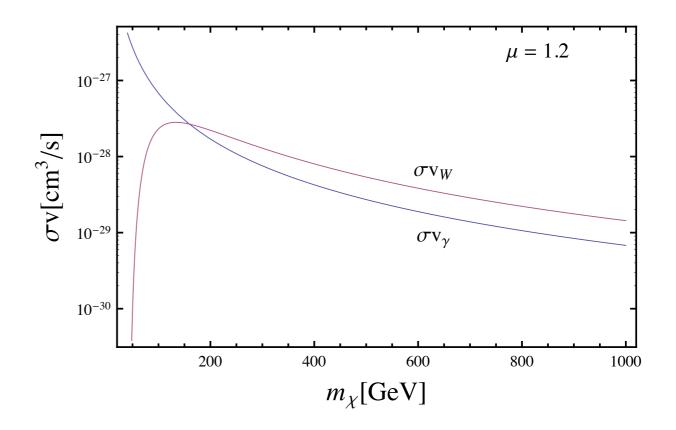


FIG. 2. The ratio  $R = v \sigma(\chi \chi \to e^+ \nu W^-)/v \sigma(\chi \chi \to e^+ e^-)$ as a function of  $\mu = (m_\eta/m_\chi)^2$ , for  $m_\chi = 300$  GeV. We have used  $v = 10^{-3}c$ , appropriate for the Galactic halo.







1000

800

200

400

600

 $m_{\chi}$ [GeV]

FIG. 3. The ratio  $R = v \sigma(\chi \chi \to e^+ \nu W^-)/v \sigma(\chi \chi \to e^+ e^-)$ as a function of the DM mass  $m_{\chi}$ , for  $\mu = 1.2$  GeV. We have used  $v = 10^{-3}c$ , appropriate for the Galactic halo.

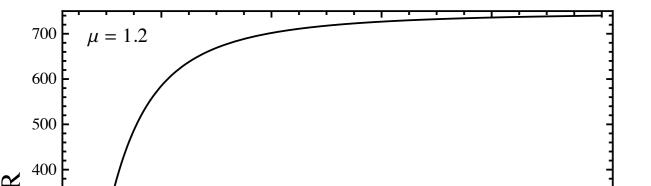


FIG. 4. The cross sections for  $\chi\chi \to e^+\nu W^-$  (red) and  $\chi\chi \to e^+e^-\gamma$  (blue), for  $\mu = 1.2$  and coupling f = 1. For large DM mass, the cross sections differ by a factor of  $1/(2\sin^2\theta_W) = 2.17$  while for  $m_{\chi}$  comparable to  $m_W$  the W bremsstrahlung cross section is suppressed by phase space effects.

$$\mathcal{L}_{\chi\chi Z} = \frac{c_H}{\Lambda^2} \,\overline{\chi} \,\Gamma^\mu \chi \,\left\langle H^\dagger \right\rangle \,i \overleftrightarrow{D}_\mu \left\langle H \right\rangle = -\frac{c_H}{\Lambda^2} \,v^2 \,\sqrt{g^2 + g'^2} \,\overline{\chi} \,\Gamma^\mu \chi \,Z_\mu$$

$$\mathcal{L}_{\text{N.C.}}^Z = \frac{g}{2c_w} Z_\mu J_0^\mu$$

$$J_0^{\mu} = \sum_f \left[ g_{Vf} \,\overline{f} \gamma^{\mu} f + g_{Af} \,\overline{f} \gamma^{\mu} \gamma^5 f \right]$$
$$g_{Vf} = T_f^3 - 2s_w^2 Q_f ,$$
$$g_{Af} = -T_f^3 .$$

$$g_{Vu} = \frac{1}{2} - \frac{4}{3}s_w^2 , \qquad g_{Vd} = -\frac{1}{2} + \frac{2}{3}s_w^2 , \qquad g_{Ve} = -\frac{1}{2} + 2s_w^2$$
$$g_{Au} = -\frac{1}{2} , \qquad g_{Ad} = \frac{1}{2} , \qquad g_{Ae} = \frac{1}{2} .$$

$$\mathcal{L}_{\text{Fermi}} = -\frac{G_F}{\sqrt{2}} J_0^{\mu} J_{0\mu}$$

 $c_{\Gamma V u}^{(i)} = \frac{c_{\Gamma q}^{(i)} + c_{\Gamma u}^{(i)}}{2} + c_H g_{V u} ,$  $c_{\Gamma V d}^{(i)} = \frac{c_{\Gamma q}^{(i)} + c_{\Gamma d}^{(i)}}{2} + c_H g_{V d} ,$  $c_{\Gamma V e}^{(i)} = \frac{c_{\Gamma l}^{(i)} + c_{\Gamma e}^{(i)}}{2} + c_H g_{V e} ,$  $c_{\Gamma A u}^{(i)} = \frac{-c_{\Gamma q}^{(i)} + c_{\Gamma u}^{(i)}}{2} + c_H g_{A u} ,$  $c_{\Gamma Ad}^{(i)} = \frac{-c_{\Gamma q}^{(i)} + c_{\Gamma d}^{(i)}}{2} + c_H g_{Ad} ,$  $c_{\Gamma A e}^{(i)} = \frac{-c_{\Gamma l}^{(i)} + c_{\Gamma e}^{(i)}}{2} + c_H g_{A e} .$ 

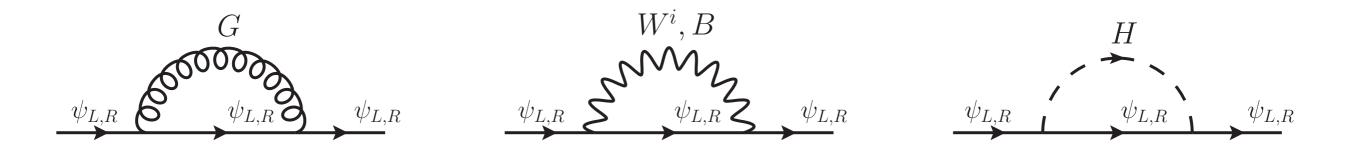
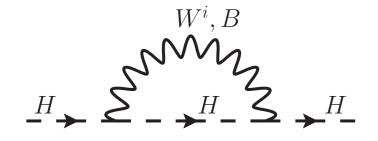
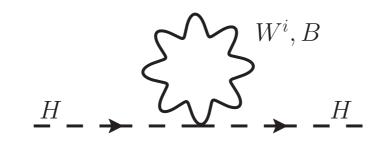
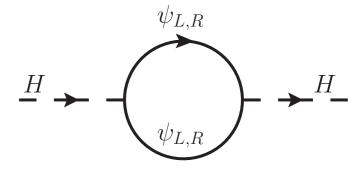
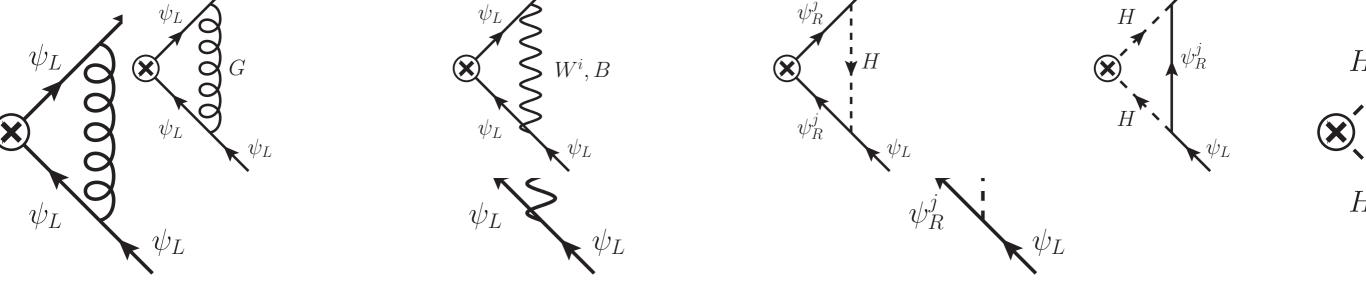


Figure 2. External legs corrections for SM fermions.

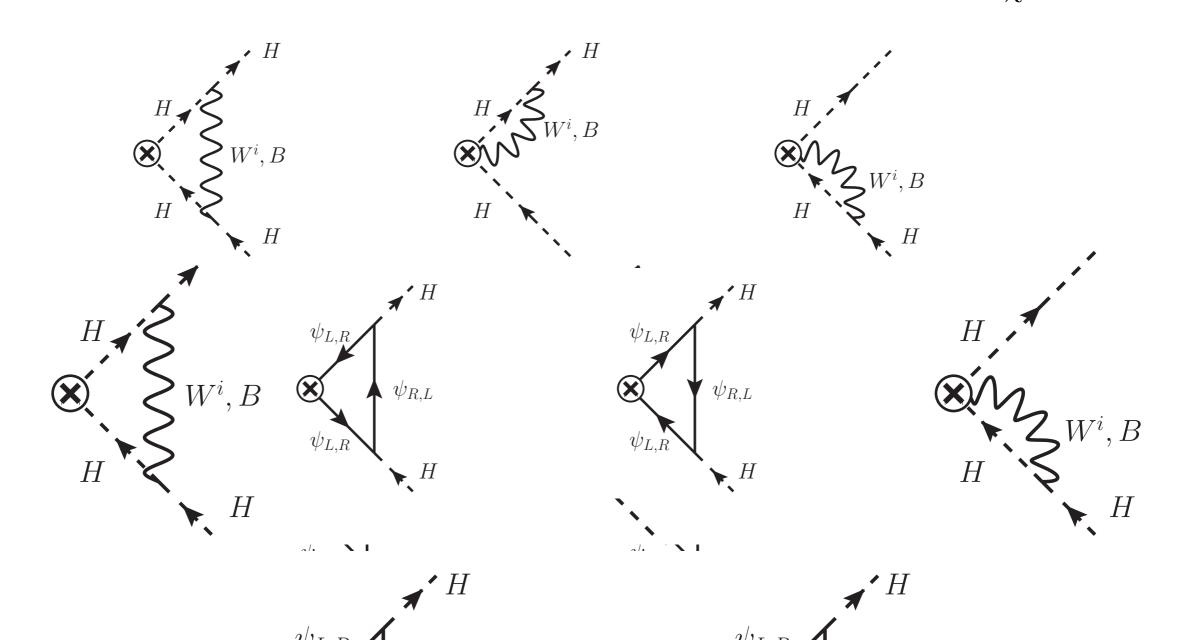


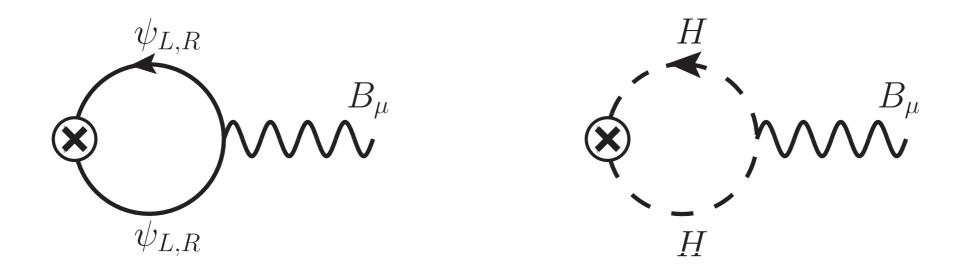






One loop corrections to the Wilson coefficient  $c_L$  in the SM<sub> $\chi$ </sub> EFT.

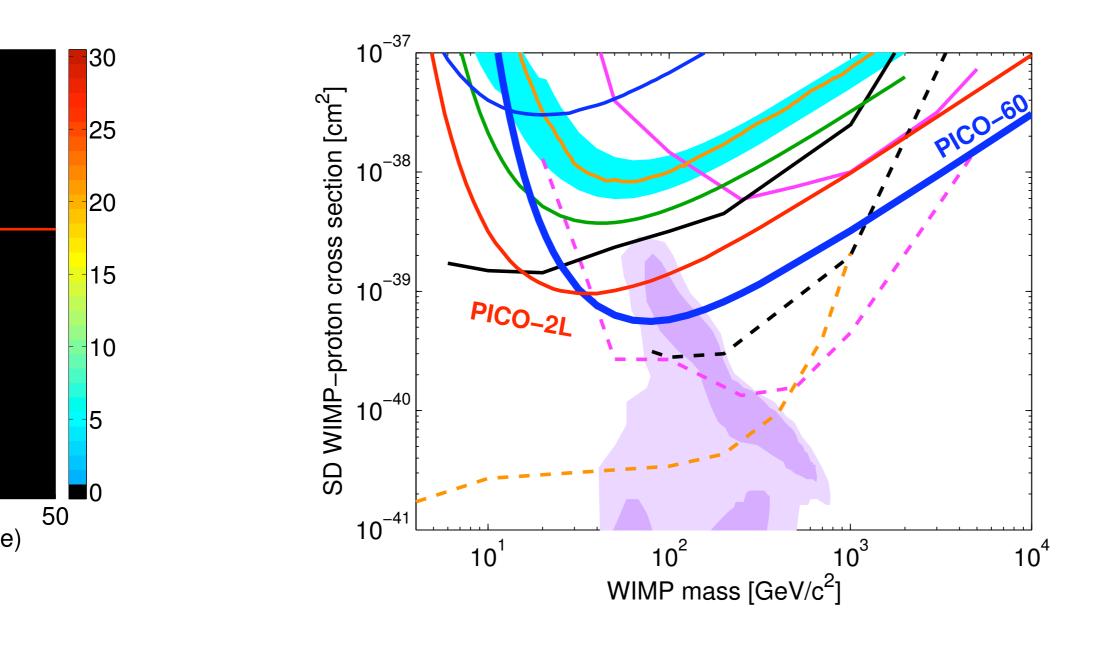




 $\gamma_{\mathrm{SM}_{\chi}} = \gamma_{\mathrm{SM}_{\chi}} \big|_{\lambda} + \gamma_{\mathrm{SM}_{\chi}} \big|_{Y}$ 



A. Berlin, D. Hooper, and S.D. McDermott, 1508.05390



### **Spin dependent limits**

### Higgs portal: DM-SM via the Higgs

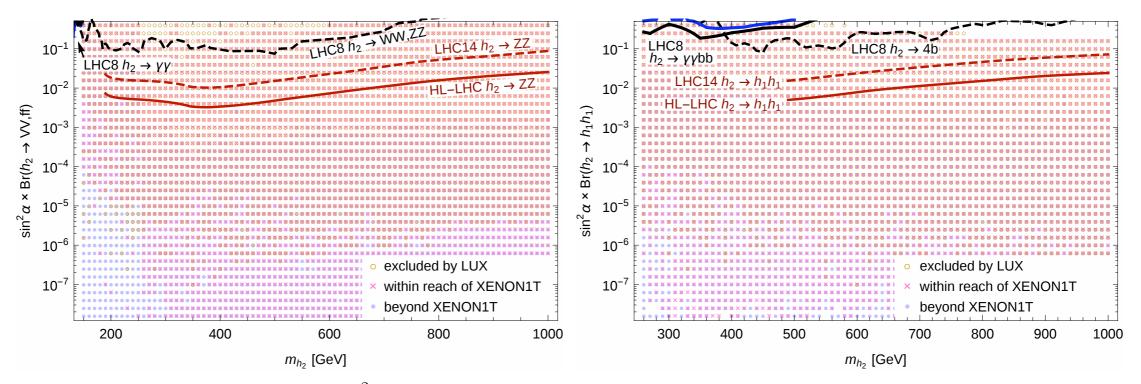


FIG. 4: Left: Existing bounds on  $s_{\alpha}^2$  in the singlet-singlet model from  $h_2 \to \gamma \gamma$  (solid lines from ATLAS [50] and CMS [51]) and from  $h_2 \to WW, ZZ$  (dashed black line, CMS [52]) as a function of the heavy scalar mass,  $m_{h_2}$ . Right: Bounds on  $s_{\alpha}^2 \times \text{Br}(h_2 \to h_1 h_1)$  from  $h_2 \to h_1 h_1 \to 2\gamma 2b$  (solid black from CMS [53], solid blue from ATLAS [54]) and from  $h_2 \to h_1 h_1 \to 4b$  (dashed black from CMS [55]). The projected exclusions at the 14-TeV LHC with 300 fb<sup>-1</sup> (3000 fb<sup>-1</sup>) [56] are shown as dashed (solid) red lines. The colored points indicate the parameter region consistent with the relic density constraint,  $\Omega_{\chi} = \Omega_{\text{DM}}$ , with the different colors (shapes) denoting current and future 90% C.L. exclusions from direct detection experiments.

### Higgs portal: DM-SM via the Higgs

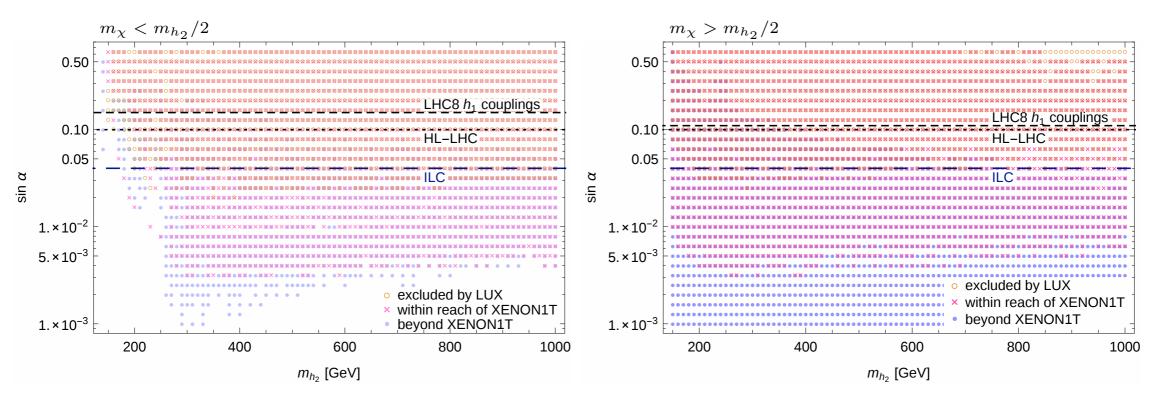
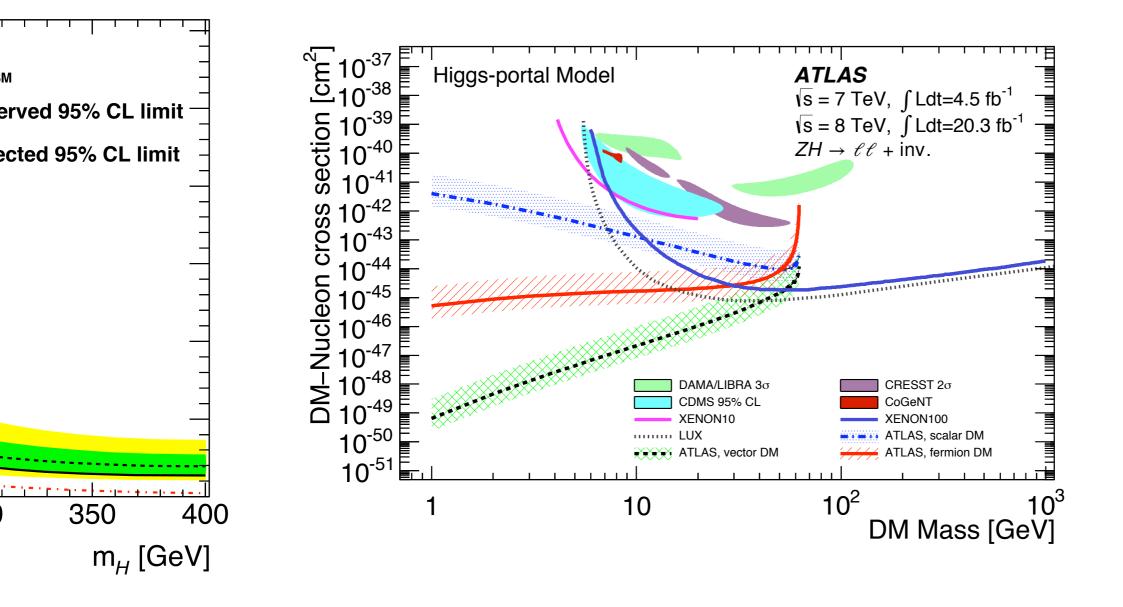
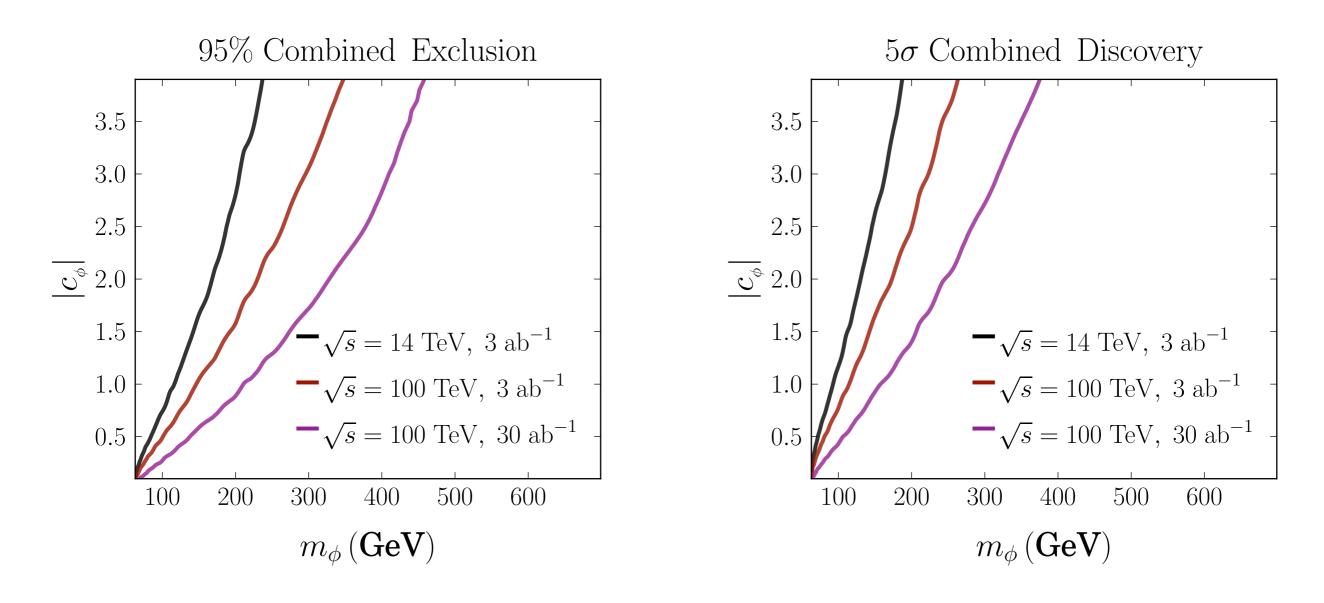


FIG. 3: Allowed parameter space for the singlet-singlet model consistent with the requirement that the thermal relic density of  $\chi$  accounts for all dark matter in the universe,  $\Omega_{\chi} = \Omega_{\rm DM}$ . The different colors (shapes) of the points indicate current and future 90% C.L. exclusions from direct detection experiments. Also shown are current 95% C.L. limits from Higgs coupling measurements at the LHC (dashed line), and future projections for LHC14 with 3000 fb<sup>-1</sup> (dotted) and ILC with  $\sqrt{s} \leq 500$  GeV (long dashed). The left panel corresponds to  $m_{\chi} < m_{h_2}/2$ , which forbids the annihilation channels  $\chi\chi \to h_2h_{1,2}$ , while in the right panel  $m_{\chi} > m_{h_2}/2$ .

### ATLAS Bounds on invisible Higgs decays



## Higgs portal: DM-SM via the Higgs



## reach of 100TeV machine including above threshold $m_{\phi} > 2m_h$

N. Craig, H. K. Lou, M. McCullough, and A. Thlapillil, 1412.0258

## Universal suppression to all SM particles

$$\mathcal{L}_{int} = -(H_{1} \cos \alpha + H_{2} \sin \alpha) \left[ \sum_{f} \frac{m_{f}}{v_{II}} \bar{f}f - \frac{2m_{W}^{2}}{v_{II}} W_{\mu}^{+} W^{-\mu} - \frac{m_{Z}^{2}}{v_{II}} Z_{\mu} Z^{\mu} \right] + \lambda(H_{1} \sin \alpha - H_{2} \cos \alpha) \bar{\chi} \chi$$
1506.06556
$$m_{H_{1}} > 2m_{\chi}$$
Higgs decays
$$\kappa_{i} \equiv \frac{g_{H_{1},ii}}{g_{hii}^{SM}} \begin{pmatrix} 95\% CL & \kappa_{V} > 0.93 \\ \kappa_{V} - 1.03 \pm 0.07 \\ \kappa_{F} = 1.05 \pm 0.07 \\ \kappa_{F} = 0.07 \\$$

0.5

0

Parameter value

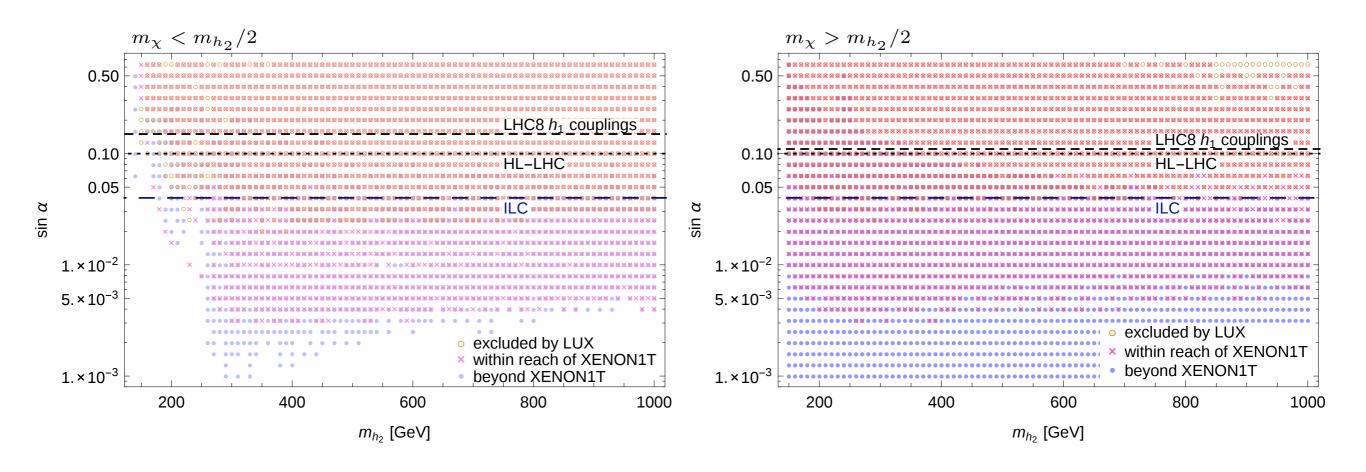
2

2.5

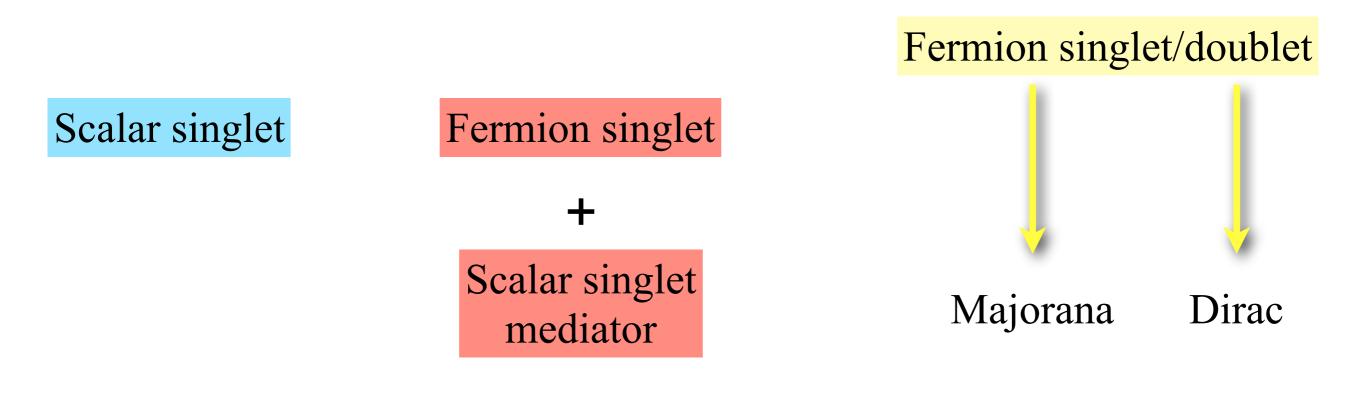
1.5

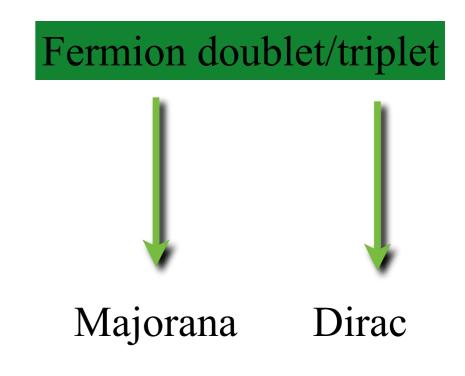
1

#### Future projections



A. Freitas, S. Westhoff, and J. Zupan, JHEP 1509 (2015) 015, arXiv:1506.04149.





### **Electroweak Precision Tests**

$$\alpha S = 4\xi c_W^2 s_W \tan \chi$$
  

$$\alpha T = \xi^2 \left( \frac{M_{Z_2}^2}{M_{Z_1}^2} - 1 \right) + 2\xi s_W \tan \chi$$

|            | $SU(3)_C$ | $SU(2)_W$ | $U(1)_Y$ | $U(1)_{B-xL}$ | $U(1)_{q+xu}$ | $U(1)_{10+x\bar{5}}$ | $U(1)_{d-xu}$ |
|------------|-----------|-----------|----------|---------------|---------------|----------------------|---------------|
| $q_L$      | 3         | 2         | 1/3      | 1/3           | 1/3           | 1/3                  | 0             |
| $u_R$      | 3         | 1         | 4/3      | 1/3           | x/3           | -1/3                 | -x/3          |
| $d_R$      | 3         | 1         | -2/3     | 1/3           | (2-x)/3       | -x/3                 | 1/3           |
| $l_L$      | 1         | 2         | -1       | -x            | -1            | x/3                  | (-1+x)/3      |
| $e_R$      | 1         | 1         | -2       | -x            | -(2+x)/3      | -1/3                 | x/3           |
| $ u_R $    | 1         | 1         | 0        | -1            | (-4+x)/3      | (-2+x)/3             | -x/3          |
| $ u_R'$    |           |           |          | •             | •             | -1 - x/3             | •             |
| $\psi^l_L$ | 1         | 2         | -1       | -1            |               | -(1+x)/3             | -2x/5         |
| $\psi_R^l$ |           |           |          | -x            | •             | 2/3                  | (-1+x/5)/3    |
| $\psi^e_L$ | 1         | 1         | -2       | -1            | •             | •                    | •             |
| $\psi^e_R$ |           |           |          | -x            | •             | •                    |               |
| $\psi^d_L$ | 3         | 1         | -2/3     | •             | •             | -2/3                 | (1 - 4x/5)/3  |
| $\psi^d_R$ |           |           |          | •             | •             | (1+x)/3              | x/15          |

## Anomalies

M. Carena, A. Daleo, B.A. Dobrescu, and T.P. Tait, PRD 70 hep-ph/0408098

|              | $SU(3)_C$ | $SU(2)_W$ | $ U(1)_Y $ | Axial A | Axial B | Leptophobic A | Leptophobic B | Leptophobic C | Axial-Leptophobic |
|--------------|-----------|-----------|------------|---------|---------|---------------|---------------|---------------|-------------------|
| $q_L$        | 3         | 2         | 1/3        | 1/3     | 1/3     | 1/3           | 1/3           | 2/3           | 1/3               |
| $u_R$        | 3         | 1         | 4/3        | -1/3    | -1/3    | 1/3           | 1/3           | 2/3           | -1/3              |
| $d_R$        | 3         | 1         | -2/3       | -1/3    | -1/3    | 1/3           | 1/3           | 2/3           | -1/3              |
| $l_L$        | 1         | 2         | -1         | 1/3     | -1/3    | 0             | 0             | 0             | 0                 |
| $e_R$        | 1         | 1         | -2         | -1/3    | -2/3    | 0             | 0             | 0             | 0                 |
| $\nu_R$      | 1         | 1         | 0          | -1/3    | —       | -1            | -3            | —             | -5/3              |
| $\nu'_R$     | 1         | 1         | 0          | -4/3    | _       | _             | 2             | _             | —                 |
| $\chi_L$     | 1         | 1         | 0          | -       | 1/3     | _             | _             | 1             | —                 |
| $\chi_R$     | 1         | 1         | 0          | _       | -4/3    |               | _             | -1            | —                 |
| $\psi^d_L$   | 3         | 1         | -2/3       | -2/3    | 2/3     | —             | —             | —             | -1/3              |
| $\psi_R^d$   | 3         | 1         | -2/3       | 2/3     | -2/3    | _             | _             | _             | 1                 |
| $ \psi^l_L $ | 1         | 2         | -1         | -2/3    | 2/3     | -1            | 2             | -1            | -1                |
| $\psi_R^l$   | 1         | 2         | -1         | 2/3     | 1/3     | _             | 3             | 1             | —                 |
| $\psi_L^e$   | 1         | 1         | -2         | -       | —       | -1            | 3             | 1             | —                 |
| $\psi^e_R$   | 1         | 1         | -2         | _       |         | _             | 2             | -1            | -1/3              |

D. Hooper, PRD 91 1411.4079

# Simplified Model Comparison

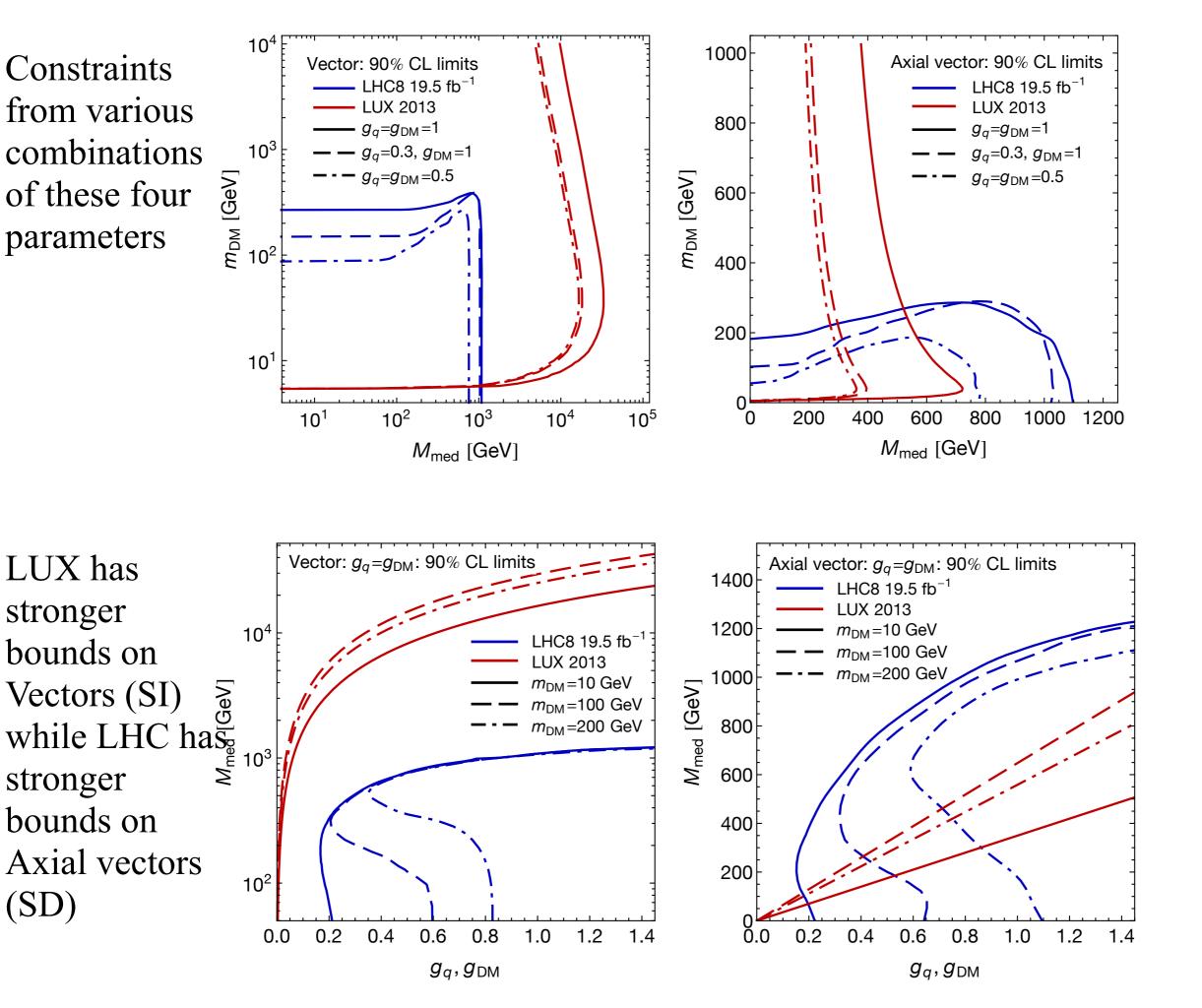
A Minimal Simplified Dark Matter Model with a vector mediator has been used to compare collider and direct detection constraints

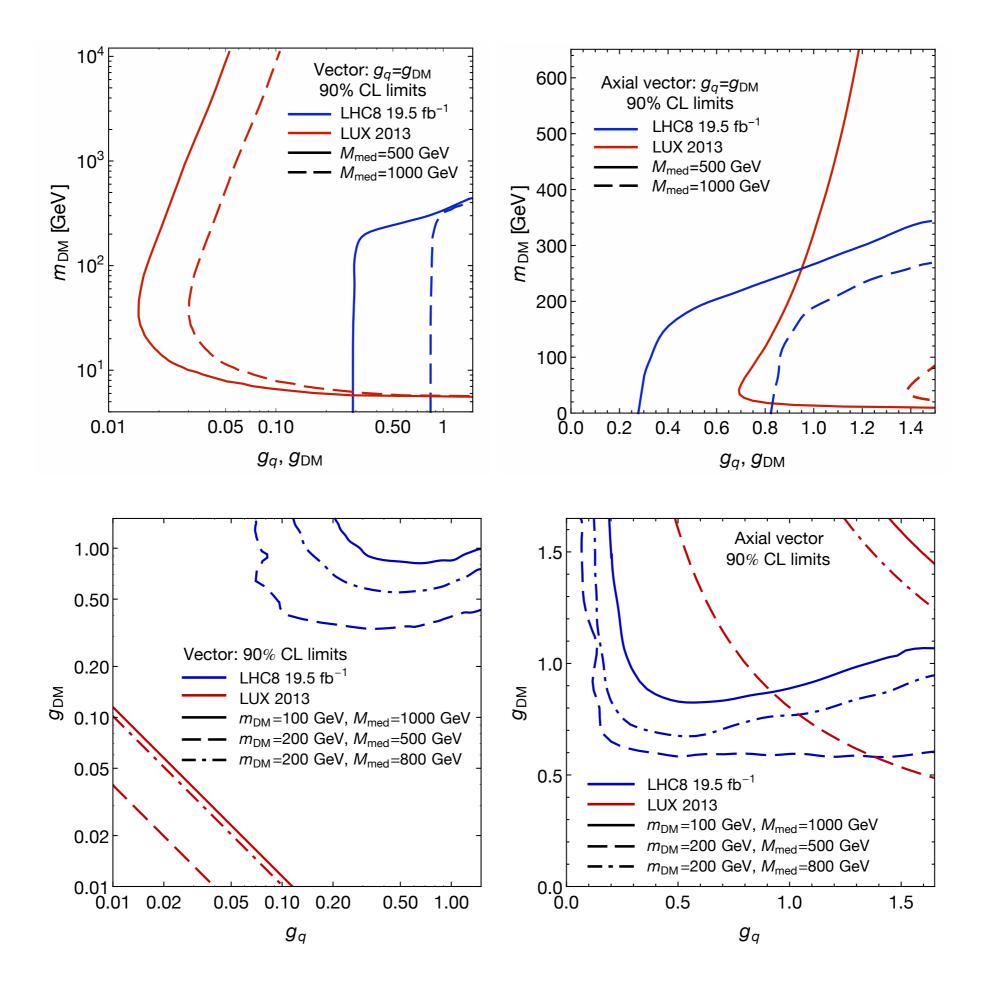
$$\mathcal{L}_{\text{vector}} \supset -\sum_{q} g_{q} Z_{\mu}^{\prime} \bar{q} \gamma^{\mu} q - g_{\text{DM}} Z_{\mu}^{\prime} \bar{\chi} \gamma^{\mu} \chi \qquad \text{SI}$$
$$\mathcal{L}_{\text{axial}} \supset -\sum_{q} g_{q} Z_{\mu}^{\prime} \bar{q} \gamma^{\mu} \gamma^{5} q - g_{\text{DM}} Z_{\mu}^{\prime} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi \qquad \text{SD}$$

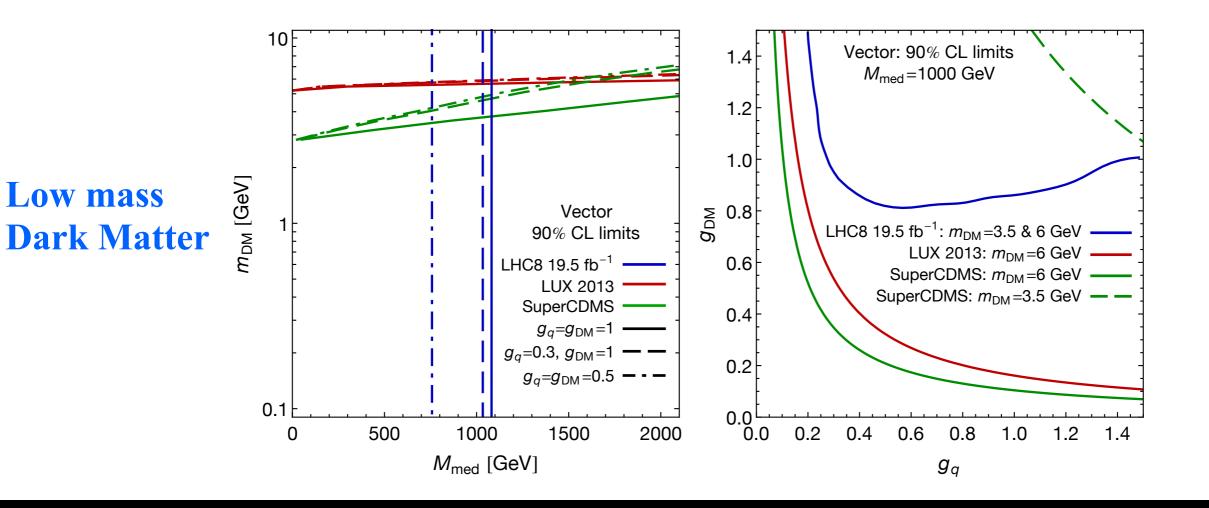
This model depends on just two masses and two couplings

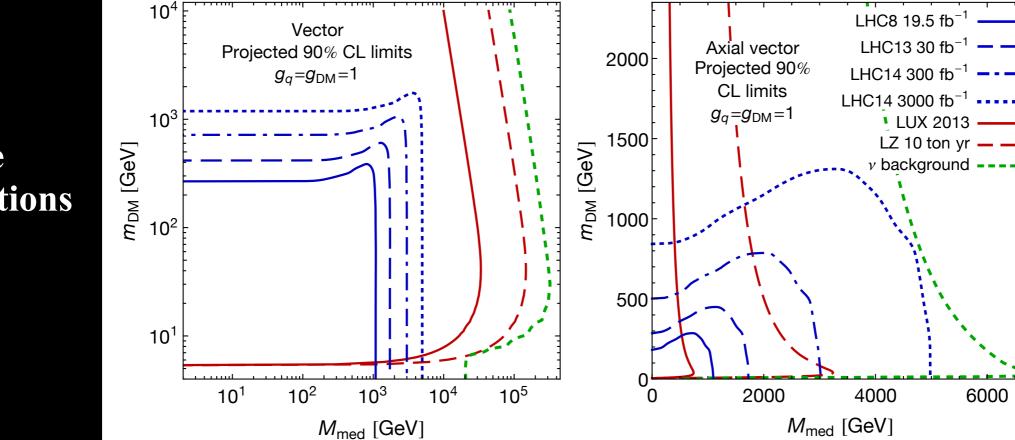
$$m_{\rm DM}, M_{\rm med}, g_{\rm DM}$$
 and  $g_q$ 

O. Buchmueller, M.J. Dolan, S.A. Malik, and C. McCabe, JHEP 1501 (2015), arXiv:1407.8257
S. Malik *et al.*, arXiv:1409.4075









**Future projections** 

$$\mathcal{L}_{\rm int} = -(H_1 \cos \alpha + H_2 \sin \alpha) \left[ \sum_f \frac{m_f}{v_H} \bar{f}f - \frac{2m_W^2}{v_H} W_{\mu}^+ W^{-\mu} - \frac{m_Z^2}{v_H} Z_{\mu} Z^{\mu} \right] + \lambda (H_1 \sin \alpha - H_2 \cos \alpha) \bar{\chi} \chi$$

## Operator Uniqueness

Another example was obtained for the Higgs portal interaction

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \bar{\chi} \left( i \partial \!\!\!/ - M_0 \right) \chi + \Lambda^{-1} \left( \cos \theta \ \bar{\chi} \chi + \sin \theta \ \bar{\chi} i \gamma_5 \chi \right) H^{\dagger} H$$
  
After EWSB:  $H^{\dagger} H \longrightarrow \frac{\langle v \rangle^2}{2} + \langle v \rangle h + \frac{h^2}{2}$ 

A chiral rotation and field redefinition is needed for a real mass

$$\chi \to \exp(i\gamma_5 \alpha/2) \chi \quad \Rightarrow \quad \bar{\chi} \to \bar{\chi} \exp(i\gamma_5 \alpha/2)$$

It is found that even for an initially pure pseudoscalar interaction  $\cos \theta = 0$ ,  $\sin \theta = \pm 1$ a scalar term will be generated

$$\Lambda^{-1} \left[ -\frac{\langle v \rangle^2}{2\Lambda M} \,\bar{\chi}\chi \pm \sqrt{1 - \left(\frac{\langle v \rangle^2}{2\Lambda M}\right)^2} \,\bar{\chi}i\gamma_5\chi \right] \left(\langle v \rangle h + h^2/2\right)$$

M.A. Fedderke, J.-Y. Chen, E.W. Kolb, and L.-T. Wang, JHEP 1408 (2014), arXiv:1404.2283

Other work which discusses this effect includes: S. Matsumoto, S. Mukhopadhyay, Y.-L. Sming Tsai, JHEP **1410** (2014), arXiv:1407.1859 R.J. Hill and M.P. Solon, PRD **91** (2015) arXiv:1409.8290

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \bar{\chi} i \partial \!\!\!/ \chi - \bar{\chi} M \chi + \Lambda^{-1} \left( \langle v \rangle h + \frac{1}{2} h^2 \right) \left[ \cos \xi \ \bar{\chi} \chi + \sin \xi \ \bar{\chi} i \gamma_5 \chi \right]$$

$$\cos \xi = \frac{M_0}{M} \left[ \cos \theta - \frac{\langle v \rangle^2}{2\Lambda M_0} \right] \quad \text{and} \quad \sin \xi = \frac{M_0}{M} \sin \theta$$
Spin-Independent Constraints
$$\int_{0}^{10} \frac{10^3}{10^4} \int_{0}^{10^4} \frac{10^3}{10^2 \log^2 \theta} \int_{0}^{10^4} \frac{10^3}{10^2 \log^2 \theta} \int_{0}^{10^4} \frac{10^3}{10^2 \log^2 \theta} \int_{0}^{10^4} \frac{10^3}{10^2 \log^2 \theta} \int_{0}^{10^4} \frac{10^3}{10^4} \int_{0}^{10^4} \frac{10^4}{10^4} \int_{0}^{10^4} \frac{10^4}{10^$$

$$\sigma_{\rm SI}^{\chi N} = \frac{\langle |\mathcal{M}| \rangle}{16\pi (M+M_N)^2} = \frac{1}{\pi} \left(\frac{\mu_{\chi N}}{m_h^2}\right)^2 \left(\frac{f_N}{\Lambda}\right)^2 \left[\cos^2\xi + \frac{1}{2} \left(\frac{\mu_{\chi N}}{M}\right)^2 \nu_{\chi}^2\right]$$

### Beyond Simplified Models (Higgs Portal Example)

Renormalizable Lagrangian for singlet fermion dark matter

$$\mathcal{L}_{\rm SFDM} = \overline{\psi} \left( i\partial - m_{\psi}^{\dagger} - \lambda_{\psi} S \right) - \mu_{HS} S H^{\dagger} H - \frac{\lambda_{HS}}{2} S^{2} H^{\dagger} H + \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} m_{S}^{2} S^{2} - \frac{\mu_{S}^{\dagger}}{20} \mu_{S}^{3} S - \frac{\mu_{S}^{\dagger}}{3} S^{3} - \frac{\lambda_{S}}{404} S^{4} + \frac{1}{60} \delta^{4} + \frac{1}{6$$

The second scalar field can develop a vev, and one rotates to the physical states  $m_{\psi}(\text{GeV})$ 

 $S(x) \to \langle S \rangle + s(x) \qquad \begin{array}{l} H_1 = h \cos \alpha - s \sin \alpha, \\ H_2 = h \sin \alpha + s \cos \alpha. \end{array}$ 

The direct detection cross-section is then altered

$$\sigma_p \approx \frac{m_r^2}{\pi} \lambda_p^2 \qquad \frac{\lambda_p}{m_p} = \sum_{q=u,d,s} f_{Tq}^{(p)} \frac{\lambda_q}{m_q} + \frac{2}{27} f_{Tg}^{(p)} \sum_{q=c,b,t} \frac{\lambda_q}{m_q}$$
  
Interference effect  $\frac{\lambda_q}{m_q} = \frac{\lambda \sin \alpha \cos \alpha}{v_H} \left(\frac{1}{m_1^2} - \frac{1}{m_2^2}\right)$ 

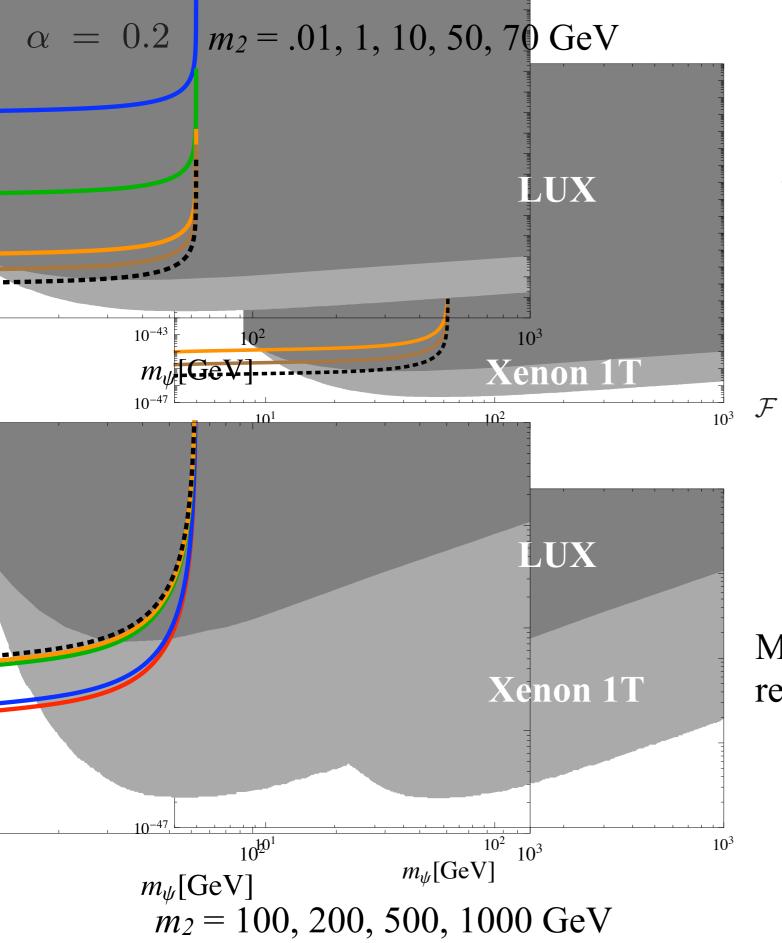
- S. Baek, P. Ko and W.-I. Park, JHEP 1202 (2012), arXiv:1112.1847
- S. Baek, P. Ko and W.-I. Park, Phys.Rev.D 90 (2014), arXiv:1405.3530
- A. Freitas, S. Westhoff, and J. Zupan, JHEP 1509 (2015) 015, arXiv:1506.04149.
- S. Baek, P. Ko, M. Park, W.-I. Park and C. Yu, arXiv:1506.06556

One needs to include the effects of both scalar particles in scattering amplitudes

$$\mathcal{M} = -\overline{u(p')}u(p)\overline{u(k')}u(k) \ \frac{m_q}{v_H}\lambda\sin\alpha\cos\alpha \left[\frac{1}{t-m_{H_1}^2+im_{H_1}\Gamma_{H_1}} -\frac{1}{t-m_{H_2}^2+im_{H_2}\Gamma_{H_2}}\right]$$
$$\rightarrow \overline{u(p')}u(p)\overline{u(k')}u(k) \ \frac{m_q}{2v_H}\lambda\sin2\alpha \left[\frac{1}{m_{H_1}^2} -\frac{1}{m_{H_2}^2}\right] \equiv \frac{m_q}{\Lambda_{dd}^3}\overline{u(p')}u(p)\overline{u(k')}u(k),$$

Interference effects arise due to the inclusion of the second scalar. This is a consequence of imposing the full SM gauge symmetry.

$$\begin{split} \Lambda_{dd}^3 &\equiv \frac{2m_{H_1}^2 v_H}{\lambda \sin 2\alpha} \left( 1 - \frac{m_{H_1}^2}{m_{H_2}^2} \right)^{-1} \\ \bar{\Lambda}_{dd}^3 &\equiv \frac{2m_{H_1}^2 v_H}{\lambda \sin 2\alpha}, \end{split}$$



$$\sigma_p^{\rm SI} = c_{\alpha}^4 m_h^4 \mathcal{F}(m_{\psi}, \{m_i\}, v)$$
$$\times \frac{B_h^{\rm inv} \Gamma_h^{\rm SM}}{\left(1 - B_h^{\rm inv}\right)} \frac{8m_r^2}{m_h^5 \beta_{\psi}^3} \left(\frac{m_p}{v_H}\right)^2 f_p^2$$

$$\overline{F} = \frac{1}{4m_{\psi}^2 v^2} \left[ \sum_{i} \left( \frac{1}{m_i^2} - \frac{1}{4m_{\psi}^2 v^2 + m_i^2} \right) - \frac{2}{(m_2^2 - m_1^2)} \sum_{i} (-1)^{i-1} \ln \left( 1 + \frac{4m_{\psi}^2 v^2}{m_i^2} \right) \right]$$

Model independent comparisons are rendered more difficult to come by

### Operator Uniqueness and Mixing

- Some EFT *O*<sub>i</sub> terms do not appear at leading order
- Aside from scalar WIMPs each particular spin produces some leading non-relativistic operators that are unique to that spin
- Two non-relativistic operators,  $O_1$  and  $O_{10}$ , are ubiquitous, arising for all WIMP spins 0, 1/2, and 1

$$\mathcal{O}_1 \quad 1_{\chi} 1_N \quad M \quad i \frac{\vec{q}}{m_N} \cdot \vec{S}_N \quad \mathcal{O}_{10} \quad \Sigma''$$

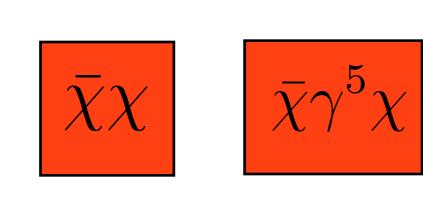
• In five scenarios for spin 0, 1/2, or 1 dark matter, relativistic operators generate unique non-relativistic operators at leading order.

• The operators can produce radically different energy dependence for scattering off different nuclear targets. Thus, a complementary use of different target materials will be helpful in order to reliably distinguish between different particle physics model possibilities for WIMP dark matter.

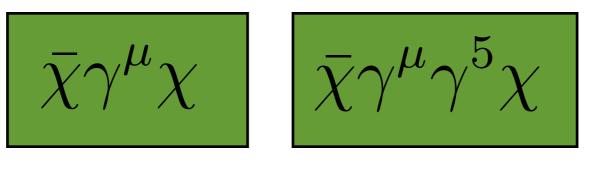
Standard practice has been to start with effective interaction terms, and then reduce in the non-relativistic limit

#### From the relativistic EFT there are 20 combinations of fermionic bilinears

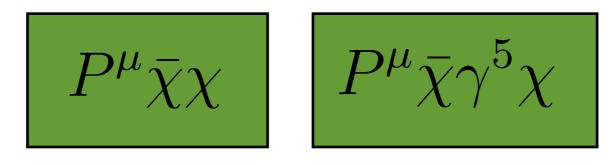
From two scalar



 $2 \times 2$ 



and four vector terms





After performing a non-relativistic reduction, these 20 operators can be written in terms of the 15  $O_i$ 

To calculate cross-sections, one needs to square the amplitude, average over initial spins and sum over final states.

$$\frac{1}{2j_{\chi}+1}\frac{1}{2j_{N}+1}\sum_{\text{spins}}|\mathcal{M}|^{2} \equiv \sum_{k}\sum_{\tau=0,1}\sum_{\tau'=0,1}R_{k}\left(\vec{v}_{T}^{\perp2},\frac{\vec{q}^{2}}{m_{N}^{2}},\left\{c_{i}^{\tau}c_{j}^{\tau'}\right\}\right)W_{k}^{\tau\tau'}(\vec{q}^{2}b^{2})$$

$$\begin{split} R_{M'}^{\tau\tau'}(\vec{v}_{T}^{\perp 2}, \frac{\vec{q}^{2}}{m_{N}^{2}}) &= c_{1}^{\tau}c_{1}^{\tau'} + \frac{j_{\chi}(j_{\chi}+1)}{3} \left[ \frac{\vec{q}^{2}}{m_{N}^{2}} \vec{v}_{T}^{\perp 2} c_{5}^{\tau} c_{5}^{\tau'} + \vec{v}_{T}^{\perp 2} c_{8}^{\tau} c_{8}^{\tau'} + \frac{\vec{q}^{2}}{m_{N}^{2}} c_{11}^{\tau} c_{11}^{\tau'} \right] \\ R_{\Phi''}^{\tau\tau'}(\vec{v}_{T}^{\perp 2}, \frac{\vec{q}^{2}}{m_{N}^{2}}) &= \frac{\vec{q}^{2}}{4m_{N}^{2}} c_{3}^{\tau} c_{3}^{\tau'} + \frac{j_{\chi}(j_{\chi}+1)}{12} \left( c_{12}^{\tau} - \frac{\vec{q}^{2}}{m_{N}^{2}} c_{15}^{\tau} \right) \left( c_{12}^{\tau} - \frac{\vec{q}^{2}}{m_{N}^{2}} c_{15}^{\tau} \right) \\ R_{\Phi''}^{\tau\tau'}(\vec{v}_{T}^{\perp 2}, \frac{\vec{q}^{2}}{m_{N}^{2}}) &= c_{3}^{\tau} c_{1}^{\tau'} + \frac{j_{\chi}(j_{\chi}+1)}{3} \left( c_{12}^{\tau} - \frac{\vec{q}^{2}}{m_{N}^{2}} c_{15}^{\tau} \right) c_{11}^{\tau'} \\ R_{\Phi''}^{\tau\tau'}(\vec{v}_{T}^{\perp 2}, \frac{\vec{q}^{2}}{m_{N}^{2}}) &= \frac{j_{\chi}(j_{\chi}+1)}{12} \left[ c_{12}^{\tau} c_{12}^{\tau'} + \frac{\vec{q}^{2}}{m_{N}^{2}} c_{13}^{\tau} c_{13}^{\tau'} \right] \\ R_{\Sigma''}^{\tau\tau'}(\vec{v}_{T}^{\perp 2}, \frac{\vec{q}^{2}}{m_{N}^{2}}) &= \frac{\vec{q}^{2}}{4m_{N}^{2}} c_{10}^{\tau} c_{10}^{\tau'} + \frac{j_{\chi}(j_{\chi}+1)}{12} \left[ c_{4}^{\tau} c_{4}^{\tau'} + \frac{\vec{q}^{2}}{m_{N}^{2}} c_{12}^{\tau} c_{13}^{\tau'} c_{13}^{\tau'} \right] \\ R_{\Sigma''}^{\tau\tau'}(\vec{v}_{T}^{\perp 2}, \frac{\vec{q}^{2}}{m_{N}^{2}}) &= \frac{\vec{q}^{2}}{8} \left[ \frac{\vec{q}^{2}}{m_{N}^{2}} \vec{v}_{1}^{\perp 2} c_{3}^{\tau} c_{3}^{\tau'} + \vec{v}_{T}^{\perp 2} c_{7}^{\tau} c_{7}^{\tau'} \right] + \frac{j_{\chi}(j_{\chi}+1)}{12} \left[ c_{4}^{\tau} c_{4}^{\tau'} + \frac{\vec{q}^{2}}{m_{N}^{2}} \vec{v}_{T}^{\perp 2} c_{13}^{\tau} c_{13}^{\tau'} \right] \\ R_{\Sigma''}^{\tau\tau'}(\vec{v}_{T}^{\perp 2}, \frac{\vec{q}^{2}}{m_{N}^{2}}) &= \frac{1}{8} \left[ \frac{\vec{q}^{2}}{m_{N}^{2}} \vec{v}_{T}^{\perp 2} c_{3}^{\tau} c_{3}^{\tau'} + \vec{v}_{T}^{\perp 2} c_{7}^{\tau} c_{7}^{\tau'} \right] + \frac{j_{\chi}(j_{\chi}+1)}{12} \left[ c_{4}^{\tau} c_{4}^{\tau} + \frac{\vec{q}^{2}}{m_{N}^{2}} c_{5}^{\tau} c_{9}^{\tau'} + \frac{\vec{q}^{2}}{m_{N}^{2}} c_{15}^{\tau'} \right) \left( c_{12}^{\tau} - \frac{\vec{q}^{2}}{m_{N}^{2}} c_{12}^{\tau} c_{14}^{\tau} c_{14}^{\tau'} \right] \\ R_{\Delta}^{\tau\tau'}(\vec{v}_{T}^{\perp}, \frac{\vec{q}^{2}}{m_{N}^{2}}) &= \frac{j_{\chi}(j_{\chi}+1)}{3} \left[ \frac{\vec{q}^{2}}{m_{N}^{2}} c_{5}^{\tau} c_{5}^{\tau'} + c_{8}^{\tau} c_{8}^{\tau'} \right] . \end{split}$$

DM response functions

operator interference is evident

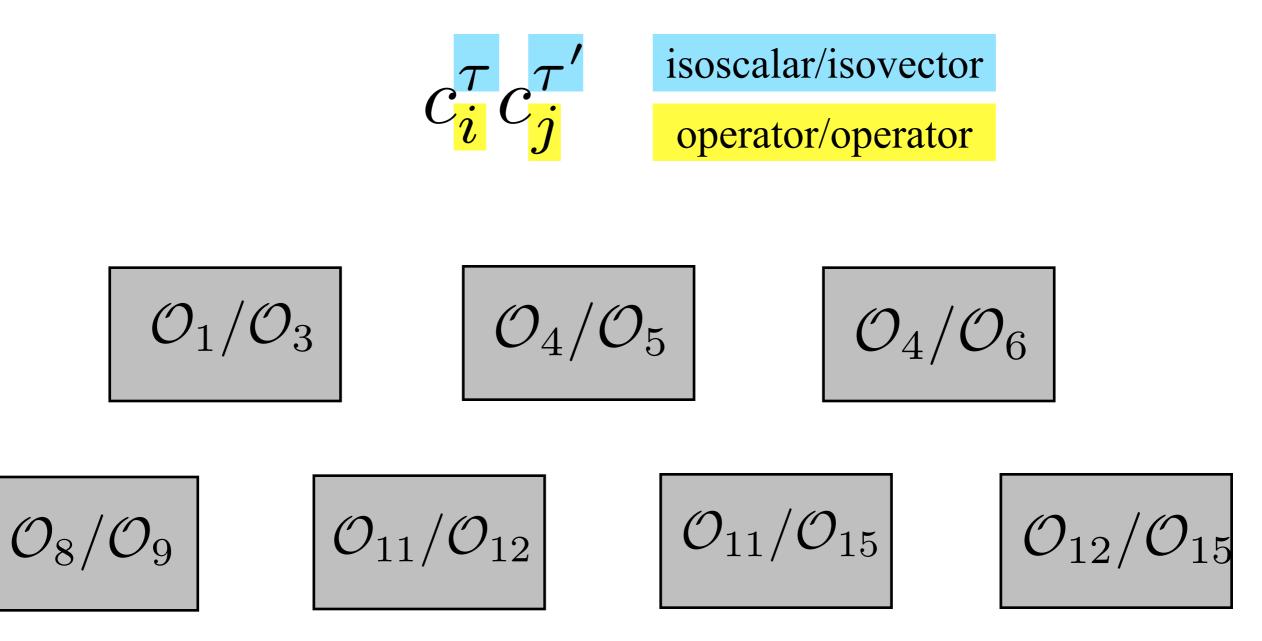
$$\begin{split} W_{M}^{\tau\tau'}(y) &= \sum_{J=0,2,...}^{\infty} \langle j_{N} || \ M_{J;\tau}(q) \ ||j_{N}\rangle \langle j_{N} || \ M_{J;\tau'}(q) \ ||j_{N}\rangle \\ W_{\Sigma''}^{\tau\tau'}(y) &= \sum_{J=1,3,...}^{\infty} \langle j_{N} || \ \Sigma'_{J;\tau}(q) \ ||j_{N}\rangle \langle j_{N} || \ \Sigma'_{J;\tau'}(q) \ ||j_{N}\rangle \\ W_{\Sigma''}^{\tau\tau'}(y) &= \sum_{J=1,3,...}^{\infty} \langle j_{N} || \ \Sigma'_{J;\tau}(q) \ ||j_{N}\rangle \langle j_{N} || \ \Sigma'_{J;\tau'}(q) \ ||j_{N}\rangle \\ W_{\Phi''}^{\tau\tau'}(y) &= \sum_{J=0,2,...}^{\infty} \langle j_{N} || \ \Phi''_{J;\tau}(q) \ ||j_{N}\rangle \langle j_{N} || \ \Phi''_{J;\tau'}(q) \ ||j_{N}\rangle \\ W_{\Phi''}^{\tau\tau'}(y) &= \sum_{J=2,4,...}^{\infty} \langle j_{N} || \ \Phi''_{J;\tau}(q) \ ||j_{N}\rangle \langle j_{N} || \ M_{J;\tau'}(q) \ ||j_{N}\rangle \\ M_{\Phi''}^{\tau\tau'}(y) &= \sum_{J=2,4,...}^{\infty} \langle j_{N} || \ \Phi'_{J;\tau}(q) \ ||j_{N}\rangle \langle j_{N} || \ \Phi'_{J;\tau'}(q) \ ||j_{N}\rangle \\ function ce occurs \\ W_{\Delta\Sigma'}^{\tau\tau'}(y) &= \sum_{J=1,3,...}^{\infty} \langle j_{N} || \ \Delta_{J;\tau}(q) \ ||j_{N}\rangle \langle j_{N} || \ \Delta_{J;\tau'}(q) \ ||j_{N}\rangle \\ M_{\Delta\Sigma'}^{\tau\tau'}(q) &= \sum_{J=1,3,...}^{\infty} \langle j_{N} || \ \Delta_{J;\tau}(q) \ ||j_{N}\rangle \langle j_{N} || \ \Delta_{J;\tau'}(q) \ ||j_{N}\rangle . \end{split}$$

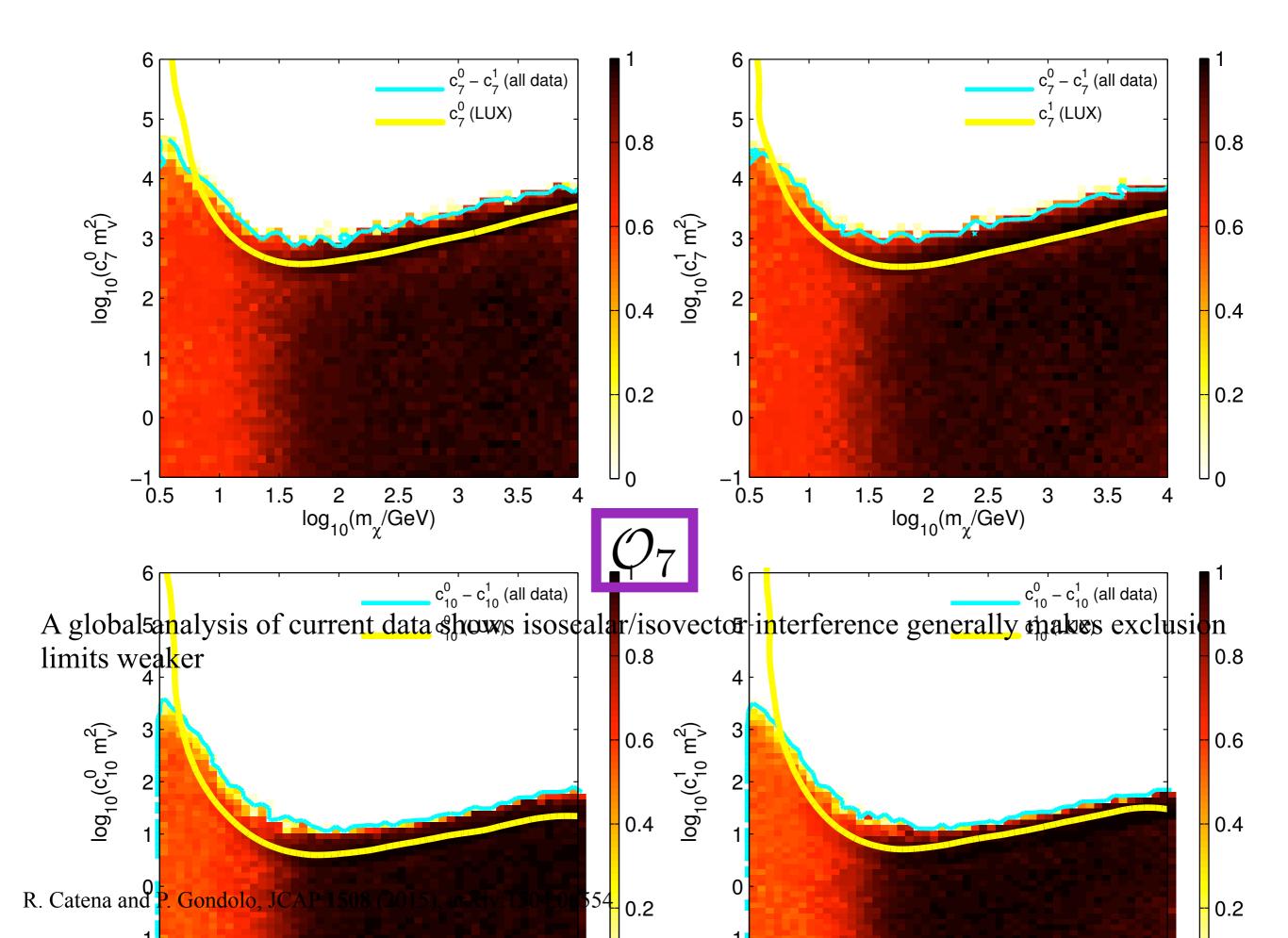
Nuclear response functions

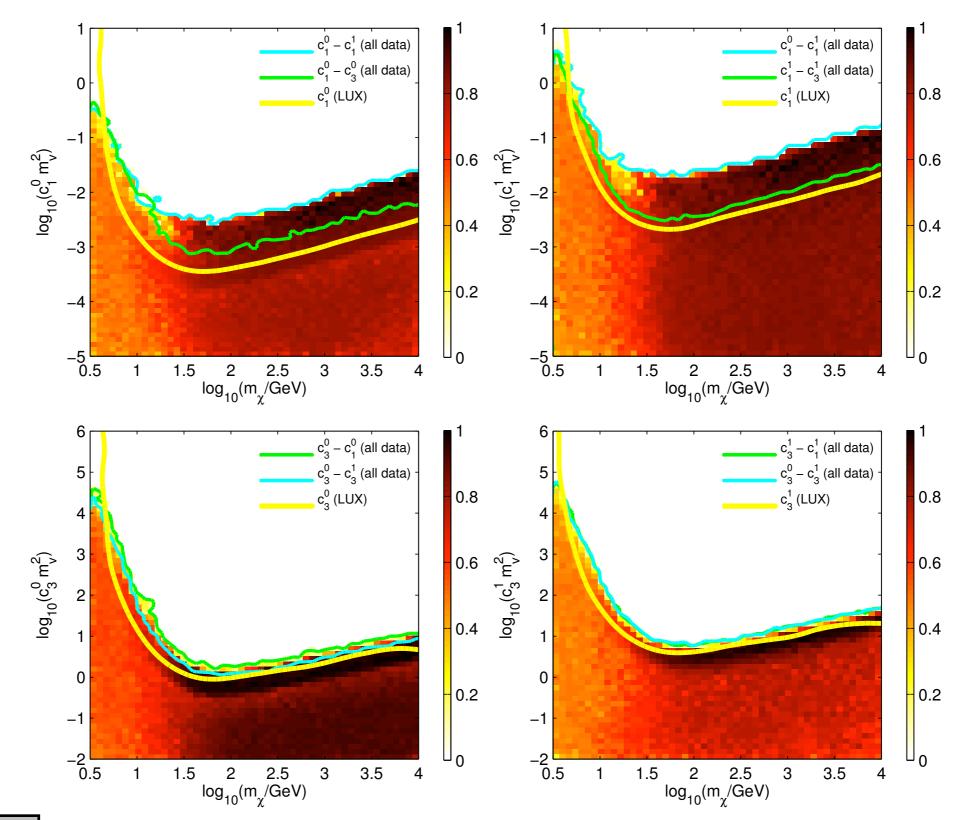
Response function interference occurs

### Interference Effects

In the full amplitude, two types of interference effects arise

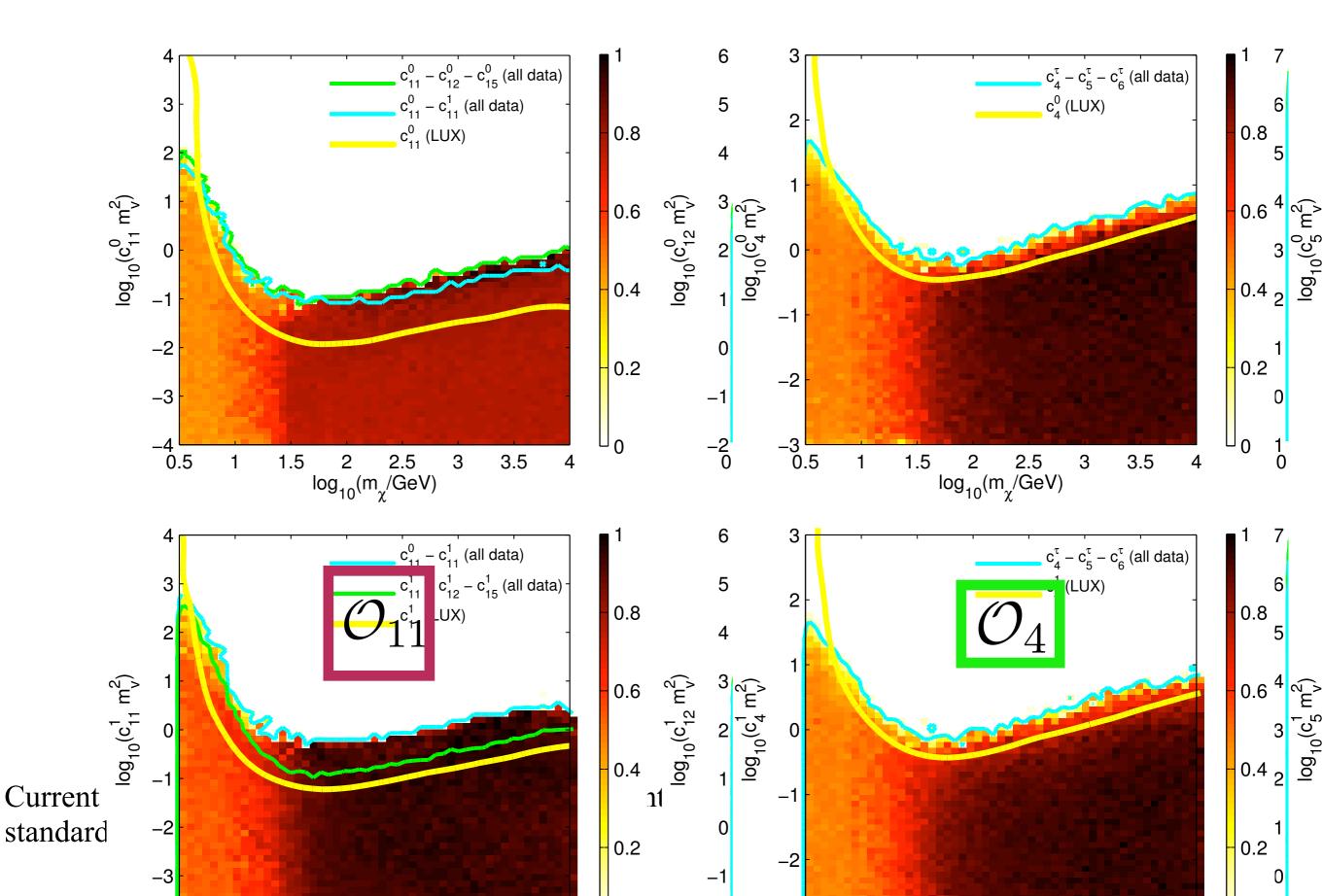






 $\mathcal{O}_1/\mathcal{O}_3$ 

Interference between operators tends to have a smaller effect



# Simplified Models

In general one can write down the non-relativistic Lagrangian

$$\mathcal{L}_{NR} = \sum_{\alpha=n,p} \sum_{i=1}^{15} c_i^{\alpha} \mathcal{O}_i^{\alpha}$$

General isospin (isoscalar/isovector) couplings to protons and neutrons is incorporated

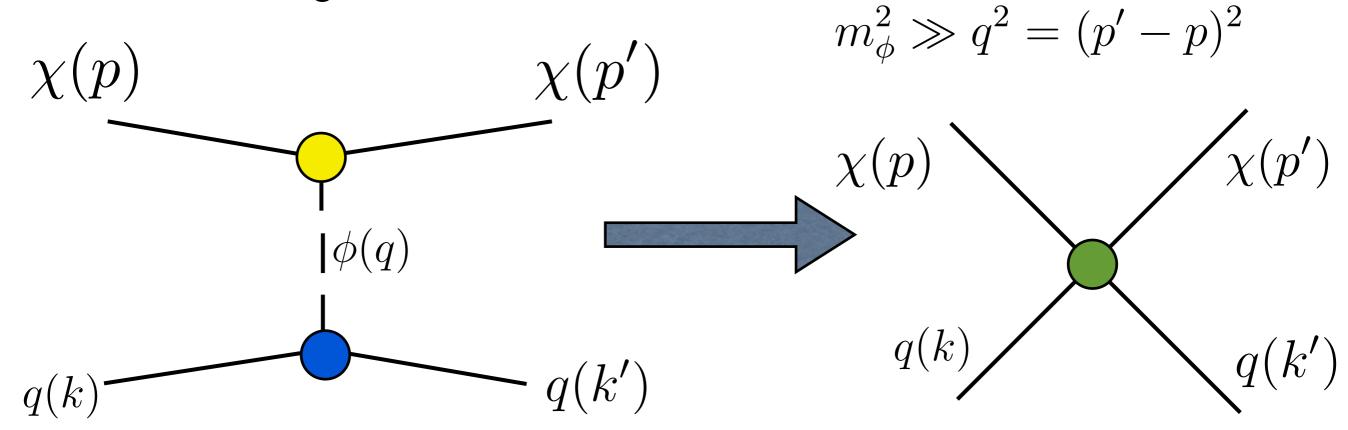
$$\mathcal{L}_{NR} = \sum_{\tau=0,1} \sum_{i=1}^{15} c_i^{\tau} \mathcal{O}_i t^{\tau} \qquad c_i^0 = \frac{1}{2} (c_i^{\mathrm{p}} + c_i^n) \quad c_i^1 = \frac{1}{2} (c_i^p - c_i^n)$$

The scattering probability is a factorized product of particle and nuclear physics responses

$$\frac{1}{2j_{\chi}+1}\frac{1}{2j_{N}+1}\sum_{\text{spins}}|\mathcal{M}|^{2} \equiv \sum_{k}\sum_{\tau=0,1}\sum_{\tau'=0,1}\left|R_{k}\left(\vec{v}_{T}^{\perp2},\frac{\vec{q}^{2}}{m_{N}^{2}},\left\{c_{i}^{\tau}c_{j}^{\tau'}\right\}\right)\right|W_{k}^{\tau\tau'}(\vec{q}^{2}b^{2})$$
particle nuclear

A.L. Fitzpatrick, W.C. Haxton, E. Katz, N. Lubbers, and Y. Xu, JCAP 1302 (2013) 004, arXiv:1203.3542 N. Anand, A.L. Fitzpatrick, and W.C. Haxton, Phys.Rev. C89, 065501 (2014) arXiv:1308.6288

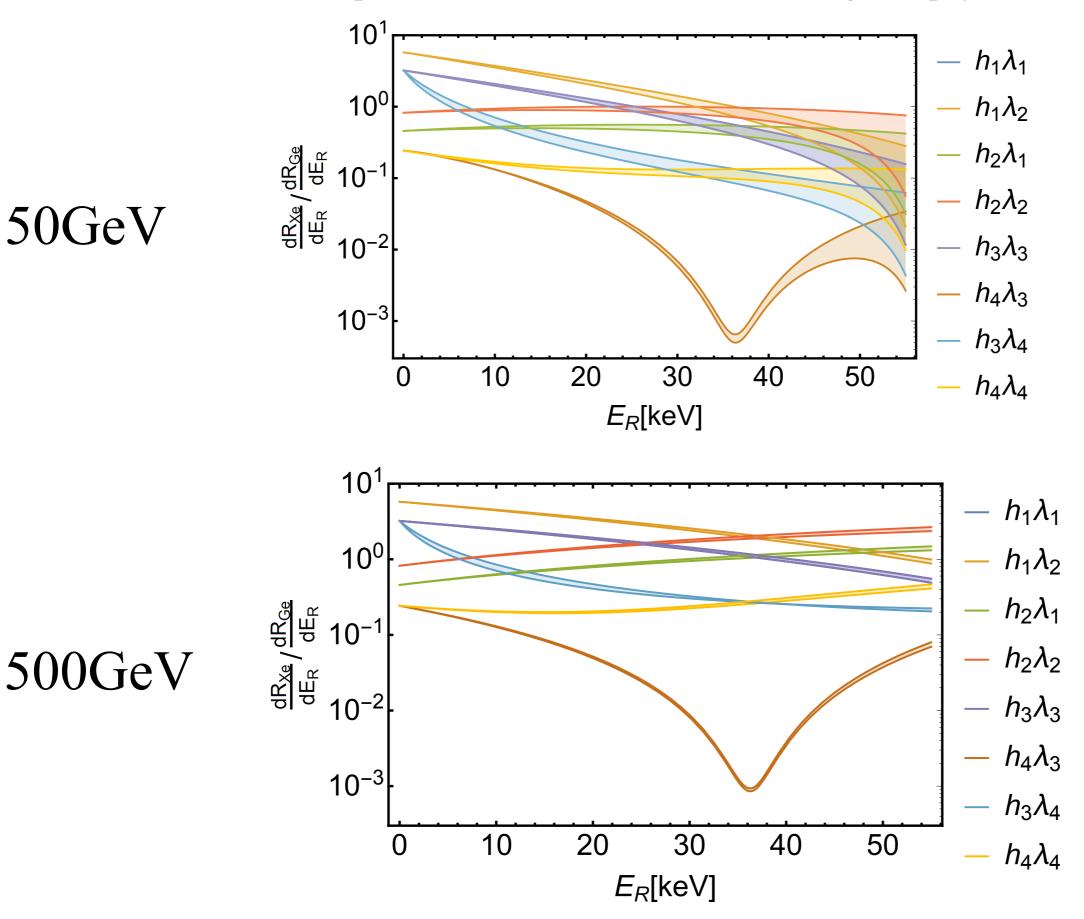
The effective field theory approach is valid for mediators more massive than the momentum exchanged



$$\mathcal{L}_{\chi\phi q} = i\bar{\chi}\mathcal{D}\chi - m_{\chi}\bar{\chi}\chi + \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - \frac{1}{2}m_{\phi}^{2}\phi^{2} - \frac{m_{\phi}\mu_{1}}{3}\phi^{3} - \frac{\mu_{2}}{4}\phi^{4} + i\bar{q}\mathcal{D}q - m_{q}\bar{q}q - \lambda_{1}\phi\bar{\chi}\chi - i\lambda_{2}\phi\bar{\chi}\gamma^{5}\chi - h_{1}\phi\bar{q}q - ih_{2}\phi\bar{q}\gamma^{5}q$$

$$\mathcal{L}_{eff} \supset \frac{\lambda_1 h_1}{m_{\phi}^2} \bar{\chi} \chi \bar{q} q$$

Ratio of rates for 50GeV spin-1/2 WIMP off Xe and Ge including astrophysical uncertainties



Ratio of rates for 500GeV spin-1/2 WIMP off Xe and Ge including astrophysical uncertainties