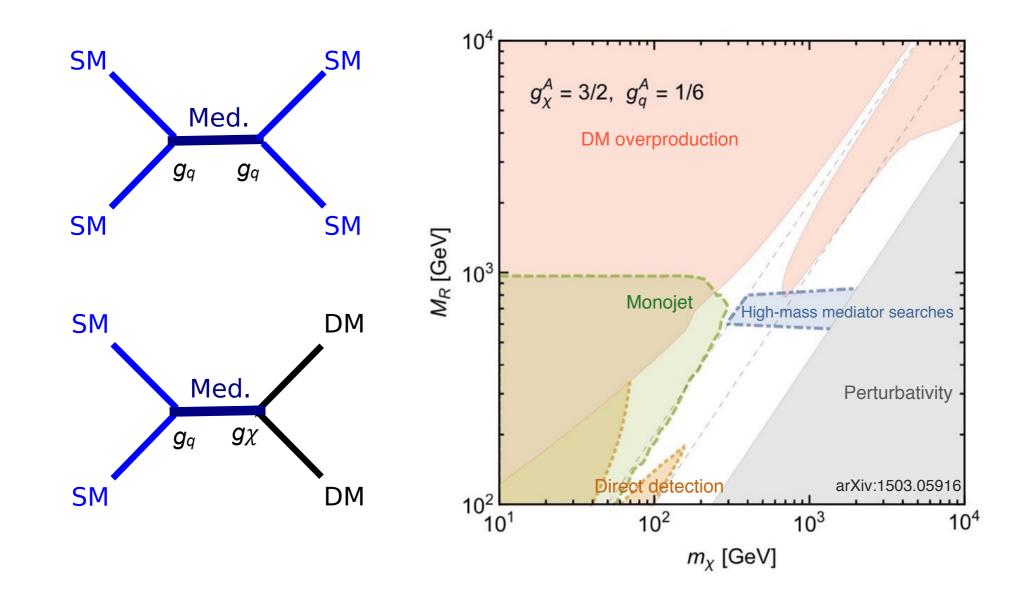
Wrap-up topics for lunch discussion

Antonio Boveia, Caterina Doglioni, Steven Lowette, Steve Worm

Prelude: models motivating the detector studies

- Theory input needed: which are the most important signals to consider in 30 years from now?
- Experimental input needed: post-discovery at DD sees something, what can we do at the FCC?
- What we did with ATLAS/CMS DM Forum (<u>http://arxiv.org/abs/</u> <u>1507.00966</u>) & preceding workshops (<u>http://arxiv.org/abs/</u> <u>1506.03116</u>, etc)
 - Systematic exploration of models leading to minimal basis of (simplified) models
 - Distinct kinematics —> distinct detector needs, can be guidance for detector studies

Examples from yesterday's theory talks


- A first attempt at classification:
- Singlet dark matter
 - Look for (new) physics associated to DM particles
 - Interesting phenomenology -> general search for new physics (heavy mediators benefit from CoM increase)
 - Role of VBF
 - Cascade decays
- Bino/Wino/Higgsino DM, compressed
 - Look for signatures with (no)MET/soft leptons and photons
- Dark sector
 - Specialized tracking studies

What can we achieve with this discussion?

- Brainstorming is important, but so is focus
- Come up with a list of questions leading to concrete studies connecting Dark Matter to detector characteristics
 - Ideally: model motivating studies
 - If a task list is there, more likely to be picked up (student projects...)
 - Input to document edited by Pedro and Phil
 - Input to overall FCC Detectors effort

Example: complementary Mono-X / mediator searches

• triggering challenges already at the LHC

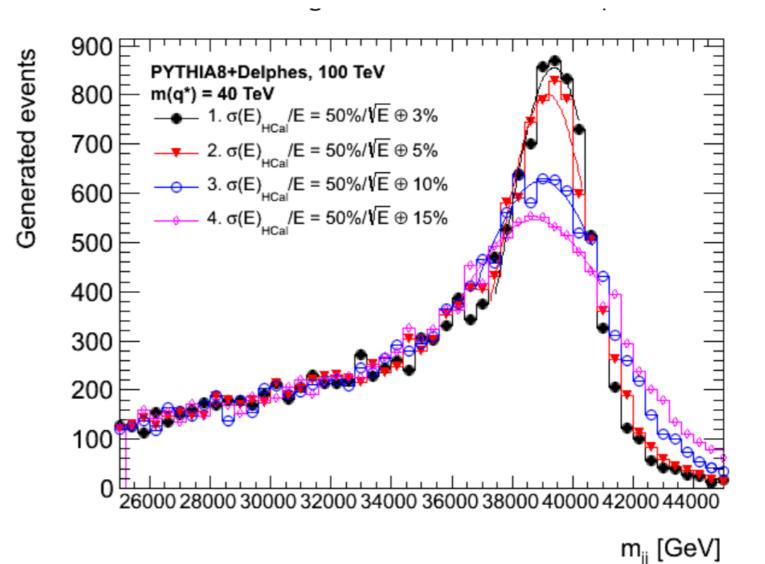
Example 1: MET in mono-X searches

- 1) Collect a series of detector and different pile-up conditions in the form of Delphes cards
- Start with baseline configuration for FCChh detectors (see <u>here</u>)
- 2) Use background $Z \rightarrow vv + jets$ events and general signals from the Forum
- 3) Look at tails of MET spectrum, with and without Particle flow approach
- 4) Vary calorimeter and tracker parameters
 - Granularity and Energy Resolution
 - Tracker acceptance (|eta|< 4, 6)

Version 1.0 (2014-02-11)	LHC	HL-LHC	FHC-hh
c.m. Energy [TeV]	14		100
CircumferenceC[km]	26.7		100 (83)
Dipole field [T]	8.33		16 (20)
Arc filling factor	0.79		0.79
Straight sections	8		12
Average straight section length [m]	528		1400
Number of IPs	4		2 + 2
Injection energy [TeV]	0.45		3.3
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1.0	5.0	5.0
Peak no. of inelastic events / crossing at - 25 ns spacing - 5 ns spacing	27	135 (lev.)	171 34
Total / inelastic cross section [mbarn]	111/85		153 / 108

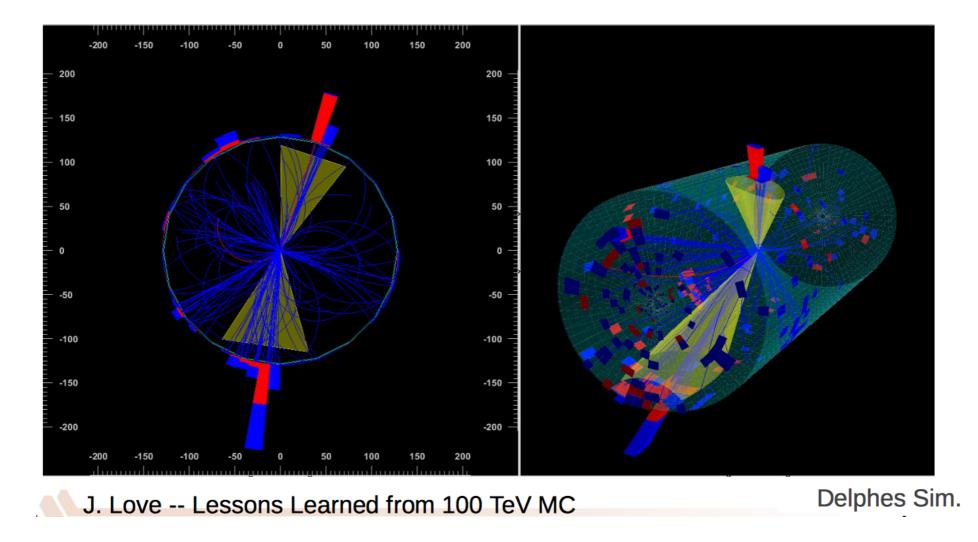
RMS IP spot size [mm]			
- 25 ns	16.7	7.1 (min)	6.8
- 5 ns			3
	1		

Example 1: MET in mono-X searches


5) Add further detector effects not implemented in official delphes, Eg:

- tracking efficiency dependence on the distance from jet axis as in http://arxiv.org/abs/1503.03347
- angular resolution
- longitudinal calorimeter segmentation
- Get significance ~ S/sqrt(B) above a given MET cut, as a function of the layout parameters, for several pile-up conditions and suppression algorithms (e.g. PUPPI)

Example 2:


Jet reconstruction for DM mediator searches

- Consider narrow mediators decaying to dijets (small couplings, sensitive with 1/ab)
- Sensitvity depends on mass resolution (=peak sharpness), which in turn depends on
 - Jet algorithm (see jetography paper: <u>http://</u> <u>arxiv.org/abs/0810.1304</u>)
 - Calorimeter resolution
 - Calorimeter depth (leakage)

Example 3:

scalar mediator to boosted ttbar

- 1) Boosted objects needed (everything from the ttbar system merges)
 - 1) Ultimate calorimeter granularity needed
 - 2) Try substructure techniques on the market in Delphes: are they enough?