Development of CVD Diamond Tracking Detectors for Experiments at High Luminosity Colliders

> **RD42 Status Report** Harris Kagan, Ohio State University

> > LHCC Presentation Nov. 19, 2008, CERN

Outline of the Talk

- Introduction 2008 LHCC Milestones
- Radiation Hardness Studies with Trackers
- Pixel Module Studies
- Material and Manufacturing Developments
- RD42 Plans and Request

The RD42 Collaboration

D. Asner²², M. Barbero¹, V. Bellini², V. Belyaev¹⁵, E. Berdermann⁸, P. Bergonzo¹⁴, M. Bruzzi⁵, V. Cindro¹², G. Claus¹⁰, M. Cristinziani¹, S. Costa², R. D'Alessandro⁶, W. de Boer¹³, D. Dobos³, I. Dolenc¹², W. Dulinski¹⁰, V. Eremin⁹, R. Eusebi⁷, F. Fizzotti¹⁸, H. Frais-Kölbl⁴, A. Furgeri¹³, K.K. Gan¹⁶, M. Goffe¹⁰, J. Goldstein²¹, A. Golubev¹¹, A. Gorišek¹² E. Griesmayer⁴, E. Grigoriev¹¹, F. Hügging¹, H. Kagan^{16, \diamondsuit}, R. Kass¹⁶, G. Kramberger¹², S. Kuleshov¹¹, S. Lagomarsino⁶, A. La Rosa³, A. Lo Giudice¹⁸, I. Mandic¹², C. Manfredotti¹⁸, C. Manfredotti¹⁸, A. Martemyanov¹¹, M. Mathes¹, D. Menichelli⁵, S. Miglio⁵, M. Mikuž¹², M. Mishina⁷, J. Moss¹⁶, S. Mueller¹³, P. Olivero¹⁸, G. Parrini⁶, H. Pernegger³, M. Pomorski¹⁴, R. Potenza², S. Roe³, M. Scaringella⁵, D. Schaffner²⁰, C. Schmidt⁸, S. Schnetzer¹⁷, T. Schreiner⁴, S. Sciortino⁶, S. Smith¹⁶, R. Stone¹⁷, C. Sutera², M. Traeger⁸, W. Trischuk¹⁹, C. Tuve², J. Velthuis²¹, E. Vittone¹⁸, R. Wallny²⁰, P. Weilhammer $^{3,\diamondsuit}$, N. Wermes 1

 \diamondsuit Spokespersons

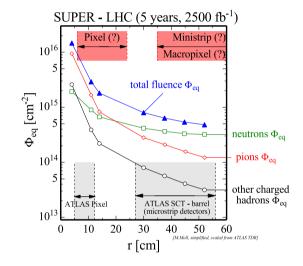
70 Participants

¹ Universität Bonn, Bonn, Germany ² INFN/University of Catania, Italy ³ CERN, Geneva, Switzerland ⁴ Fachhochschule für Wirtschaft und Technik, Wiener Neustadt, Austria ⁵ INFN/University of Florence, Florence, Italy ⁶ Department of Energetics/INFN Florence, Florence, Italy ⁷ FNAL, Batavia, U.S.A. ⁸ GSI, Darmstadt, Germany ⁹ Ioffe Institute, St. Petersburg, Russia ¹⁰ IPHC, Strasbourg, France ¹¹ ITEP, Moscow, Russia ¹² Jožef Stefan Institute, Liubliana, Slovenia ¹³ Universität Karlsruhe, Karlsruhe, Germany ¹⁴ CEA-LIST Technologies Avancees, Saclay, Gif-Sur-Yvette, France ¹⁵ MEPHI Institute, Moscow, Russia ¹⁶ The Ohio State University, Columbus, OH, U.S.A. ¹⁷ Rutgers University, Piscataway, NJ, U.S.A. ¹⁸ University of Torino, Italy ¹⁹ University of Toronto, Toronto, ON, Canada ²⁰ UCLA, Los Angeles, CA, USA ²¹ University of Bristol, Bristol, UK ²² Carleton University. Carleton. Canada

22 Institutes

New groups joined RD42 from: Carleton University

Development of CVD Diamond Tracking Detectors for Experiments at High Luminosity Colliders (page 2)



Motivation: Tracking Devices Close to Interaction Region of Experiments

Scale is $\sim 10^{16} \text{ cm}^{-2}$

Look for a Material with Certain Properties:

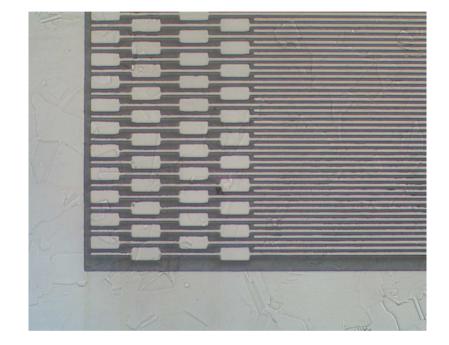
- Radiation hardness (no frequent replacements)
- ◆ Low dielectric constant → low capacitance
- ♦ Low leakage current → low readout noise
- Good insulating properties \rightarrow large active area
- Room temperature operation, Fast signal collection time \rightarrow no cooling

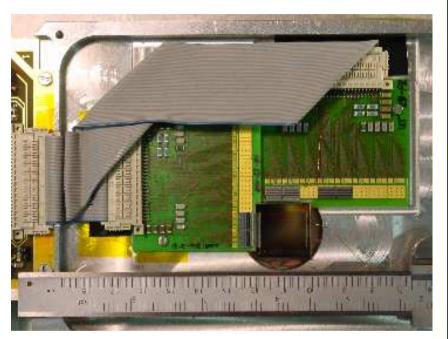
Presented Here:

- Radiation hardness tests of the highest quality pCVD and scCVD diamond
- Pixel module development
- Beam tests results
- Manufacturing and Module Developments
- Reference \rightarrow http://rd42.web.cern.ch/RD42

Priorities of Research in 2008 (LHCC 2008-005)

- Test the radiation hardness of the highest quality pCVD and scCVD diamond.
- Develop diamond pixel modules useful at the LHC. Industrialization of the process.
- Beam tests with diamond pixel trackers and pixel detectors.
- Continue the development of pCVD and scCVD diamond material. Develop additional suppliers.
- Continue the development of systems for beam monitoring for the LHC.

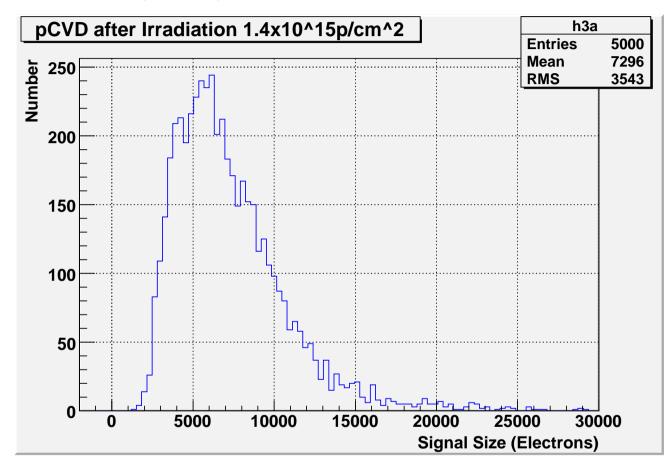

These points will be addressed in this talk.



- binding energy
- displacement energy
- elastic, inelastic, total cross section

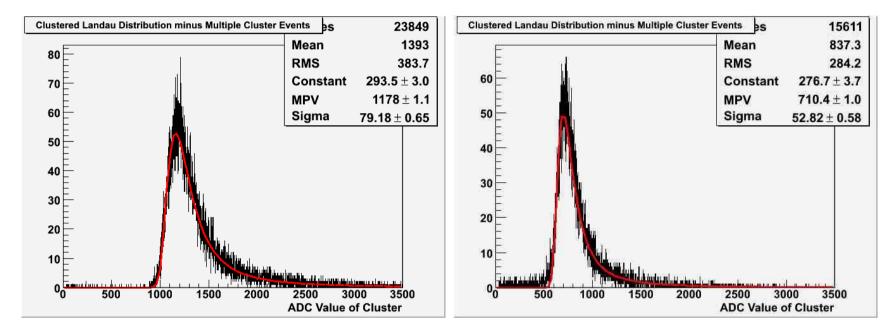
Radiation Hardness Studies with pCVD and scCVD Trackers

pCVD Diamond Trackers:



- Patterning the diamond \rightarrow pads, strips, pixels!
- Successfully made double-sided devices; edgeless ok.
- Use trackers (strip or pixel) in radiation studies charge and position.

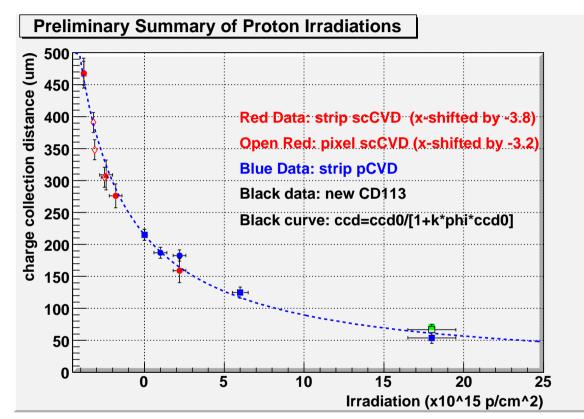
pCVD Diamond After Irradiation


Polycrystalline CVD (pCVD) Diamond irradiated to 1.4x10¹⁵

- Application is pixel detectors
- At the LHC, thresholds are \sim Noise (1400e) plus overdrive (800e)
- PH distributions look good after irradiation of $1.4 \times 10^{15} \text{p/cm}^2$.

scCVD Diamond After Irradiation

Single Crystal CVD (scCVD) Diamond irradiated to 1.5x10¹⁵



- PH distributions look narrow before and after irradiation
- PH distributions after $1.5 \times 10^{15} \text{p/cm}^2 \rightarrow \epsilon > 99\%$.
- Calibration: 750ADC = 10,000e

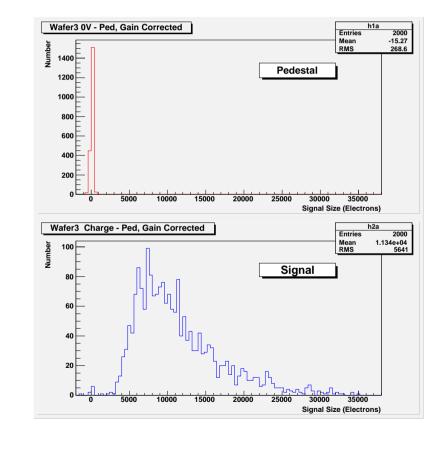
_ Radiation Hardness Studies with pCVD and scCVD Trackers

Proton Irradiation Summary - This Year:

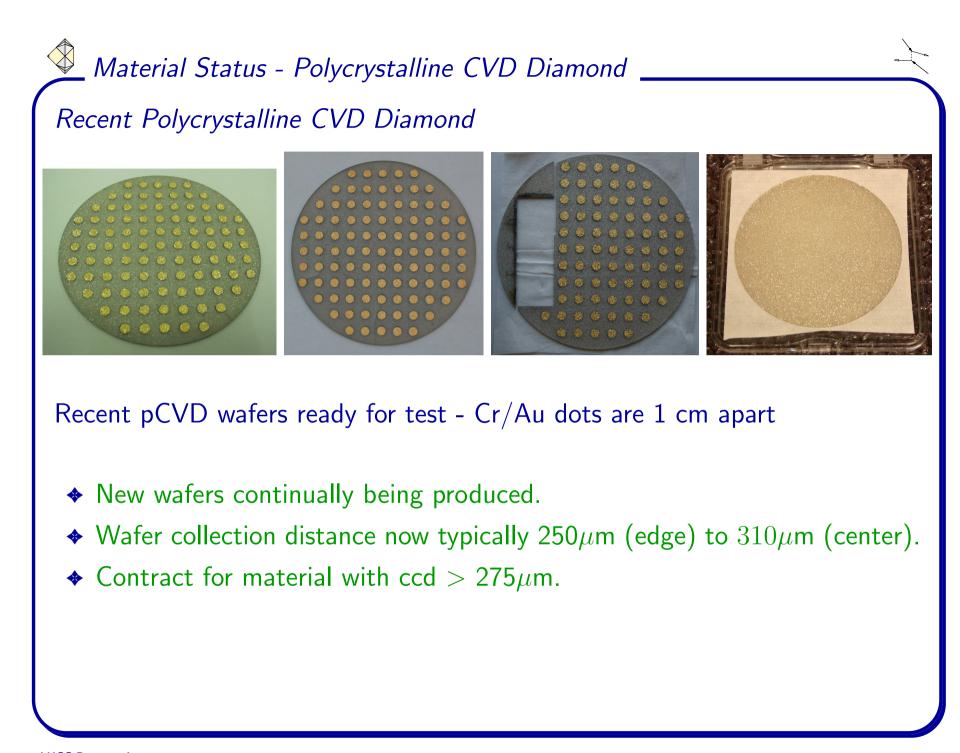
New results from pixel modules - diamond and electronics irradiated!

Irradiation results up to $1.8 \times 10^{16} \text{ p/cm}^2$ (~500Mrad). pCVD and scCVD diamond follow the same damage curve: $1/\text{ccd}=1/\text{ccd}_0 + \text{k} \phi$.

Development of CVD Diamond Tracking Detectors for Experiments at High Luminosity Colliders (page 9)

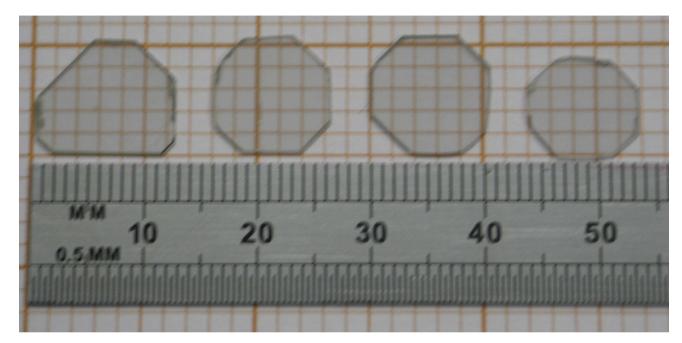

CVD Diamond Material Status

- collection distance
- polycrystalline, single crystal
- new manufacturers


Material Status - Polycrystalline CVD Diamond

pCVD Material: *pCVD* Diamond Measured with a ⁹⁰Sr Source

- \clubsuit Contacts on both sides structures from $\mu {\rm m}$ to cm
- ♦ Usually operate at E=1-2V/ μ m
- Test Procedure: dot \rightarrow strip \rightarrow pixel on same diamond!

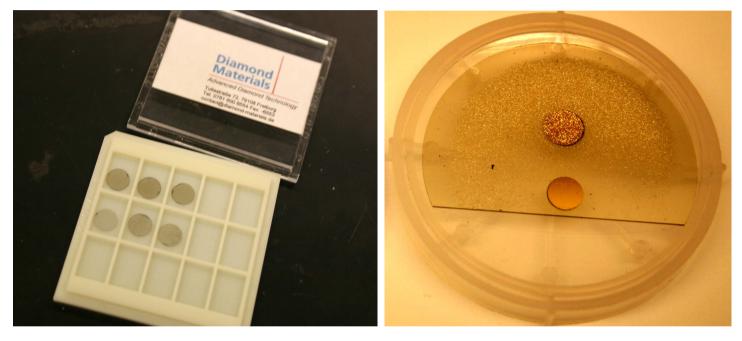


- $Q_{MP} = 8500-9000e$
- Mean Charge = 11300e
- Source data well separated from 0
- Collection Distance now $\approx 300 \mu m$
- Most Probable Charge now $\approx 9000e$
- \blacklozenge 99% of PH distribution above 4000e
- FWHM/MP \approx 0.95 Si has \approx 0.5
- Six wafers grown with this quality

Material Status - Single Crystal CVD Diamond

Recent Single Crystal CVD (scCVD) Diamond

RD42 continues to develop and test this material.


scCVD diamond can be grown \approx 10 mm \times 10mm, >1 mm thickness. Largest scCVD diamond grown \approx 14 mm \times 14 mm. First results from irradiated scCVD pixel module.

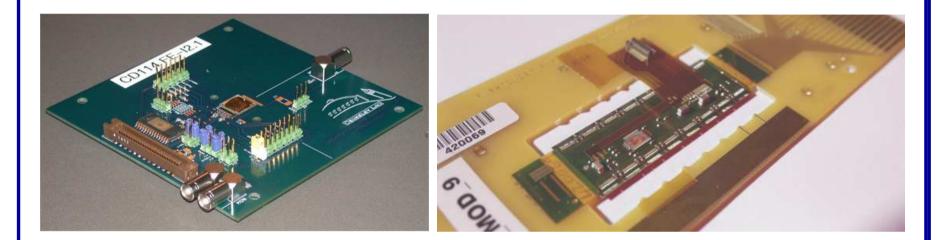
Development of CVD Diamond Tracking Detectors for Experiments at High Luminosity Colliders (page 13)

New Manufacturers Developing Detector Grade Diamond

Status:

RD42 has begun working with two companies (Germany, US) to develop detector grade diamond material

- First samples from companies show charge collection distance ${\sim}100\mu{
 m m}$
- RD42 is working with these manufacturers
- Work in progress on both pCVD and scCVD.


Development of CVD Diamond Tracking Detectors for Experiments at High Luminosity Colliders (page 14)

pCVD and scCVD Pixel Detectors

- signal
- noise, threshold, overdrive
- charge sharing, signal over threshold

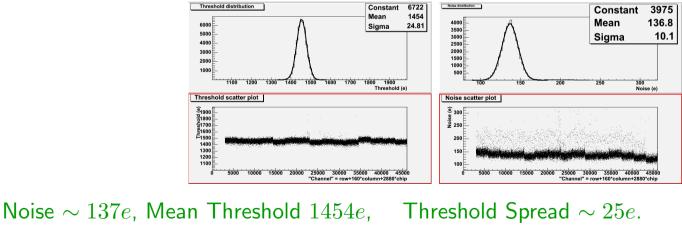
ATLAS Diamond Pixel Detectors

Recall: Full 1 Chip and 16 chip ATLAS diamond pixel modules



- Single-chip and 16-chip modules bump-bonded at IZM (Berlin), constructed and tested in Bonn
- Operating parameters (FE-I3): Peaking Time 22ns, Noise 140e, Threshold 1450-1550e, Threshold Spread 25e, Overdrive 800e

_ ATLAS Diamond Pixel Detectors


The ATLAS pixel module - Threshold, Noise

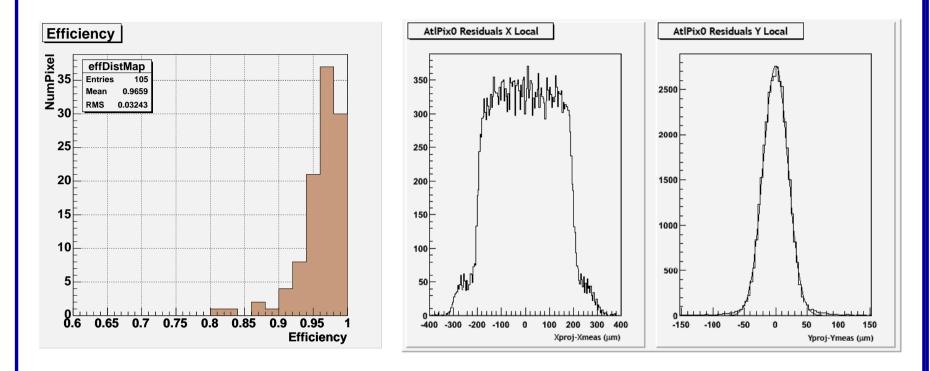
Bare Chips

Noise $\sim 140e,$ Mean Threshold 1500e, Threshold Spread $\sim 25e.$

Development of CVD Diamond Tracking Detectors for Experiments at High Luminosity Colliders (page 17)

ATLAS Diamond Pixel Detectors

The ATLAS pixel module - Threshold, Overdrive vs Noise



LHCC Presentation Nov. 19, 2008, CERN

Development of CVD Diamond Tracking Detectors for Experiments at High Luminosity Colliders (page 18)

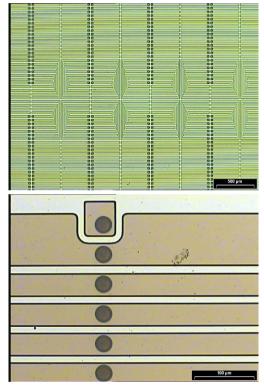
_ ATLAS Diamond Pixel Detectors

Recall: Full ATLAS diamond pixel module - Efficiency, Resolution

- Excellent correlation with telescope, efficiency > 97%
- Residual $\sim 18 \mu \text{m}$ remove telescope tracking contribution $\rightarrow 14 \mu \text{m}$.

ATLAS Diamond Pixel Detectors _____

New: First Full Diamond Pixel Module Made in Industry


- \blacklozenge Begin with a raw diamond wafer \rightarrow characterize
- \clubsuit Cut out detector \rightarrow characterize
- Clean \rightarrow IZM in Berlin
- Receive finished, metalised, bump-bonded module!

Development of CVD Diamond Tracking Detectors for Experiments at High Luminosity Colliders (page 20)

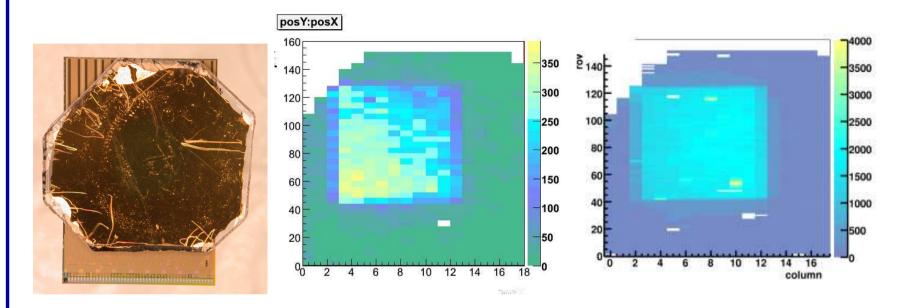
_ ATLAS Diamond Pixel Detectors _____

New: First Full Diamond Pixel Module Made in Industry

Diamond sensor pixel metallisation

Status after electroplating of pad metallisation and lithography for pixel metallisation patterning

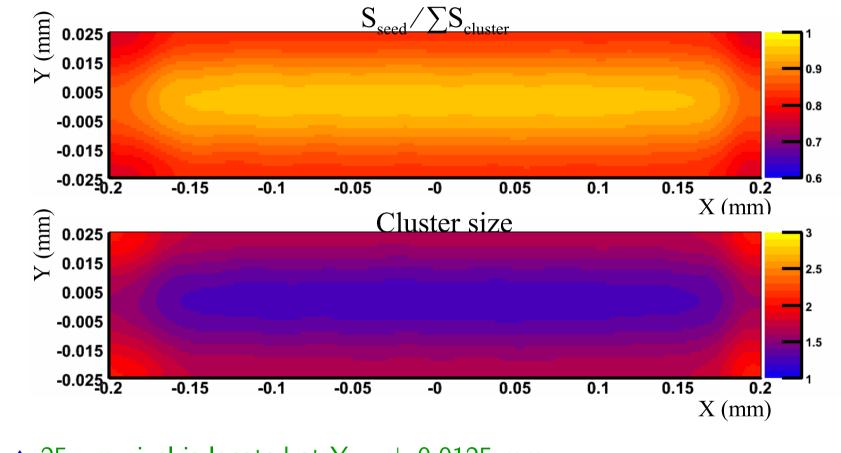
	U
	0
O	\bigcirc
	100 µm
()	
. 0	
	0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 () 0 ()


result after pixel metallisation patterning

IZM Fraunhofer Institut Zuverlässigkeit und Mikrointegration

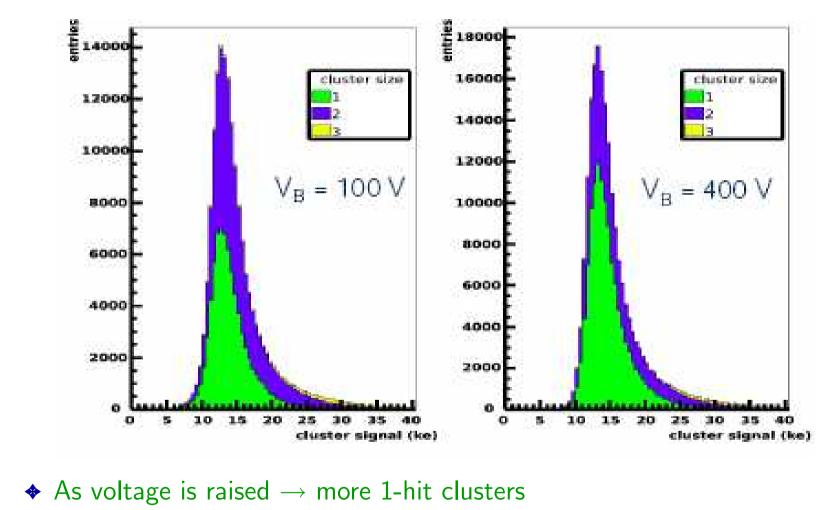
Development of CVD Diamond Tracking Detectors for Experiments at High Luminosity Colliders (page 21)

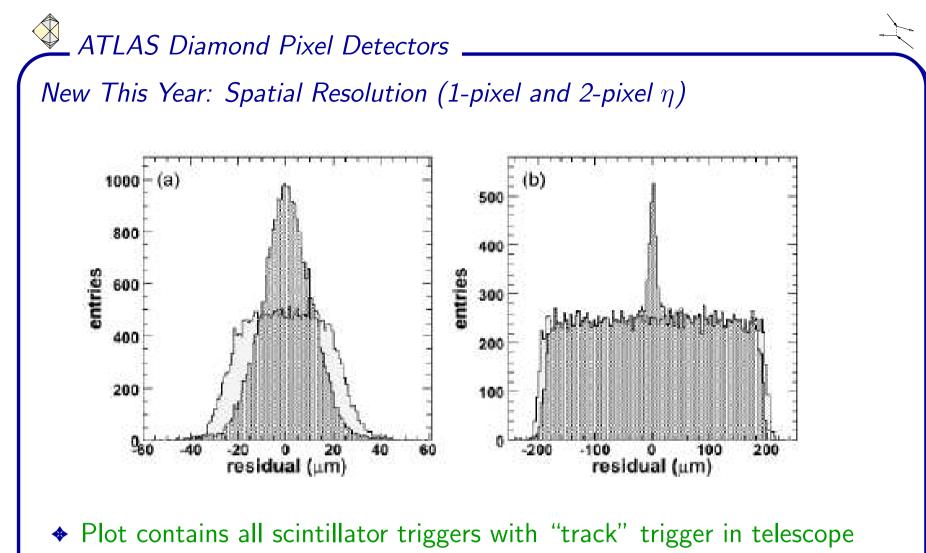
ATLAS Diamond Pixel Detectors


The First scCVD ATLAS diamond pixel detector

◆ The hitmap plotted for all scintillation triggers with trigger in telescope.
◆ The raw hitmap looks goods - ~ 1 dead pixel

_ ATLAS Diamond Pixel Detectors


Last Year: The First scCVD ATLAS diamond pixel detector - Charge Sharing

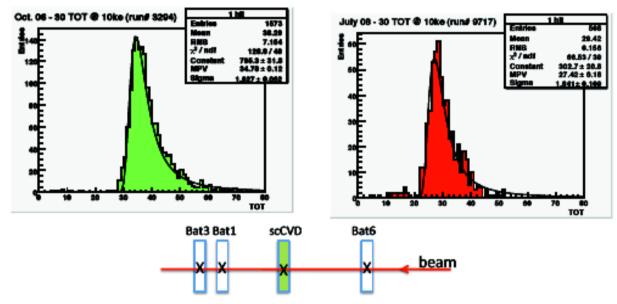

- 25 μ m pixel is located at Y = \pm 0.0125 mm
- Charge sharing as expected

ATLAS Diamond Pixel Detectors _____

New This Year: Cluster Signal

Cluster signal as expected

- Diamond pixel resolution 8.9 μ m for normal incidence
- Lower threshold \rightarrow more charge sharing observed \rightarrow better spatial resolution.

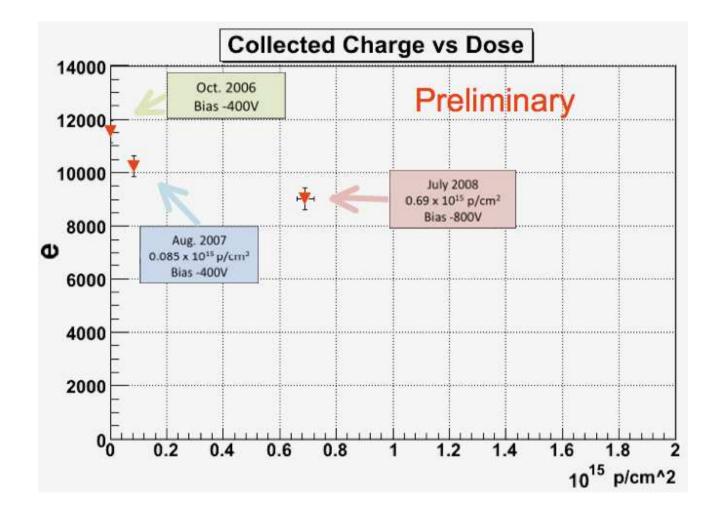

_ ATLAS Diamond Pixel Detectors _____

New This Year: Irradiated scCVD Diamond Pixel Module

TOT comparison (Oct.06 – Jul08)

BEFORE irradiation

AFTER irradiation (f_T= 0.7 x 10¹⁵ p/cm²)


Only data from events with a single hit in each of the telescope planes are selected.

Full scCVD module irradiated - electronics and diamond.
Tested in CERN test beams

Development of CVD Diamond Tracking Detectors for Experiments at High Luminosity Colliders (page 26)

ATLAS Diamond Pixel Detectors

New This Year: Irradiated scCVD Diamond Pixel Module

Full scCVD module irradiated - electronics and diamond.
Data falls on expected damage curve!

Development of CVD Diamond Tracking Detectors for Experiments at High Luminosity Colliders (page 27) _ Next Steps

On the basis of these results ATLAS officially approved Upgrade R&D on Diamond Pixel Detectors

Proposing Institutes:

- Carleton University (Canada)
- University of Toronto (Canada)
- University of Bonn (Germany)
- Jožef Stefan Institute (Slovenia)
- CERN
- Ohio State University (US)
- Submitted May 2007
- Approved Feb 2008
- Technical Decision 2010

ATLAS Inner De	etector Ungrad	
ATLAS Inner Detector Upgrade		
ment No. Creat	ted: 15/05/2007	Page: 1 of 14
Modij	lified: 21/12/2007	Rev. No.: 1,8
		more No. Created: 15/05/2007 Modified: 21/12/2007

Abstract

The goal of this proposal is to construct diamond pixel modules as an option for the ATLAS pixel detector upgrade. This proposal is made possible by progress in three areas: the recent reproducible production of high quality polycrystalline Chemical Vapour Deposition diamond material in wafers, the successful completion and test of the first diamond ATLAS pixel module, and the operation of a diamond after irradiation to 1.8×10^4 p/cm². In this proposal we outline the results in these three areas and propose a plan to build 5 to 10 ATLAS diamond pixel modules, characterize their properties, test their radiation hardness, explore the cooling advantages made available by the high thermal conductivity of diamond and demonstrate industrial viability of bump-bonding of diamond pixel modules. Based on availability and size polycrystalline Chemical Vapour Deposition diamond his reserved as a future option if the manufacturers can attain sizes in the range 10mm x 10mm.

Reference \rightarrow ATU-RD-MN-0012, EDMS ID: 903424

From Last Year: Next Steps Checklist

▶ Re-Test ATLAS Pixel Module at CERN - Done Done - data being looked at → Thesis

• Irradiate scCVD and pCVD diamonds - Done pCVD to 2×10^{16} and scCVD to 2×10^{15} p/cm²

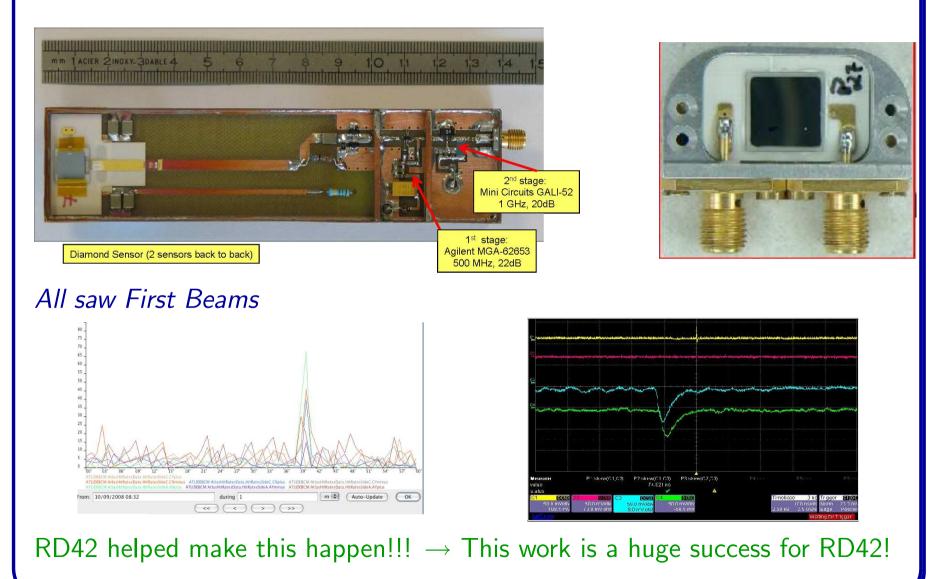
Irradiate scCVD pixel modules (chip and detector) - Done Up to $\sim 10^{15}$

Move Metalization to Industry - Done
 Cleaner facilties
 Metalization and bumping done at one facility
 This should be easy ... IZM is interested

Produce 3-10 Modules - ongoing
 Evaluate production process
 Full measure of efficiency, noise, etc.

Test of Modules - beginning
 Beam test of production modules

Radiation hardness test of production modules


 \rightarrow Much progress made!!!

Beam Condition Monitoring

- current measurement
- single particle counting
- monitoring, protection

Beam Conditions Monitors

All LHC experiments have diamond Beam Condition Monitors

Development of CVD Diamond Tracking Detectors for Experiments at High Luminosity Colliders (page 31)

Proposed Research for RD42

Radiation Hardness of Diamond Trackers and Pixel Detectors Continue tracker and pixel irradiations in the next year, Use pCVD and scCVD

Pixel Detector Modules

Test Industrial Modules (IZM).

Construct two additional modules - funded by ATLAS R&D?

Beam Tests with Diamond Trackers and Pixel Detectors

Complete test of ATLAS diamond pixel modules Irradiation of one ATLAS diamond pixel module

Diamond Characterization

Continue research program to improve material in progress:

Why Support RD42

- Lots of generic work to be done n-, π -irradiations, development of new manufacturers, sample procurement, test beams
- \clubsuit Central facilities for all experiments \rightarrow this worked for BCM's
- ◆ CERN People in RD42 D. Dobos, A. la Rosa, H. Pernegger, S. Roe

RD42 Request to CERN/LHCC

- RD42 is supported by many national agencies:
 - \rightarrow continuation of official recognition by CERN critical
 - \rightarrow 50kCHF from CERN/ 150kCHF from outside CERN
- RD42 requires access to CERN facilities:
 - \rightarrow maintain the present 20 m² of lab space (test setups, detector prep, ...)
 - \rightarrow maintain present office space
 - \rightarrow test beam time

RD42 and CERN play a critical role in diamond detector development