QCD and Monte Carlo Methods
Lecture III: Shower Monte Carlo

The 2009 Hadron Collider Physics Summer School
CERN, June 2009

Keith Ellis
ellis@fnal.gov

Fermilab/CERN

Slides available from http://theory.fnal.gov/people/ellis/Talks/
Bibliography

QCD and Collider Physics
(Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology)
by R. K. Ellis, W.J. Stirling and B.R. Webber

Monte Carlo Simulation Of Hard Hadronic Processes
B.R. Webber,

Les Houches guidebook to Monte Carlo generators for hadron collider physics.
M.A. Dobbs et al.
e-Print Archive: hep-ph/0403045
Shower Monte Carlo

- Solution of DGLAP equation
- Shower Monte Carlo
- Sudakov Form Factor
- Infrared cutoff
- Monte Carlo method
- Soft gluon emission
- Coherent Branching
- Color
- String Fragmentation
- Cluster Fragmentation
- Underlying event
- Multiplicity growth in fragmentation
Solution by moments

- The structure of the DGLAP equation is,

\[
t \frac{\partial}{\partial t} D(x, t) = \int_x^1 \frac{dz}{z} \frac{\alpha_s}{2\pi} P(z) D(x/z, t) .
\]

- Given \(D_i(x, t) \) at some scale \(t = t_0 \), factorized structure of DGLAP equation means we can compute its form at any other scale.

- One strategy for doing this is to take moments (Mellin transforms) with respect to \(x \):

\[
\tilde{D}_i(N, t) = \int_0^1 dx \, x^{N-1} \, D_i(x, t) .
\]

Inverse Mellin transform is

\[
D_i(x, t) = \frac{1}{2\pi i} \int_C dN \, x^{-N} \, \tilde{D}_i(N, t) ,
\]

where contour \(C \) is parallel to imaginary axis to right of all singularities of integrand.

- After Mellin transformation, convolution in DGLAP equation becomes simply a product:

\[
t \frac{\partial}{\partial t} \tilde{D}_i(x, t) = \sum_j \gamma_{ij}(N, \alpha_s) \tilde{D}_j(N, t)
\]
Anomalous dimensions

- The moments of splitting functions give PT expansion of anomalous dimensions γ_{ij}:

$$
\gamma_{ij}(N, \alpha_S) = \sum_{n=0}^{\infty} \gamma_{ij}^{(n)}(N) \left(\frac{\alpha_S}{2\pi} \right)^{n+1}
$$

$$
\gamma_{ij}^{(0)}(N) = \tilde{P}_{ij}(N) = \int_{0}^{1} dz \, z^{N-1} \, P_{ij}(z)
$$

- From above expressions for $P_{ij}(z)$ we find

$$
\gamma_{qq}^{(0)}(N) = C_F \left[-\frac{1}{2} + \frac{1}{N(N+1)} - 2 \sum_{k=2}^{N} \frac{1}{k} \right]
$$

$$
\gamma_{gg}^{(0)}(N) = T_R \left[\frac{(2 + N + N^2)}{N(N + 1)(N + 2)} \right]
$$

$$
\gamma_{qq}^{(0)}(N) = C_F \left[\frac{(2 + N + N^2)}{N(N^2 - 1)} \right]
$$

$$
\gamma_{gg}^{(0)}(N) = 2C_A \left[-\frac{1}{12} + \frac{1}{N(N-1)} + \frac{1}{(N + 1)(N + 2)} - \sum_{k=2}^{N} \frac{1}{k} \right] - \frac{2}{3} N_f T_R .
$$
Scaling violation

- Consider combination of parton distributions which is flavour non-singlet, e.g. $D_V = D_{q_i} - D_{\bar{q}_i}$ or $D_{q_i} - D_{q_j}$. Then mixing with the flavour-singlet gluons drops out and solution for fixed α_S is

$$\tilde{D}_V(N, t) = \tilde{D}_V(N, t_0) \left(\frac{t}{t_0} \right)^{\gamma_{qq}(N, \alpha_S)},$$

- We see that dimensionless function D_V, instead of being scale-independent function of x as expected from dimensional analysis, has scaling violation: its moments vary like powers of scale t (hence the name anomalous dimensions).

- For running coupling $\alpha_S(t)$, scaling violation is power-behaved in $\ln t$ rather than t. Using leading-order formula $\alpha_S(t) = 1/b \ln(t/\Lambda^2)$, we find

$$\tilde{D}_V(N, t) = \tilde{D}_V(N, t_0) \left(\frac{\alpha_S(t_0)}{\alpha_S(t)} \right)^{d_{qq}(N)}$$

where $d_{qq}(N) = \gamma_{qq}^{(0)}(N)/2\pi b$.

- Flavour-singlet distribution and quantitative predictions will be discussed later.
Now $d_{qq}(1) = 0$ and $d_{qq}(N) < 0$ for $N \geq 2$. Thus as t increases V decreases at large x and increases at small x. Physically, this is due to increase in the phase space for gluon emission by quarks as t increases, leading to loss of momentum. This is clearly visible in data:
Flavour singlet combination

- For flavour-singlet combination, define

$$\Sigma = \sum_i (q_i + \bar{q}_i) .$$

Then we obtain

$$t \frac{\partial \Sigma}{\partial t} = \frac{\alpha_S(t)}{2\pi} \left[P_{qq} \otimes \Sigma + 2N_f P_{qg} \otimes g \right]$$

$$t \frac{\partial g}{\partial t} = \frac{\alpha_S(t)}{2\pi} \left[P_{gq} \otimes \Sigma + P_{gg} \otimes g \right] .$$

- Thus flavour-singlet quark distribution Σ mixes with gluon distribution g: evolution equation for moments has matrix form

$$t \frac{\partial}{\partial t} \begin{pmatrix} \tilde{\Sigma} \\ \tilde{g} \end{pmatrix} = \begin{pmatrix} \gamma_{qq} & 2N_f \gamma_{qg} \\ \gamma_{gq} & \gamma_{gg} \end{pmatrix} \begin{pmatrix} \tilde{\Sigma} \\ \tilde{g} \end{pmatrix}$$
Rapid growth at small N in gq and gg elements at lowest order

ln N behaviour at large N in qq and gg elements

NNLO now known

Singlet anomalous dimension matrix has two real eigenvalues γ_{\pm} given by

$$\gamma_{\pm} = \frac{1}{2} [\gamma_{gg} + \gamma_{qq} \pm \sqrt{(\gamma_{gg} - \gamma_{qq})^2 + 8Nf\gamma_{gq}\gamma_{qg}}] .$$
Solution of lowest order DGLAP matrix equation

The reduced DGLAP equation can be written as

$$\frac{d}{du} \begin{pmatrix} \tilde{\Sigma}(u) \\ \tilde{g}(u) \end{pmatrix} = P \begin{pmatrix} \tilde{\Sigma}(u) \\ \tilde{g}(u) \end{pmatrix}$$

where

$$u = \frac{1}{2\pi b} \ln \frac{\alpha_S(\mu_0^2)}{\alpha_S(\mu^2)}$$

- Define projection operators, M_\pm

$$M_+ = \frac{1}{\gamma_+ - \gamma_-} \left[+ P - \gamma_- 1 \right], \quad M_- = \frac{1}{\gamma_+ - \gamma_-} \left[- P + \gamma_+ 1 \right],$$

where $M_\pm M_\pm = M_\pm$, $M_+ M_- = M_- M_+ = 0$, $M_+ + M_- = 1$ and

$$P = \gamma_+ M_+ + \gamma_- M_-$$

- The solution is

$$\begin{pmatrix} \tilde{\Sigma}(u) \\ \tilde{g}(u) \end{pmatrix} = \left[M_+ \exp(\gamma_+ u) + M_- \exp(\gamma_- u) \right] \begin{pmatrix} \tilde{\Sigma}(0) \\ \tilde{g}(0) \end{pmatrix}$$
Momentum partition vs Q^2

For second moment

\[
O^+(2, t) = \Sigma(2, t) + g(2, t) \quad \text{with eigenvalue } 0,
\]

\[
O^-(2, t) = \Sigma(2, t) - \frac{n_f}{4C_F}g(2, t) \quad \text{with eigenvalue } -\left(\frac{4}{3}C_F + \frac{n_f}{3}\right).
\]

O^+, corresponds to the total momentum carried by the quarks and gluons, is independent of t. The eigenvector O^- vanishes in the limit $t \to \infty$:

\[
O^-(2, t) = \left(\frac{\alpha_S(t_0)}{\alpha_S(t)}\right)^{d^- (2)} \to 0, \quad \text{with } d^- (2) = \frac{\gamma^-(2)}{2\pi b} = \frac{\frac{4}{3}C_F + \frac{1}{3}n_f}{2\pi b},
\]

so that asymptotically we have

\[
\frac{\Sigma(2, t)}{g(2, t)} \to \frac{n_f}{4C_F} = \frac{3}{16}n_f.
\]
Asymptotia is approached slowly

The momentum fractions f_q and f_g in the $\mu^2 = t \to \infty$ limit are therefore

$$
f_q = \frac{3n_f}{16 + 3n_f}, \quad f_g = \frac{16}{16 + 3n_f}.
$$

- Scaling violation depends logarithmically on Q^2.
- Large variation at low Q^2
Gluon distribution

- Large number of gluons per unit rapidity
- The LHC is a copious source of gluons
Sudakov form factor

- DGLAP equations are convenient for evolution of parton distributions. Expressed in terms of the unregulated branching probability we have,

\[
 t \frac{\partial}{\partial t} D(x, t) = \int_x^1 \frac{dz}{z} \frac{\alpha_S}{2\pi} \hat{P}(z) D(x/z, t) - \int_0^1 \frac{dz}{2\pi} \frac{\alpha_S}{2\pi} \hat{P}(z) D(x, t)
\]

- To study structure of final states, slightly different form is useful. Consider again simplified treatment with only one type of branching. Introduce Sudakov form factor:

\[
 \Delta(t) \equiv \exp \left[- \int_{t_0}^t dt' \int dz \frac{\alpha_S}{2\pi} \hat{P}(z) \right]
\]

\[
 t \frac{\partial}{\partial t} D(x, t) = \int \frac{dz}{z} \frac{\alpha_S}{2\pi} \hat{P}(z) D(x/z, t) + \frac{D(x, t)}{\Delta(t)} t \frac{\partial}{\partial t} \Delta(t),
\]

\[
 t \frac{\partial}{\partial t} \left(\frac{D}{\Delta} \right) = \frac{1}{\Delta} \int \frac{dz}{z} \frac{\alpha_S}{2\pi} \hat{P}(z) D(x/z, t).
\]
Sudakov form factor

- This is similar to DGLAP, except D replaced by D/Δ and regularized splitting function P replaced by unregularized \hat{P}. Integrating,

$$D(x, t) = \Delta(t)D(x, t_0) + \int_{t_0}^{t} \frac{dt'}{t'} \frac{\Delta(t)}{\Delta(t')} \int \frac{dz}{z} \frac{\alpha_s}{2\pi} \hat{P}(z)D(x/z, t').$$

- This has simple interpretation. First term is contribution from paths that do not branch between scales t_0 and t. Thus Sudakov form factor $\Delta(t)$ is probability of evolving from t_0 to t without branching. Second term is contribution from paths which have their last branching at scale t'. Factor of $\Delta(t)/\Delta(t')$ is probability of evolving from t' to t without branching.
Sudakov form factor

- Generalization to several species of partons straightforward. Species i has Sudakov form factor

$$
\Delta_i(t) \equiv \exp \left[- \sum_j \int_{t_0}^t dt' \int dz \frac{\alpha_S}{2\pi} \hat{P}_{ji}(z) \right],
$$

which is probability of it evolving from t_0 to t without branching. Then

$$
t \frac{\partial}{\partial t} \left(\frac{D_i}{\Delta_i} \right) = \frac{1}{\Delta_i} \sum_j \int \frac{dz}{z} \frac{\alpha_S}{2\pi} \hat{P}_{ij}(z) D_j(x/z, t).
$$
Shower Monte Carlos

Attempt to give a complete description of a hadron scattering event. Analysis of events at the Tevatron and the LHC will be performed using these programs.

- Large number of standard model hard scattering processes
- Inclusion of some BSM processes.
- Inclusion of real (and virtual) radiation using QCD-based parton shower approximation
- Fragmentation of partons into the observed hadrons.
- Model for resonance decay included
Leading general purpose programs

Infrared cutoff

In DGLAP equation, infrared singularities of splitting functions at $z = 1$ are regularized by plus-prescription. However, in above form we must introduce an explicit infrared cutoff, $z < 1 - \epsilon(t)$. Branchings with z above this range are unresolvable: emitted parton is too soft to detect. Sudakov form factor with this cutoff is probability of evolving from t_0 to t without any resolvable branching.

Sudakov form factor sums enhanced virtual (parton loop) as well as real (parton emission) contributions. No-branching probability is the sum of virtual and unresolvable real contributions: both are divergent but their sum is finite.

Infrared cutoff $\epsilon(t)$ depends on what we classify as resolvable emission. For timelike branching, natural resolution limit is given by cutoff on parton virtual mass-squared, $t > t_0$. When parton energies are much larger than virtual masses, we may write, ($n^2 = p^2 = p \cdot p_T = p \cdot p_T = 0, n \cdot p = 1$)

\[
\begin{align*}
 p_a &= p^\mu + \frac{p_a^2}{2} n^\mu \\
 p_b &= zp^\mu + \frac{p_T^2 + p_b^2}{2z} n^\nu + p_T^\mu \\
 p_c &= (1 - z)p^\mu + \frac{p_T^2 + p_c^2}{2(1 - z)} n^\mu - p_T^\mu
\end{align*}
\]
Solving for the transverse momentum in $a \rightarrow bc$ is

$$p_T^2 = z(1 - z)p_a^2 - (1 - z)p_b^2 - zp_c^2 > 0.$$

Hence for $p_a^2 = t$ and $p_b^2, p_c^2 > t_0$ we require

$$z(1 - z) > t_0/t,$$

that is,

$$z, 1 - z > \epsilon(t) = \frac{1}{2} - \frac{1}{2}\sqrt{1 - 4t_0/t} \simeq t_0/t.$$
Quark Sudakov form factor is then

\[
\Delta_q(t) \simeq \exp \left[- \int_{2t_0}^{t} \frac{dt'}{t'} \int_{t_0/t'}^{1-t_0/t'} dz \frac{\alpha_S}{2\pi} \hat{P}_{qq}(z) \right].
\]

Careful treatment of running coupling suggests its argument should be \(p_T^2 \sim z(1-z)t' \). Then at large \(t \)

\[
\Delta_q(t) \sim \left(\frac{\alpha_S(t)}{\alpha_S(t_0)} \right)^{p \ln t},
\]

\((p = \text{a constant}) \), which tends to zero faster than any negative power of \(t \).

Infrared cutoff discussed here follows from kinematics. We shall see later that QCD dynamics effectively reduces phase space for parton branching, leading to a more restrictive effective cutoff.

Formulation in terms of Sudakov form factor is well suited to computer implementation, and is basis of "parton shower" Monte Carlo programs.
Monte Carlo method

- Monte Carlo branching algorithm operates as follows: given virtual mass scale and momentum fraction \((t_1, x_1)\) after some step of the evolution, or as initial conditions, it generates values \((t_2, x_2)\) after the next step.

\[
\begin{align*}
(t_1, x_1) & \quad \rightarrow \quad (t_2, x_1) \\
(t_1, x_1) & \quad \rightarrow \quad (t_2, x_2)
\end{align*}
\]

- Since probability of evolving from \(t_1\) to \(t_2\) without branching is \(\Delta(t_2)/\Delta(t_1)\), \(t_2\) can be generated with the correct distribution by solving

\[
\frac{\Delta(t_2)}{\Delta(t_1)} = R
\]

where \(R\) is random number (uniform on \([0, 1]\)).

- If \(t_2\) is higher than hard process scale \(Q^2\), this means branching has finished.

- Otherwise, generate \(z = x_2/x_1\) with distribution proportional to \((\alpha_S/2\pi)P(z)\), where \(P(z)\) is appropriate splitting function, by solving

\[
\int_{\epsilon}^{x_2/x_1} dz \frac{\alpha_S}{2\pi} P(z) = R' \int_{\epsilon}^{1-\epsilon} dz \frac{\alpha_S}{2\pi} P(z)
\]

where \(R'\) is another random number and \(\epsilon\) is cutoff for resolvable branching.
In DIS, \((t_i, x_i)\) values generated define virtual masses and momentum fractions of exchanged quark, from which momenta of emitted gluons can be computed. Azimuthal emission angles are then generated uniformly in the range \([0, 2\pi]\). More generally, e.g. when exchanged parton is a gluon, azimuths must be generated with polarization angular correlations.

Each emitted (timelike) parton can itself branch. In that case \(t\) evolves downwards towards cutoff value \(t_0\), rather than upwards towards hard process scale \(Q^2\). Probability of evolving downwards without branching between \(t_1\) and \(t_2\) is now given by

\[
\frac{\Delta(t_1)}{\Delta(t_2)} = \mathcal{R}.
\]

Thus branching stops when \(\mathcal{R} < \Delta(t_1)\).
Due to successive branching, parton cascade or shower develops. Each outgoing line is source of new cascade, until all outgoing lines have stopped branching. At this stage, which depends on cutoff scale t_0, outgoing partons have to be converted into hadrons via a hadronization model.
Soft gluon emission

- Parton branching formalism discussed so far takes account of collinear enhancements to all orders in PT. There are also soft enhancements: When external line with momentum p and mass m (not necessarily small) emits gluon with momentum q, propagator factor is

$$\frac{1}{(p \pm q)^2 - m^2} = \frac{\pm 1}{2p \cdot q} = \frac{\pm 1}{2\omega E(1 - v \cos \theta)}$$

where ω is emitted gluon energy, E and v are energy and velocity of parton emitting it, and θ is angle of emission. This diverges as $\omega \to 0$, for any velocity and emission angle.

- Including numerator, soft gluon emission gives a colour factor times universal, spin-independent factor in amplitude

$$F_{\text{soft}} = \frac{p \cdot \epsilon}{p \cdot q}$$

where ϵ is polarization of emitted gluon.
For example, emission from quark gives numerator factor \(N \cdot \epsilon \), where

\[
N^\mu = (\not{p} + \not{q} + m) \gamma^\mu u(p) \xrightarrow{\omega \to 0} (\gamma^\nu \gamma^\mu p_\nu + \gamma^\mu m) u(p) = (2p^\mu - \gamma^\mu \not{p} + \gamma^\mu m) u(p) = 2p^\mu u(p).
\]

(using Dirac equation for on-mass-shell spinor \(u(p) \)).

Universal factor \(F_{\text{soft}} \) coincides with classical eikonal formula for radiation from current \(p^\mu \), valid in long-wavelength limit.

No soft enhancement of radiation from off-mass-shell internal lines, since associated denominator factor \((p + q)^2 - m^2 \to p^2 - m^2 \neq 0\) as \(\omega \to 0 \).
Enhancement factor in amplitude for each external line implies cross section enhancement is sum over all pairs of external lines \(\{i, j\} \):

\[
d\sigma_{n+1} = d\sigma_n \frac{d\omega}{\omega} \frac{d\Omega}{2\pi} \frac{\alpha_s}{2\pi} \sum_{i,j} C_{ij} W_{ij}
\]

where \(d\Omega \) is element of solid angle for emitted gluon, \(C_{ij} \) is a colour factor, and radiation function \(W_{ij} \) is given by

\[
W_{ij} = \frac{\omega^2 p_i \cdot p_j}{p_i \cdot q p_j \cdot q} = \frac{1 - v_i v_j \cos \theta_{ij}}{(1 - v_i \cos \theta_{iq})(1 - v_j \cos \theta_{jq})}.
\]

Colour-weighted sum of radiation functions \(C_{ij} W_{ij} \) is antenna pattern of hard process.

Radiation function can be separated into two parts containing collinear singularities along lines \(i \) and \(j \). Consider for simplicity massless particles, \(v_{i,j} = 1 \). Then \(W_{ij} = W_{ij}^i + W_{ij}^j \) where

\[
W_{ij}^i = \frac{1}{2} \left(W_{ij} + \frac{1}{1 - \cos \theta_{iq}} - \frac{1}{1 - \cos \theta_{jq}} \right) \equiv \frac{1}{2(1 - \cos \theta_{iq})} \left(1 + \frac{\cos \theta_{iq} - \cos \theta_{ij}}{1 - \cos \theta_{jq}} \right)
\]
This function has remarkable property of angular ordering. Write angular integration in polar coordinates w.r.t. direction of i, $d\Omega = d\cos \theta_{iq} \, d\phi_{iq}$. Performing azimuthal integration, we find

$$\int_0^{2\pi} \frac{d\phi_{iq}}{2\pi} \, W^i_{ij} = \frac{1}{1 - \cos \theta_{iq}} \quad \text{if } \theta_{iq} < \theta_{ij}, \text{ otherwise 0.}$$

Thus, after azimuthal averaging, contribution from W^i_{ij} is confined to cone, centred on direction of i, extending in angle to direction of j. Similarly, W^j_{ij}, averaged over ϕ_{jq}, is confined to cone centred on line j extending to direction of i.
Angular ordering

To prove angular ordering property, write \(n_i = (0, 0, 1), n_j = (0, \sin \theta_{ij}, \cos \theta_{ij}), n_q = (\sin \theta_{iq} \sin \phi_{iq}, -\sin \theta_{iq} \cos \phi_{iq}, \cos \theta_{iq}) \), so that

\[
1 - \cos \theta_{jq} = a - b \cos \phi_{iq}
\]

where \(a = 1 - \cos \theta_{ij} \cos \theta_{iq} \), \(b = \sin \theta_{ij} \sin \theta_{iq} \). Defining \(z = \exp(i\phi_{iq}) \), we have

\[
I_{ij}^i \equiv \int_0^{2\pi} \frac{d\phi_{iq}}{2\pi} \frac{1}{1 - \cos \theta_{jq}} = \frac{1}{i\pi b} \oint \frac{dz}{(z_+ - z)(z - z_-)}
\]

where \(z \)-integration contour is the unit circle and

\[
z_\pm = \frac{a}{b} \pm \sqrt{\frac{a^2}{b^2} - 1}.
\]

Now only pole at \(z = z_- \) can lie inside unit circle, so

\[
I_{ij}^i = \int_0^{2\pi} \frac{d\phi_{iq}}{2\pi} \frac{1}{a - b \cos \phi_{iq}} = \sqrt{\frac{1}{a^2 - b^2}} \equiv \frac{1}{|\cos \theta_{iq} - \cos \theta_{ij}|}.
\]
Angular ordering (cont)

\[
\int_{0}^{2\pi} \frac{d\phi_{iq}}{2\pi} W_{ij}^{i} = \frac{1}{2(1 - \cos \theta_{iq})} \left[1 + (\cos \theta_{iq} - \cos \theta_{ij}) I_{ij}^{i} \right]
\]

\[
= \frac{1}{1 - \cos \theta_{iq}} \quad \text{if } \theta_{iq} < \theta_{ij}, \text{ otherwise 0.}
\]
Chudakov effect

Angular ordering is coherence effect common to all gauge theories. In QED it causes Chudakov effect – suppression of soft bremsstrahlung from e^+e^- pairs, which has simple explanation in old-fashioned (time-ordered) perturbation theory.

Consider emission of soft photon at angle θ from electron in pair with opening angle $\theta_{ee} < \theta$. For simplicity assume $\theta_{ee}, \theta \ll 1$.

Transverse momentum of photon is $k_T \sim zp\theta$ and energy imbalance at $e \rightarrow e\gamma$ vertex is

$$\Delta E \sim k_T^2/zp \sim zp\theta^2.$$

Time available for emission is $\Delta t \sim 1/\Delta E$. In this time transverse separation of pair will be $\Delta b \sim \theta_{ee}\Delta t$.
Chudakov effect

For non-negligible probability of emission, photon must resolve this transverse separation of pair, so

\[\Delta b > \frac{\lambda}{\theta} \sim (zp\theta)^{-1} \]

where \(\lambda \) is photon wavelength.

This implies that

\[\theta_{ee}(zp\theta^2)^{-1} > (zp\theta)^{-1} , \]

and hence \(\theta_{ee} > \theta \). Thus soft photon emission is suppressed at angles larger than opening angle of pair, which is angular ordering.

Photons at larger angles cannot resolve electron and positron charges separately – they see only total charge of pair, which is zero, implying no emission.

More generally, if \(i \) and \(j \) come from branching of parton \(k \), with (colour) charge \(Q_k = Q_i + Q_k \), then radiation outside angular-ordered cones is emitted coherently by \(i \) and \(j \) and can be treated as coming directly from (colour) charge of \(k \).
Coherent branching

- Angular ordering provides basis for coherent parton branching formalism, which includes leading soft gluon enhancements to all orders.

- In place of virtual mass-squared variable t in earlier treatment, use angular variable

\[\zeta = \frac{p_b \cdot p_c}{E_b E_c} \simeq 1 - \cos \theta \]

as evolution variable for branching $a \rightarrow bc$, and impose angular ordering $\zeta' < \zeta$ for successive branchings. Iterative formula for n-parton emission becomes

\[d\sigma_{n+1} = d\sigma_n \frac{d\zeta}{\zeta} dz \frac{\alpha_s}{2\pi} \hat{P}_{ba}(z). \]
Coherent branching

- In place of virtual mass-squared cutoff t_0, must use angular cutoff ζ_0 for coherent branching. This is to some extent arbitrary, depending on how we classify emission as unresolvable. Simplest choice is

$$\zeta_0 = t_0/E^2$$

for parton of energy E.

- For radiation from particle i with finite mass-squared t_0, radiation function becomes

$$\omega^2 \left(\frac{p_i \cdot p_j}{p_i \cdot q} - \frac{p_i^2}{(p_i \cdot q)^2} \right) \approx \frac{1}{\zeta} \left(1 - \frac{t_0}{E^2 \zeta} \right),$$

so angular distribution of radiation is cut off at $\zeta = t_0/E^2$. Thus t_0 can still be interpreted as minimum virtual mass-squared.

- With this cutoff, most convenient definition of evolution variable is not ζ itself but rather

$$\tilde{t} = E^2 \zeta \geq t_0.$$
Coherent branching

Angular ordering condition $\zeta_b, \zeta_c < \zeta_a$ for timelike branching $a \rightarrow bc$ (a outgoing) becomes

$$\tilde{t}_b < z^2 \tilde{t}, \quad \tilde{t}_c < (1 - z)^2 \tilde{t}$$

where $\tilde{t} = \tilde{t}_a$ and $z = E_b/E_a$. Thus cutoff on z becomes

$$\sqrt{t_0/\tilde{t}} < z < 1 - \sqrt{t_0/\tilde{t}}.$$

Neglecting masses of b and c, virtual mass-squared of a and transverse momentum of branching are

$$t = z(1 - z)\tilde{t}, \quad p_t^2 = z^2 (1 - z)^2 \tilde{t}.$$

Thus for coherent branching Sudakov form factor of quark becomes

$$\tilde{\Delta}_q(\tilde{t}) = \exp \left[- \int_{4t_0}^{\tilde{t}} \frac{dt'}{t'} \int_{\sqrt{t_0/t'}}^{1-\sqrt{t_0/t'}} \frac{dz}{2\pi} \alpha_S(z^2 (1 - z)^2 t') \hat{P}_{qq}(z) \right]$$

At large \tilde{t} this falls more slowly than form factor without coherence, due to the suppression of soft gluon emission by angular ordering.
Coherent branching

- Note that for spacelike branching $a \rightarrow bc$ (a incoming, b spacelike), angular ordering condition is

$$\theta_b > \theta_a > \theta_c ,$$

and so for $z = E_b/E_a$ we now have

$$\tilde{t}_b > z^2 \tilde{t}_a , \quad \tilde{t}_c < (1 - z)^2 \tilde{t}_a .$$

- Thus we can have either $\tilde{t}_b > \tilde{t}_a$ or $\tilde{t}_b < \tilde{t}_a$, especially at small z — spacelike branching becomes disordered at small x.
Recap

- Parton evolution can be represented as a branching process from higher values of x.
- DGLAP equation predicts growth at small x and shrinkage at large x with increasing Q^2.
- The Sudakov form factor $\Delta(t)$ is the probability of evolving from t_0 to t without branching.
- Branching from (t_1, x_1) to (t_2, x_2) with the right probability can be performed with by choosing three random numbers, (t, x, ϕ).
- Branching is subject to an angular ordering constraint. Large angle emission is dynamically suppressed.