High-energy Astrophysics in a single pixel

Michael R. Feyereisen In collaboration with S. Ando, S.K. Lee, I. Tamborra, *et al.*

GRavitation AstroParticle Physics Amsterdam

M.R. Feyereisen High-energy Astrophysics in a single pixel

• • = • • = •

Diffuse Backgrounds - How to analyse this data?

- Mean Intensity $\langle I
 angle$
 - single number, limited

• variance
$$\sim \langle I^2
angle$$

- 2-point correlations!
- mostly diffuse/isotropic
- higher moments? $\sim \langle I^n
 angle$
 - how to interpret?

Study the probability distribution of counts/intensities/fluxes

1	2	0	1	0	1	1	0	2
1	1	2	0	2	1	0	1	0
1	0	1	2	3	1	2	1	4
0	1	0	0	0	2	1	2	0
0	2	1	0	0	1	1	1	1
2	1	0	1	1	1	0	3	0
1	3	0	0	1	1	2	0	1
2	0	2	1	4	0	0	0	0
1	1	2	0	1	2	1	1	2

590

Comparison to Zechlin et al. (1512.07190)

Comparison to Zechlin et al. (1512.07190)

Comparison to Zechlin et al. (1512.07190)

High-energy Astrophysics in a single pixel

990

Dark Matter contribution to the diffuse extragalactic γ flux?

arXiv:1506.05118 MF, S. Ando, S.K. Lee

- Fermi telescope's angular resolution (\implies $N_{\rm pixel})$
- theoretically-motivated, simulation fitted DM halo model
- three substructure boost models:
 - conservative no boost
 - sensible fit to simulation, (Sánchez-Conde + Prada, 2014)
 - optimistic powerlaw (Gao et al., 2012)
- WIMP with thermal cross-section and $m_{\chi} = 85~{
 m GeV}$
- For now, simply work at 1 GeV only

The mean DM intensity between 0.2% and 2% of the EGB (at 1 GeV) depending on optimism regarding substructure boost.

Flux pdf of $m_{\chi} = 85$ GeV WIMP (at 1 GeV)

990

Qualitative Features (and physical interpretation)

- The distribution is *not a Gaussian*.
- 2 At high flux we reproduce the $F^{-2.5}$ powerlaw tail from $P_1(F)$.

A single bright source dominates the flux from the pixel.

• At low flux we have a roughly Gaussian peak.

This is characteristic of a diffuse background.

• The peak is much thinner than a Gaussian of equal (μ, σ)

What will knowing the DM P(F) change for *us*?

Many indirect detection strategies, P(F) relevant for all of them!

$\mathsf{SKEWNESS} \implies \mathsf{The mean is NOT the most likely value}.$

Boost model	Mean	Most Likely	Ratio
No boost	1.0	1.0	
Fiducial	3.68	3.52	$\sim 5\%$
Optimistic	15.2	11.9	$\sim 25\%$

Table: Intensities at 1 GeV in units of 10^{-12} cm⁻²s⁻¹sr⁻¹MeV⁻¹

 \implies Existing limits are only weaker by a percent-level factor (small correction, with Powerlaws it could have been MUCH more!)

For a Gaussian P(F), Wiener-Khinchin says all info is contained in

- the mean (strategy 1)
- the variance (decompose into $C_\ell \implies$ anisotropy)

This is the case e.g. for CMB.

But the dark matter P(F) is not a Gaussian

There is new information hidden in the higher moments... (Monopole and Anisotropy *complementary* but not *complete*)

How to analyse this data? Predicting P(F) guides our data analysis!

1	2	0	1	0	1	1	0	2
1	1	2	0	2	1	0	1	0
1	0	1	2	3	1	2	1	4
0	1	0	0	0	2	1	2	0
0	2	1	0	0	1	1	1	1
2	1	0	1	1	1	0	3	0
1	3	0	0	1	1	2	0	1
2	0	2	1	4	0	0	0	0
1	1	2	0	1	2	1	1	2

- Mean Intensity $\langle I \rangle$
 - corrections $\geq 5\%$
- variance $\sim \langle I^2
 angle$
 - thinner than a gaussian
 - not complete story
- higher moments? $\sim \langle I^n
 angle$
 - yes, powerlaw tail!

Strategy 3: Look at promising sources

- diffuse DM background vs.
 potential DM sources
- thin P(F) peak \implies well-determined F_{PS}/F_{BG}
- DSphs Challenging, worse with more boost(!)
- Cluster *F_{PS}*/*F_{BG}* bad even *without* astrophysics

Diffuse DM background is very relevant for DM point searches!

Compare the predicted P(F) to the experimental P(C)

We need to model the astrophysical backgrounds' P(F) too!

- Extrapolate Blazars to predict their *P*(*F*), all else is Gaussian (model improvements underway)
- Various P(F) combinations to get
 - a prediction for no DM signal (null hypothesis), and
 - predictions for various values of $\langle \sigma v \rangle$ (mock data)
 - χ^2 poorness-of-fit to forecast our statistical power.

Strategy 4: One-Point Fluctuation analysis

1 GeV: No energy spectrum in this analysis (yet!)

We're still *ignoring* most of the available data. Even then, our projections are already competitive with e.g. Fermi Dwarfs!

Star-forming galaxy contribution to the high-energy ν flux?

(Preliminary!!!)

High-energy Astrophysics in a single pixel

• = • • = •

э

- Icecube has different responses for tracks and showers
- Infrared Luminosity Fn for SFG extrapolated to $dN/d(S\nu)$:
 - IR/γ correlation
 - two $\gamma\text{-to-}\nu$ models: leptonic and hadronic
 - $\Gamma = 2.2$ spectrum
 - No PeV cutoff
- Backgrounds: Fermi 2FHL gives $dN/d(S\gamma)$ of BL-Lacs
- etc.

ν intensity distribution from SFG at IceCube

(Preliminary!)

SB + SF-AGN indeed contribute to the observed flux.

A D > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

3.5

P(I) tells us about SFG Search Strategies (with ν telescopes)

Most SFG not visible as point sources over the diffuse background due to other SFGs, with *intrinsic* bound

 $F_{PS}/F_{BG} < 4$ or 5

due to the angular resolution of Icecube

Just like γ DM point searches: This does not account for other backgrounds, it will be even smaller in real data.

Methodology

We can (& should) model the origin of diffuse backgrounds (we learn more than just fitting them!)

Science

- $P(F_{1 GeV})$ for DM:
 - existing isotropic flux limits are a few % too optimistic
 - look for dwarfs, not clusters
 - 1-pt fluctuation analysis very promising
- $P(S_{\nu})$ for SFG (Preliminary!!!)

F 4 3 F 4