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Motivations 

 We want to characterize structure (spatial and spectral) 

of high energy cosmic radiation. 

 How to quantify structures? 

 How to determine significance of structures/anisotropy? 

 

 Spatial recognition of sources by correlating radiation 

with known source structures. 

 

 Identify or constrain the presence of exotic or 

unpredicted sources. 
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Techniques for Angular Power Spectrum 
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 The fundamental techniques I describe today can be applied to 

any function of angular distribution. 

 Kernels like spherical harmonic transforms or wavelet transforms. 

 N-point correlation functions. 

 Power spectrum, bispectrum, etc. 

 

 The power spectrum is a natural first choice to develop. 

 It is a well-studied observable in cosmological applications. 

 Distant extragalactic sources (large-scale-structure) is approximately 

Gaussian distributed. 

 Then power spectrum components of the sources are approximately 

statistically independent and contain nearly all spatial information. 

 What about non-Gaussian distributions? Galactic? Local group? 



Fundamental Questions 
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1. How much data (i.e., how many events) is required to make 
robust spatial measurements? 

 For a given distribution of sources? 

 

2. How much is required to detect particular spectral features? 

 

3. What is an ideal “spatial recognition” instrument? 

 

These require a statistical framework for uncertainty estimation. 

 Simulations/mocks provide robust estimations for individual 
experiments, but are expensive for broad sensitivity studies. 

 Is there no analytic framework for “distribution sensitivity”? 
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1. How much data (i.e., how many events) is required to make 
robust spatial measurements? 

 For a given distribution of sources? 

 

2. How much is required to detect particular spectral features? 

 

3. What is an ideal “spatial recognition” instrument? 

 

These require a statistical framework for uncertainty estimation. 

 Simulations/mocks provide robust estimations for individual 
experiments, but are expensive for broad sensitivity studies. 

 Is there no analytic framework for “distribution sensitivity”? 

Good News–THERE IS!!! 



Pioneering Approach: Fermi-LAT (2012) 
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 Approximate analytic power spectrum uncertainties have 

long existed (Knox 1995, Hivon+ 2002). 

 

WMAP Collaboration, 

Astrophys.J.Suppl. 208 (2013) 20 

& PTEP 2014 (2014) 6, 06B102 

• They were found accurate enough 

to be used with the WMAP9 

analysis. 
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 Approximate analytic power spectrum uncertainties have 

long existed (Knox 1995, Hivon+ 2002). 

 • They were found accurate enough 

to be used with the WMAP9 

analysis. ∁ov 𝐶ℓ, 𝐶ℓ′ =
2𝛿ℓℓ′ 

2ℓ + 1 𝑓sky
2 𝑁ℓ

2 + 2𝑁ℓ𝐶ℓ + 𝐶ℓ
2  

 

 

 

 

 

Gaussian 

Cosmic 

Variance 
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Uncorrelated 

Noise Information 

Prefactor: 

Inverse # of 

Angular Modes 



Pioneering Approach: Fermi-LAT (2012) 
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 Application to 𝛾 rays: 

 Photon shot noise applies as 

uncorrelated noise. 

 Add effects to account for 

the instrument’s angular 

resolution. 

 Increase signal-to-noise with: 

 large foreground mask, 

 wide energy bars, 

 average over multipole range. 

 • Weighted average in each 

energy bin shows significant 

power consistent with 

no energy modulation. 

Fermi-LAT Collaboration, PRD85 (2012) 083007 



Room for Improvements 
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1. The analytic analysis is valid for a Gaussian source 
distribution. 

 What are the effects on the power spectrum measurement of non-
Gaussianities that are in the data? 

 How can we estimate the non-Gaussianity? 

2. Cosmic variance is not present for distribution 
measurement, but is necessary for parameter estimation of 
source modeling. 

 This is only an academic point because cosmic variance is negligible 
for these shot noise dominated measurements. 

 My results will not contain cosmic variance, though there is 
consistent methodology for it when appropriate. 

3. There must be statistical dependence between the 𝐶ℓ. 
 They are all estimated with the same finite point data. 

 How can this be estimated? What are the effects? 



Aren’t All These Effect Negligible? 
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 Alas, early sensitivity studies on signals with planned 

future missions using this analytic error analysis give 

impossible results. 

 Predictions of sensitivity to large power spectra with only few 

events detected. 
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 Alas, early sensitivity studies on signals with planned 

future missions using this analytic error analysis give 

impossible results. 

 Predictions of sensitivity to large power spectra with only few 

events detected. 

 

 Catastrophic failure with 

parameters within an 

order-of-magnitude of 

Fermi-LAT’s.  We had better 

estimate the effects on the 

Fermi-LAT measurement. 



Outline to Solution 

1) A statistical framework for high-energy cosmic 

observation–the spatial PDF. 

 

2) Analytic power spectrum estimation and covariance. 

 

3) Detectability/sensitivity analysis and correlated noise 

effects. 

 

4) Sensitivity to spectral effects–a power spectrum line 

search. 
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Statistical Framework for Cosmic 𝛾 rays 
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 A slide from Eiichiro Komatu’s talk at the 1st Anisotropic 

Universe Workshop 2.5 years ago. 



 It is determined by the distribution of the sources. 

 Radiation events are a sampling of sources. 

The Spatial PDF of 𝛾 rays 

A skymap (catalog) of sources.  Sample gamma-ray events  

observed from those sources. 

Francisco-Shu Kitaura et al., MNRAS 427, L35 (2012) 

Given N events, what can we infer about the full skymap? 
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 Only two reasonable assumptions used: 

-ray Observations as a 

Statistical Point Process 

1. The intensity skymap of 

sources is stationary. 
 

Requires methods to identify and remove 

transient signals. 

2. The position of each event is 

statistically independent. 
 

Event position PDF sourced by intensity 

𝐼(𝒏) and exposure map 𝑑휀/𝑑Ω. 
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 Only two reasonable assumptions used: 

-ray Observations as a 

Statistical Point Process 

1. The intensity skymap of 

sources is stationary. 
 

Requires methods to identify and remove 

transient signals. 

2. The position of each event is 

statistically independent. 
 

Event position PDF sourced by intensity 

𝐼(𝒏) and exposure map 𝑑휀/𝑑Ω. 

𝑃 𝒏 =
1

𝑁exp
𝐼 𝒏

𝑑휀

𝑑Ω
𝒏  
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 Only two reasonable assumptions used: 

-ray Observations as a 

Statistical Point Process 

1. The intensity skymap of 

sources is stationary. 
 

Requires methods to identify and remove 

transient signals. 

2. The position of each event is 

statistically independent. 
 

Event position PDF sourced by intensity 

𝐼(𝒏) and exposure map 𝑑휀/𝑑Ω. 

𝑃 𝒏 =
1

𝑁exp
𝐼 𝒏

𝑑휀

𝑑Ω
𝒏  

   
𝑑𝜀

𝑑Ω
 constant   

 𝐼 𝒏 =
𝐼(𝒏)

𝐼
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 Only two reasonable assumptions used: 

-ray Observations as a 

Statistical Point Process 

1. The intensity skymap of 

sources is stationary. 
 

Requires methods to identify and remove 

transient signals. 

2. The position of each event is 

statistically independent. 
 

Event position PDF sourced by intensity 

𝐼(𝒏) and exposure map 𝑑휀/𝑑Ω. 

Now any function of event positions can be statistically analyzed. 

𝑃 𝒏 = 𝐼 𝒏  
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Ensemble Marginalization over Data 
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 Data is simply a list of angular positions 𝒏1, 𝒏2, … , 𝒏𝑁. 

 

 Marginalize any function 𝑓(𝒏1, 𝒏2, … , 𝒏𝑁) over the data: 

1. Fixed-exposure statistics: 

 The number of events is a random statistic (typically Poisson 
distributed) with PDF 𝑃𝑃 𝑁 . 

𝑓 (ℇ) =  𝑑𝑁𝑑𝒏1𝑑𝒏2⋯𝑑𝒏𝑁 𝑃𝑃 𝑁 𝑃 𝒏1 𝑃(𝒏2)⋯𝑃 𝒏𝑁 𝑓(𝒏1, 𝒏2, … , 𝒏𝑁,ε) 

2. Fixed-count statistics: 

 Useful if observable is independent of exposure 

 e.g., Dimensionless Power Spectrum 𝐶 ℓ with uniform exposure data. 

 More convenient for sensitivity analyses. 

𝑓 (𝑁) =  𝑑𝒏1𝑑𝒏2⋯𝑑𝒏𝑁 𝑃 𝒏1 𝑃(𝒏2)⋯𝑃 𝒏𝑁 𝑓(𝒏1, 𝒏2, … , 𝒏𝑁) 

 

 
 



Power Spectrum of a Masked Sky 

 Instrument Response: 

 𝑊ℓ is Legendre polynomial transform of the 

instrument point-spread-function (PSF). 

 𝜎𝑏 is angular diameter of PSF. 

 Analysis: 

 𝑓sky is the fraction of unmasked sky. 

 Probe multipoles over the range ℓmin ≤ ℓ ≤ ℓmax. 

 An unbiased estimator 𝐶  ℓ,𝑁 with 𝐶  ℓ,𝑁 = 𝐶 ℓ: 

 

𝐶  ℓ,𝑁 =
1

1 −
1
𝑁

𝑓sky

𝑊ℓ
2 𝐶 ℓ,𝑁,raw −

4𝜋

𝑁
=

4𝜋𝑓sky

𝑁(𝑁 − 1)𝑊ℓ
2  𝑃ℓ(𝒏𝑖 ⋅ 𝒏𝑗)

𝑗≠𝑖𝑖
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Exact Statistical Covariance of 𝐶  ℓ,𝑁 

∁ov 𝐶  ℓ1,𝑁, 𝐶
  
ℓ2,𝑁 =

(4𝜋)2

𝑁(𝑁 − 1)
 2

𝛿ℓ1,ℓ2
2ℓ1 + 1

+ 𝐶 ℓ1ℓ2
(2)

−
𝐶 ℓ1𝐶

 
ℓ2

4𝜋 2
 

                                   + 4 𝑁 − 2  
𝛿ℓ1,ℓ2
2ℓ1 + 1

𝐶 ℓ1
4𝜋

+
𝐶 ℓ1ℓ2

3

4𝜋
−
𝐶 ℓ1𝐶

 
ℓ2

4𝜋 2
   

 

Neglecting 

mask and PSF 

for now. 
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Diagonal terms in 

agreement with 

predecessor 

analytic methods. 



Exact Statistical Covariance of 𝐶  ℓ,𝑁 

∁ov 𝐶  ℓ1,𝑁, 𝐶
  
ℓ2,𝑁 =

(4𝜋)2

𝑁(𝑁 − 1)
 2

𝛿ℓ1,ℓ2
2ℓ1 + 1

+ 𝐶 ℓ1ℓ2
(2)

−
𝐶 ℓ1𝐶

 
ℓ2

4𝜋 2
 

                                   + 4 𝑁 − 2  
𝛿ℓ1,ℓ2
2ℓ1 + 1

𝐶 ℓ1
4𝜋

+
𝐶 ℓ1ℓ2

3

4𝜋
−
𝐶 ℓ1𝐶

 
ℓ2

4𝜋 2
   

 

New Spherical Tensors 
 

 

𝐶 ℓ1ℓ2
(2)

=  
2ℓ′ + 1

4𝜋
ℓ1 ℓ2 ℓ′
0 0 0

2

𝐶 ℓ′

ℓ1+ℓ2

ℓ′=|ℓ1−ℓ2|

 

 
 

Composite 

Power Spectrum 

Neglecting 

mask and PSF 

for now. 
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Shot term 

corrected by 

neighboring 

multipoles. 



Exact Statistical Covariance of 𝐶  ℓ,𝑁 

∁ov 𝐶  ℓ1,𝑁, 𝐶
  
ℓ2,𝑁 =

(4𝜋)2

𝑁(𝑁 − 1)
 2

𝛿ℓ1,ℓ2
2ℓ1 + 1

+ 𝐶 ℓ1ℓ2
(2)

−
𝐶 ℓ1𝐶

 
ℓ2

4𝜋 2
 

                                   + 4 𝑁 − 2  
𝛿ℓ1,ℓ2
2ℓ1 + 1

𝐶 ℓ1
4𝜋

+
𝐶 ℓ1ℓ2

3

4𝜋
−
𝐶 ℓ1𝐶

 
ℓ2

4𝜋 2
   

 

New Spherical Tensors 
 

 

𝐶 ℓ1ℓ2
(2)

=  
2ℓ′ + 1

4𝜋
ℓ1 ℓ2 ℓ′
0 0 0

2

𝐶 ℓ′

ℓ1+ℓ2

ℓ′=|ℓ1−ℓ2|

 

 
 

𝐶 ℓ1ℓ2
3

=
1

(2ℓ1 + 1)(2ℓ2 + 1)
 

2ℓ′ + 1

4𝜋

ℓ1+ℓ2

ℓ′=|ℓ1−ℓ2|

ℓ1 ℓ2 ℓ′
0 0 0

𝐵 ℓ1ℓ2ℓ′ 

Composite 

Power Spectrum 

Open 

Bispectrum 

Neglecting 

mask and PSF 

for now. 
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Non-Gaussianities 

modify the signal 

term. 



Exact Statistical Covariance of 𝐶  ℓ,𝑁 

∁ov 𝐶  ℓ1,𝑁, 𝐶
  
ℓ2,𝑁 =

(4𝜋)2

𝑁(𝑁 − 1)
 2

𝛿ℓ1,ℓ2
2ℓ1 + 1

+ 𝐶 ℓ1ℓ2
(2)

−
𝐶 ℓ1𝐶

 
ℓ2

4𝜋 2
 

                                   + 4 𝑁 − 2  
𝛿ℓ1,ℓ2
2ℓ1 + 1

𝐶 ℓ1
4𝜋

+
𝐶 ℓ1ℓ2

3

4𝜋
−
𝐶 ℓ1𝐶

 
ℓ2

4𝜋 2
   

 

New Spherical Tensors 
 

 

𝐶 ℓ1ℓ2
(2)

=  
2ℓ′ + 1

4𝜋
ℓ1 ℓ2 ℓ′
0 0 0

2

𝐶 ℓ′

ℓ1+ℓ2

ℓ′=|ℓ1−ℓ2|

 

 
 

𝐶 ℓ1ℓ2
3

=
1

(2ℓ1 + 1)(2ℓ2 + 1)
 

2ℓ′ + 1

4𝜋

ℓ1+ℓ2

ℓ′=|ℓ1−ℓ2|

ℓ1 ℓ2 ℓ′
0 0 0

𝐵 ℓ1ℓ2ℓ′ 

Composite 

Power Spectrum 

Open 

Bispectrum 

Neglecting 

mask and PSF 

for now. 
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Unconnected part 

of the trispectrum 

relevant only for 

large power. 



∁ov 𝐶  ℓ1,𝑁, 𝐶
  
ℓ2,𝑁 = 4𝜋 2  

2

𝑁2

𝛿ℓ1,ℓ2
2ℓ1 + 1

+ 𝐶 ℓ1ℓ2
(2)

−
𝐶 ℓ1𝐶

 
ℓ2

4𝜋 2
 

                                         + 
4

𝑁
 
𝛿ℓ1,ℓ2
2ℓ1 + 1

𝐶 ℓ1
4𝜋

+
𝐶 ℓ1ℓ2

3

4𝜋
−
𝐶 ℓ1𝐶

 
ℓ2

4𝜋 2
   

 New terms  

 add corrections to the diagonal part  

 provide the previously missing non-diagonal components 

 

 Unbiased estimators for all these terms from the data have 
been determined. 

 This provides a non-parametric method for measuring 
power spectra. 

Statistical Covariance of 𝐶  ℓ,𝑁 (𝑁 ≫ 1) 
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Diagonal Corrections Can Be Important 

 Example uncertainty evolution at ℓ = 500 with 𝐶 ℓ = 10−5 sr. 

 

 Unbiased estimators of these new spectra allow for unparametric 

uncertainty estimation from the data without any source model. 

 

 

SC, MNRAS 448 (2015) 2854 



Instrument Response and Masking 

 For instrument sensitivity analysis, we don’t have data, so it 

is helpful to use source models. 

 

 To improve intuition, consider the simplest scenario: 

 𝐶  is a white spectrum, 

 𝐶 ≪
4𝜋

2ℓ+1
≪ 1, (okay for 1 ≪ ℓ ≲ 105) 

 the bispectra are negligible for the 𝐶 ℓ measurement. 

 assumes N is small enough that the shot term dominates the non-diagonal. 

 

 These assumptions are consistent with current measurements, 

and are predicted by some source scenarios. 
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Instrument Response and Masking 

 To improve intuition, consider the simplest scenario: 

 𝐶  is a white spectrum, 

 𝐶 ≪
4𝜋

2ℓ+1
≪ 1, (okay for 1 ≪ ℓ ≲ 105) 

 the bispectra are negligible for the 𝐶 ℓ measurement. 

 assumes N is small enough that the shot term dominates the non-diagonal. 

 These assumptions are consistent with current measurements, 

and are predicted by some source scenarios. 

𝐶 
ℓℓ′
(2)

= 𝑊ℓ
2𝑊ℓ′

2 −
𝛿ℓℓ′

2ℓ + 1

𝐶 

4𝜋𝑓sky
−

𝛿ℓℓ′

2ℓ + 1
1 −

1

𝑓sky
 

𝐶 
ℓℓ′
(3)

= −
𝛿ℓℓ′

2ℓ + 1
1 −

1

𝑓sky

𝑊ℓ
2

𝑓sky
𝐶  
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𝐶  With Negligible Bispectrum 
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 The multipole covariance of white power spectrum 

measurements: 

 

∁ov 𝐶 
 
ℓ1,𝑁, 𝐶

  
ℓ2,𝑁 ≃

2
𝑓sky

 
𝛿ℓℓ′

2ℓ + 1

4𝜋𝑓sky
𝑁𝑊ℓ

2

4𝜋𝑓sky
𝑁𝑊ℓ

2 + 2𝐶  

 

                      +
4𝜋𝑓sky

𝑁

2
𝐶 

4𝜋
  

Old analytic 

formula 

New correlated noise of a white Gaussian spectrum. 

 

Note lack of ℓ dependence. 



Consequences of Correlated Noise 

 Explore sensitivity of experiments to 𝐶 .  
Take variance-weighted mean over a range of ℓ. 

𝐶  =
1

𝐴
 

𝐶 ℓ

𝒱ar[𝐶 ℓ]

ℓmax

ℓ=ℓmin

, 

𝐴 =  
1

𝒱ar[𝐶 ℓ]

ℓmax

ℓ=ℓmin

. 

 

 For a white spectrum, 𝐶  = 𝐶 . 
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Uncertainty of 𝐶   neglecting PSF and mask 

𝒱ar 𝐶  =
1

𝐴2
  

∁ov[𝐶 ℓ, 𝐶 ℓ′]

𝒱ar[𝐶 ℓ]𝒱ar[𝐶 ℓ′]

ℓmax

ℓ′=ℓmin

ℓmax

ℓ=ℓmin

 

 

For our modelled scenario: 
 

𝒱ar 𝐶  =
2

ℓmax
2 − ℓmin

2

4𝜋

𝑁

2

+ 2
4𝜋

𝑁
𝐶 +

8𝜋𝐶 

𝑁2
 

The extra term from the non-diagonal covariance.  
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Uncertainty of 𝐶  : Mask and PSF Effects 

𝒱ar 𝐶  =
2

ℓmax
2 −ℓmin

2

4𝜋

𝑁

2
1 + Λ2𝐶 + 2

4𝜋

𝑁
𝐶   

 

The result has a simple prescription: 
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Uncertainty of 𝐶  : Mask and PSF Effects 

𝒱ar 𝐶  =
2

ℓmax
2 −ℓmin

2

4𝜋

𝑁

2
1 + Λ2𝐶 + 2

4𝜋

𝑁
𝐶   

 

The result has a simple prescription: 
 

1. Replace 4𝜋 with the shot parameter. 

𝜅 = 4𝜋𝑓sky
2

𝑊ℓmin

2 +𝑊ℓmax

2  
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Uncertainty of 𝐶  : Mask and PSF Effects 

𝒱ar 𝐶  =
2

ℓmax
2 −ℓmin

2

4𝜋

𝑁

2
1 + Λ2𝐶 + 2

4𝜋

𝑁
𝐶   

 

The result has a simple prescription: 
 

1. Replace 4𝜋 with the shot parameter. 

𝜅 = 4𝜋𝑓sky
2

𝑊ℓmin

2 +𝑊ℓmax

2  

 

2. Replace the coefficient with the resolution parameter 𝜚. 

 

 
 

𝜚2

𝑓sky
=

𝜎𝑏
2

𝑓sky

𝑊ℓmin

2 +𝑊ℓmax

2

𝑊ℓmin

2 −𝑊ℓmax

2  ≈
1

𝑓sky
max 𝜎𝑏

2,
2

ℓmax
2 − ℓmin

2  
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Uncertainty of 𝐶  : Mask and PSF Effects 

𝒱ar 𝐶  =
2

ℓmax
2 −ℓmin

2

4𝜋

𝑁

2
1 + Λ2𝐶 + 2

4𝜋

𝑁
𝐶   

 

The result has a simple prescription: 
 

1. Replace 4𝜋 with the shot parameter. 

𝜅 = 4𝜋𝑓sky
2

𝑊ℓmin

2 +𝑊ℓmax

2  

 

2. Replace the coefficient with the resolution parameter 𝜚. 

 

 
 

3. We introduce the covariance coupling. 

Λ =
𝑊ℓmin

2 +𝑊ℓmax

2

8𝜋𝜚
 

𝜚2

𝑓sky
=

𝜎𝑏
2

𝑓sky

𝑊ℓmin

2 +𝑊ℓmax

2

𝑊ℓmin

2 −𝑊ℓmax

2  ≈
1

𝑓sky
max 𝜎𝑏

2,
2

ℓmax
2 − ℓmin

2  
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Instrument Design Lessons 

𝒱ar 𝐶  =
𝜚2

𝑓sky

𝜅

𝑁

2
1 + Λ2𝐶 + 2

𝜅

𝑁
𝐶   

 

In shot-dominated regime, 3 scales determine statistical reach: 
 

𝒱ar 𝐶  ∝ 𝜚2+𝜚2Λ2𝐶 ≈ max 𝜎𝑏
2,

2

ℓmax
2 −ℓmin

2 , 2
Wℓmin

2 +Wℓmax
2

2

2
𝐶 

4𝜋
 

Resolution Limited 

 

Gains from improving 

angular resolution. 

Angular Band Limited 

 

Gains from increasing 

multipole range. 

Signal Limited 

 

No further gains from 

access to additional 

angular modes. 
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Instrument Design Lessons 

Number of events to detect 𝐶  to 𝑁𝜎 significance: 

𝑁det =
𝜅

𝐶 

1 + Λ2𝐶 

1
ℛexp

1 + Λ2𝐶 + 1 − 1

 
Fundamental Experiment 

Resolution Scale 

 

ℛexp ≡
𝑁𝜎𝜚

𝑓sky
 

Example back-of-envelope estimate: in diagonal covariance case Λ2𝐶 ≪ 1, 

 

𝑁det ≈
𝜅

𝐶 
×  

ℛexp,      ℛexp ≪ 1

2ℛexp
2 ,    ℛexp ≫ 1

 

 

Design the resolution so that ℛexp ≪ 1, then design exposure so that 𝑁 ≳ 𝑁det. 
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Spectral Signals: Line in 𝐼(𝐸) vs.𝐶 (𝐸) 

 If relative brightness of line sources is low, but structure is significant, they power 

spectrum can be more sensitive. 

 Uncertainty of 𝐶 ℓ measurements is crucial to understand sensitivity. 

Ng, Laha, SC, et al., arXiv:1310.1915 SC, CETUP 2013 
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Diffuse Background & Line Signal Models 

 Dark Matter Model 

 Consider a signal dominated by 

annihilation in the Galactic halo. 

 Anisotropy of the signal is produced by 

halo substructure.  

 Smooth component of Galactic dark 

matter halo provides flux Φsm and no 

small scale structure at high latitudes. 

 Substructure provides a flux boost 𝐵sub 

and distribution power spectrum 𝐶 sub. 

 

Aquarius Halo 

Springel et al. (2010) 

Φ = Φbkg + 𝐵subΦsm 

𝐶 =
Φbkg

Φ

2

𝐶 bkg +
(𝐵sub − 1)Φsm

Φ

2

𝐶 sub 
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Line Strengths 

 Recall that 𝐶  has a complicated 
dependence on 𝐵sub and 𝐶 sub. 
Simpler in terms of line strengths. 

 

 Flux Strength: 𝑆Φ =
ΦDM

Φbkg
= 𝐵sub

Φsm

Φbkg
. 

 

 Anisotropy Strength: 𝑆𝐶 = (𝐵sub − 1)2
Φsm

Φbkg

2
𝐶 sub

𝐶 bkg
. 

 

 In terms of these observables,  

             Φ = Φbkg(1 + 𝑆Φ), 𝐶 = 𝐶 bkg
1+𝑆𝐶

1+𝑆Φ
2. 

Φ = Φbkg + 𝐵subΦsm 

𝐶 =
Φbkg

Φ

2

𝐶 bkg +
(𝐵sub − 1)Φsm

Φ

2

𝐶 sub 
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Highly Clustered Dim Lines Probed by 𝐶  
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 Example: 3 GeV line with 𝑆Φ = 0.01, 𝑆𝐶 = 10.  

• Expected background statistical 

uncertainty for 10 years livetime. 

 

• Line height is expected height of 

energy bin log-centered at that 

energy with width of 68% line 

containment. 

Expected flux line 

significance is 1.6𝜎. 

 

Expected anisotropy line 

significance is 13.8𝜎. 
(But for 𝑆𝐶 = 1 only 1.5𝜎.) 



Condition to Observe Anisotropy Line 

 The line is observed to 𝑁𝜎 sensitivity if: 
  

𝐶 − 𝐶 bkg > 𝑁𝜎𝜎𝐶  . 

 The number of events needed to observe a line of given 

strength with anisotropy is: 

 

 

 

 

𝑁 >
𝜅

𝐶 

1 + Λ2𝐶 

ℛsig

ℛexp

2

1 + Λ2𝐶 + 1 − 1

 

Fundamental Signal 

Resolution Scale 

 

ℛsig ≡
𝑆𝐶 − 𝑆Φ(2 + 𝑆Φ)

1 + 𝑆𝐶
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Condition to Observe Anisotropy Line 

 The line is observed to 𝑁𝜎 sensitivity if: 
  

𝐶 − 𝐶 bkg > 𝑁𝜎𝜎𝐶  . 

 The number of events needed to observe a line of given 

strength with anisotropy is: 

 

 

 

 

𝑁 >
𝜅

𝐶 

1 + Λ2𝐶 

ℛsig

ℛexp

2

1 + Λ2𝐶 + 1 − 1

 

Fundamental Signal 

Resolution Scale 

 

ℛsig ≡
𝑆𝐶 − 𝑆Φ(2 + 𝑆Φ)

1 + 𝑆𝐶
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When 𝑆𝐶 = 𝑆Φ(2 + 𝑆Φ), the excess line radiation does not modify the power spectrum 

  No line anisotropy condition. 

 

When 𝑆𝐶 < 𝑆Φ(2 + 𝑆Φ), the line washes out structure   Line dip feature. 



Signal Resolution Parameter Space 

4/12/2016 Sheldon Campbell–Correlated Noise                                     

2nd Anisotropic Universe Workshop 

 Narrow blue region: line is 
unobservable in power 
spectrum. 

 

 Above blue region: power 
spectrum bump signals. 

 

 Below blue region: power 
spectrum dip signals. 

 

 The red star indicates our 
earlier line example. 



Condition to Observe Anisotropy Line 

 The line is observed to 𝑁𝜎 sensitivity if: 
  

𝐶 − 𝐶 bkg > 𝑁𝜎𝜎𝐶  . 

 The number of events needed to observe a line of given 

strength with anisotropy is: 

 

 

 

 

𝑁 >
𝜅

𝐶 

1 + Λ2𝐶 

ℛsig

ℛexp

2

1 + Λ2𝐶 + 1 − 1

 

Fundamental Signal 

Resolution Scale 

 

ℛsig ≡
𝑆𝐶 − 𝑆Φ(2 + 𝑆Φ)

1 + 𝑆𝐶
 

Example back-of-envelope estimate: in diagonal covariance case Λ2𝐶 ≪ 1 and shot-dominated, 

signal parameter space that is probed is: 

ℛsig

1 − ℛsig
>
𝜅ℛexp

𝐶 bkg

1

𝑁
 

Joint Constraint on 

𝐵sub, 𝐶 sub, σ𝑣,𝑚. 
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Constraining Signal Strengths 

ℛsig

1 − ℛsig
>
𝑁crit
𝑁

1 +
𝑁

𝑁tr
 

Contours show constraint 

after 
𝑁

𝑁crit
 observations. 

Sheldon Campbell–Correlated Noise                                     

2nd Anisotropic Universe Workshop 

4/12/2016 

𝑁crit =  
𝜅

𝐶 
ℛexp 1 + Λ2𝐶   

 

𝑁tr =
1

2

𝜅

𝐶 
(1 + Λ2𝐶 )  

Note the super-Poissonian 

1/𝑁 improvement in 

constraints when 𝑁 ≪ 𝑁tr. 



Concluding Remarks 
1. This demonstrates simple sensitivity estimates for anisotropy 

detection, and detection of anisotropy spectral features. 
 

2. Lack of statistical independence of 𝐶 ℓ multipoles is important for 

large 𝐶 /𝜚. 
 

3. Sensitivity improvement as 1/𝑁 is strong scientific motivation for 

experiment extensions like Fermi-LAT. 
 

4. If Fermi-LAT’s angular resolution is already near the signal-

dominated error regime, more data with better-resolution 

instruments will not improve statistics at a faster rate.  

Do we require new technology to launch larger effective areas? 
 

5. We saw that weak spectral signatures with highly clustered 

sources may be readily detected with the angular power 

spectrum. 
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Instrument Response Functions 

Sheldon Campbell,  Sensitivity of Anisotropy to Spectral Lines 

CCAPP Summer Series 2015 

7/21/2015 

1. Angular Resolution 
 Modelled as a Gaussian beam of 

width 𝜎𝑏(𝐸) in radians. 

2. Energy Resolution 
 Approximated as 10% for Fermi-LAT 

over energy range of interest. 

3. Acceptance 
 Effective area integrated over 

field of view, 𝐴(𝐸). 

4. Exposure 
 take to be uniform over 

unmasked sky for this analysis. 

5. Exposed Acceptance, 𝐴exp(𝐸). 

 𝐴exp 𝐸 = 𝑓sky 𝐴 𝐸  

                      ≃ 6500 cm2 sr 



Test with Monte-Carlo Sampling 

Sheldon Campbell                                                                

Probing Dark Matter With Gamma-Ray Anisotropies 

6/10/2015 

𝐶 ℓ = (0.0544 sr) 𝛿ℓ,12 𝐶 ℓ = (0.0544 sr) 𝛿ℓ,12 

𝐶 ℓℓ
(3)

= 0 𝐶 ℓℓ
(3)

= −0.000413 sr  𝛿ℓ,12 

SC, MNRAS 448 (2015) 2854 



𝐶  ℓ,𝑁 Distribution of 10 000 Samplings 

Sheldon Campbell                                                                

Probing Dark Matter With Gamma-Ray Anisotropies 

6/10/2015 

 Low counts gives very wide distribution. Shot noise subtraction can give 

negative power spectrum estimates. 

 At high counts, the distribution becomes narrow, and the distribution with 

negative bispectrum is visibly narrower. 

SC, MNRAS 448 (2015) 2854 



𝜎
𝐶  ℓ,𝑁

 Distribution of 10 000 Samplings 

Sheldon Campbell                                                                

Probing Dark Matter With Gamma-Ray Anisotropies 

6/10/2015 

 The negative bispectrum does indeed appear to lower the variance of the 

power spectrum measurement. 

 Even the distribution without bispectrum is affected by the other higher-

order spectra, but those effects are small and unresolved in this example. 

𝑆 NB 𝑆 B 
𝐶ℓ-only 

Full Estimator 

SC, MNRAS 448 (2015) 2854 


