ATLAS **B**eam **C**ondition **M**onitor

Working principle

Distinguish interactions from background via time of flight With two symmetric stations at $\pm \Delta z/2$ Interactions: in time Background: out of time on one side by $\Delta t = \Delta z/c$ At high luminosity expect about one hit for each bunch crossing Interactions at $\Delta t = 0, 25, 50 \dots$ ns Optimally distinguished background at $\Delta t = 12.5$ ns \Rightarrow $\Delta z = 3.8$ m

Sensors

Polycrystalline CVD diamond sensors chosen Radiation hard – shown to work at > 10¹⁵ particles/cm² Fast signals – high velocity and cut-off due to trapping Small leakage current – no cooling required Procurement in collaboration with CERN RD-42 Sensors produced and conditioned by Element Six Ltd. Metallized with proprietary radiation hard process at OSU Sensor properties Size 10 mm x10 mm, active 8 mm x 8 mm (metallization) Thickness ~500 µm Charge collection distance ~220 µm Holds ~ 2 V/ µm, operating voltage 1000 V, current ~ nA

Measurements with β source:

Fotec FE (500 MHz)

200 MHz BWL

Entries

Mean

RMS

Prob

p0

p1

p2 p3

Ο

Underflow

Qverflow

2/ ndf

16

NOISE: RUN=6, CH=1

Entries

Mean

RMS

3

Underflow

Overflow

7811

3.172

1.431

117.1/35

1.309e-12

 $\textbf{2.719} \pm \textbf{0.013}$

 1754 ± 24.4

0.1793 ± 0.0073

0.5287 ± 0.0226

18 20 U[mV]

467340

0.08115

4 5 U[mV]

0.2863

0

0

peak height: time window [25.0 ns,30.0 ns], RUN=6, CH=1

10 12 14

S/N ~

2

-4 -3 -2 -1 0 1 2

140

Typical MIP pulse

::-

Measurements with β source:

NINO amplifier-discriminator tests

Differential timing amplifier-discriminator (1 ns peak, 25 ns jitter)

LVDS output with width proportional to time-over-

threshold

Radiation tolerant design by CERN-MIC

Signal split 1:12 into two inputs to increase dynamic range

Tests confirm suitability as **BCM** back-end chip

Production status:

- 8 module boxes completed, equippped with sensors
- 2 spare boxes in production
- brackets produced
- 2 prototype NINO boards produced, measurements in beamtest running
- beamtest with microstrip telescope underway

