Radiation Monitoring in LHCb

Christoph Ilgner University of Dortmund, July 11, 2006

<u>Outline</u>: Plans for the LHCb (and possibly ALICE) beamcondition monitor (initiated by D. Eckstein)

Passive Sensors (Alanine, RPL, TLD)

Christoph Ilgner, Univ. Dortmund

The LHCb Beam Condition Monitor (BCM)

Purpose of the LHCb BCM:

provide real-time radiation monitoring within LHCb / ALICE to detect and initiate protection procedures for detector subsystems (such as the VELO) at the onset of beam instabilities and accidents

<u>Goal</u>:

provide monitoring information in the time scale of the LHC turn (89 μ s, possibly also sub-orbit time scale) \rightarrow beam dump request, detector HV ramp down, moving out of the VELO (larger time scale, suitable only for slow failures)

no bunch-by-bunch measurement

Sensor:

CVD diamond close to beam, at a distance of about 1.5 m from the interaction points. First stage: BLM electronics (tunnel card \rightarrow optical link \rightarrow DAB6 board)

Christoph Ilgner, Univ. Dortmund

BCM: Possible Location within LHCb

- space in fwd direction at 2.25m between RICH and TT (to be confirmed – low B field might be a problem)
- as close to beam pipe as possible
- coincidence (2 times 4 sensors), another sensor set "upstream" LHCb

Christoph Ilgner, Univ. Dortmund

- space coincidences
- simulation on this in preparation

BCM sensor test housing

CVD (chemically vapor deposition) diamond:

- 1 x 1 cm polycrystalline pieces, 500 µm thick
- operation similar to Si, but charge traps need to be filled up
- radiation hard
- B-field tests in the coming days

4

sensors: courtesy of the ATLAS BCM group, H. Pernegger, A. Gorisek

Christoph Ilgner, Univ. Dortmund

CVD diamond response (CMS tests)

July 11, 2006

Christoph Ilgner, Univ. Dortmund

- •

Readout scheme

preliminary design: BLM tunnel card and DAB6 boards for fast current integration(readout every 40 μ s) (E. Effinger and Ch. Zamantzas, AB-BI)

in a later stage: commercial rad-hard amplifiers (ex. FOTEC)

July 11, 2006

Christoph Ilgner, Univ. Dortmund

	TLD	LiF crystal	PAD (Alanine)	Dye films	RPL	HPD
Dose Range	10 mGy to 100 Gy	1KGy to 100MGy	10Gy to 1MGy	1-250Gy 10KGy-1MGy	100mGy to 1MGy	10 KGy to 10MGy
readout method	heating	heating	EPR	densitometry	UV light exposure	pressure measurement

passive dosimeters

•

Christoph Ilgner, Univ. Dortmund

•

7

Passive sensor response

(data compiled by M. Fürstner, SC-RP)

Passive sensor housing

10.40.008 13, 19,023 55 š Ъ. 法法律 LINE: 0.7638 lφ. 23 July 11, 2006 Christoph Ilgner, Univ. Dortmund 10

proposed material:

polymethyl methacrylate (PMMA, i.e. Plexiglas/Perspex)

ALNOR TLD slide with unique coding serves as the cover

A simple Beam-Condition Monitor system is currently under development in LHCb and ALICE.

A variety of active and passive sensors is being used for monitoring the LHC machine and is available to the experiments upon request.

For passive sensors a writeup on their properties is in preparation, including a proposal for a housing.