CMS Beam and Radiation Monitoring

Richard Hall-Wilton (TS/LEA)

On behalf of the CMS BRM Group

CMS Beam Conditions and Radiation Monitoring

- CMS BRM
 - Composed of 6 systems:
 - BCM1 (Beam Conditions Monitor)
 - BCM2
 - Pixel Luminosity Telescope (PLT)
 - Not yet endorsed; awaiting a TDR
 - RADMON
 - BSC (Beam Scintillator Counters)
 - Passive Monitors
- Idea is to have online monitoring of the beam and radiation conditions over time scales ranging from 25ns to 100s
- This is to be backed up by monitoring based on passive monitors for long term measurements and total dose

BCM requirements

Placement of BCM:

- Close to beampipe
- BCM1: in front of conical beampipe section, at same inner radius as Barrel Pixel Detector
- BCM 2: Outside Forward hadron Calorimeter; shielded from IP, Open to showers coming from the TAS

Function

monitor particle fluxes within CMS; throw abort when necessary

Mechanical Design

- BCM should be independent of the Beampipe supports
- BCM should be completely independent of the pixel and HF systems
- Must incorporate the possibility of a Pixel Luminosity Telescope (PLT) in the inner tracker volume

Monitoring time scales

- **Slow** = $40 \mu s$ Integration time matches the BLM monitors of the LHC.
 - This monitoring is done by BCM2
- Medium = 1 μs integration time:
 - This monitoring is done by BCM1
 - Leakage current monitoring inside the Tracker volume. Sensitive to 3us abort gap
- Fast = MIP sensitive front end electronics that provides asynchronous monitoring on the 25ns time scale
 - This monitoring is done by BCM1, in an independent subsystem

Interface to the BIC

- Initially Slow and Medium timescale monitoring to feed into the BIC
- Fast Monitoring to be incorporated into BIC input once validated in-situ

BCM1: In-situ overview

BCM1 Design Constraints

The BCM is the last object to be installed in the inner tracker volume => BCM should not interfere with anything and

should provide best possible monitoring of beam halo/background in vicinity of Pixel detector

z-position of BCM: $z = \pm 1.710$ to ± 1.840 m

- Location implies
 - ~6.25ns from IP
 - Further away in z than the BP support collar (z= ± 1.632m)
 - Away from the low energy electron flux coming from the conical BP section
 - Possible to position BCM sensors at a radial position comparable to inner radius of pixels
 - Must be insertable/removable

=> Required some modification to Forward Pixel Service Cylinder and Beam Pipe supports

Forward Pixel service cylinder modification

Looking from above

The Endorsed Mechanical structure

BCM1 Max length= 1076mm

BCM Unit

Carbon fibre frame Modular design Compact

BCM1_L

- Leakage current measurement
- Sensor: polycrystalline diamond
 - 10x10x0.4mm
 - 7000e-/MIP
- No front end electronics
- Bias voltage: 400V (nominal)
- Sensor orientation set by need for ExB to avoid anomalous leakage currents
 - Test beam in Week 25 and 26
- No direct cooling

BCM1_F

- Bunch by bunch measurement
- Sensor: Single crystal diamond
 - 5x5x0.4mm
 - 18000e-/MIP
- Dedicated front end electronics
- AFP amplifier -> optohybrid
- Bias voltage: ~100V (nominal)
- Limited space for front end electronics
- No direct cooling

Inside the BCM carriage

- Total length of carriage is 136.5 mm
- Gap between PLT and BCM=13.5 mm
 - Reason: Add end flange in between PLT and BCM for PLT cabling
- Optohybrids for BCM (1 per BCM unit)
 - Installed in the diagonal positions of the carriage
 - Needed for the BCM_F (bunch by bunch) readout
 - Location
 - Minimised distance from Amp to OH
 - Not at larger radius as need to avoid vertical BP support wire
 - Standard DOH
 - TK tested to 10 MRad
- Optimized slots for cable routing
 - Cables routed out bottom of carriage
 - Ensures cables do not exceed outer radius of Carriage ie no snaggs

Cables not routed as shown here

BCM Telescope Unit

BCM1 Mechanical Mock-up

Packaging of sensors

We were very careful with contamination on the boards, clean with Acetone, then UV cleaning,

Less than 1pA leakage current due to G10 packaging!

Diamond leakage current < 10pA

secure' bonds with silver epoxy:

Position in CDF

Signs of Life

CDF_W_BLM

CMS_W_S4

CMS_E_BLM

CMS_E_S5

- noise on CDF diamond
 cable ? Will check next during upcoming access
- poly crystal vs. single signal ~
 2.5-3 (thy 64 mm^2/9mm^2*
 220 um/500 um =3.1)
- we observe difference in S4/S5 although characterization results were the same ?

Solenoid Trip and Ramp-Up

See increase in dark current during recent solenoid trip

Installation and Insertion

- BCM1 Installation:
 - Starts after survey and alignment completed
 - Starts after BPix and FPix installed and cabled up
 - Starts after Beam pipe supports have been cabled up

Installation and Insertion sequence

- 1. Remove lower ¼ carbon fibre wheels on one side
- 2. Position BCM carriage (in its transport/installation structure) below and to one side of the beam pipe
- 3. Dismount the to part of the BCM carriage transport structure to allow the BCM to be raised
- 4. Combined x and y direction raise BCM installation platform to bring the BCM to the correct y position, such that it is in line with the BCM rails
- 5. Move platform in z so to dock with the pixel rail plate
- 6. Partially insert the BCM carriage so that both front and back foot engage in the BCM rail of the pixel rail plate (back foot at to z=2775mm) ie top feet now engaged in rail plate
- 7. Disengage Carriage support frame that associated with the travel/installation structure
- 8. Insert BCM carriage structure using the BCM arm. Stop at final position
- 9. Remove BCM installation platform
- 10. Lock arm at z=2775mm
- 11. Cable to PP0
- 12. Re attach lower ¼ carbon fibre wheels
- 13. Repeat steps 1 trough 12 for the other side
- 14. Test cabling
- 15. Repeat steps 1 though 14 for the other end
- 16. Hand over to Tracker integration for close up of bulkheads and go to USC area

BCM2 Installation/integration (courtesy of Dmitry Druzhkin)

BCM2 Readout: Using the BLM

RADMON locations in CMS

```
Chain A
      1. Start point at US56
                                        X= ? Y= ?Z= ? We need to get this in the model
      2. USC Trigger tunnel exit
                                        X=20.525
                                                     Y=1.800
                                                                  Z=-0.200m
      3. Z=0 UXC wall. Near side
                                                                  Z = -3.322m
                                        X = 10.607
                                                   Y = 0.266
      4. –Z UXC wall. Near side top
                                       X = 13.125
                                                  Y = 4.029 Z = -10.497m
      UXC Access Shaft
                                       X = -10.216
                                                   Y = 23.645
                                                                  Z = -13.975 \text{ m}
                                                                  Z = -10.649 m
      6. -Z UXC wall Near Side bottom X = 13/125 Y = -8.298
      7. -Z UXC wall Far Side bottom
                                        X = -11.125
                                                   Y = -8.318
                                                                  Z = -10.557m
      8. –Z UXC wall Far Side top
                                        X = -13.125
                                                     Y = 4.039
                                                                  Z = -10.405m
      9. In front of TAS
                                       X = 1.091
                                                     Y = 5.908
                                                                  Z = -25.576m
      10. HF (On the HF via cable chain) X=-2.125
                                                     Y = -1.295
                                                                  Z = -14.778m
      11. Termination
                                              On the HF
Chain B
      1. Start point at US56
                                        X = ? Y = ?Z = ? We need to get this in the model
      2. TX54
                                        X = -30.758
                                                   Y = 7.000
                                                                  Z=-17.868m
      3. +Z UXC wall Near Side bottom X= 13.125
                                                     Y = -8.146
                                                                  Z=9.804m
                                                                  Z=9.951m
      4. +Z UXC wall. Near side top
                                        X = 13.125
                                                   Y = 3.777
      5. In front of TAS
                                        X = -1.086
                                                     Y = 5.825
                                                                  Z = 25.723m
      6. Cave (UXP)
                                        X = 2.443
                                                  Y = -10.014
                                                                  Z = 0.336m
      7. Z=0 UXC wall. Far side
                                        X = -10.607 Y = -0.266
                                                                  Z = 3.322m
      8. +Z UXC wall Far Side top
                                       X = -13.134 Y = 3.769
                                                                  Z = 10.593 m
      9. +Z UXC wall Far Side bottom X = -11.125 Y = -8.384
                                                                  Z = 10.443 m
      10. HF (On the HF via cable chain)
                                       X = -2.115
                                                     Y = -1.295
                                                                  Z = 14.778 \text{m}
      11. Termination
                                              On the HF
```


Summary Comments

RADMON

- Awaiting final agreement on locations
- Concern over powering/grounding scheme
 - Must separate RADMON from detector

Passives

 Will work with TS-LEA and will adopt passive monitors as used by Totem. ie consistency throughout CMS

BSC

- Mechanical location on front of HF
- Readout chain hardware fully integrated with HF
- Awaiting test beam with HF in August 06

BCM

- BCM1
 - Prototype readout based on Tevatron BLM cards is now ready for testing with diamonds installed in CDF
 - All CMS polycrystalline diamonds now delivered. Now being metalised and tested
 - Poly and single crystal diamonds undergoing leakage current QA in Magnetic field (CERN East Hall)
 - Mechanical structure endorsed at EDR; proceeding to optimise with manufacturer
 - Front end electronics for fast readout based on CERNs AFP chip (rad hard 0.25um)
 - Full mechanical insertion test with BCM, Beam pipe and Pixels is ongoing, with no major problems

- BCM2

- Full readout based on LHC_BLM system
- Mechanical infrastructure based on independent mounting on CASTOR support table
- Frontend electronics validated in Magnetic field equiv to CMS fringe field
- Starting the LHC and CMS interface designs