Status of ALPS II @ DESY

Searching for Weakly-Interacting-Slim Particles by shining light-through-a-wall

Axel Lindner DESY

CERN, 17 September 2015

A brief primer on

Axel Lindner | ALPS II Status | CERN – 150917 | Page 2

A brief primer on

> Why are we looking for WISPs Indications for WISPs? > Searches for WISPs > Plans for WISPs at DESY: ALPS II > Summary

Axel Lindner | ALPS II Status | CERN – 150917 | Page 3

There is physics beyond the SM

> Dark matter and dark energy:

http://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy/

Even if one neglects dark energy: 85% of the matter is of unknown constituents.

http://www.esa.int/For_Media/Photos/Highlights/Planck

There is physics beyond the SM

> Dark matter and dark energy candidate constituents:

http://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy/

Extremely lightweight scalar particle

Very weak interaction with Sofinatter
Very weak interaction Shone Statements
Statement of State

Introducing today's dark matter candidates: WISPs

> Weakly Interacting Slim Particles (WISPs)

- <u>Theory</u>: WISPs might arise as (pseudo) Goldstone bosons related to extra dimensions in theoretical extensions (like string theory) of the standard model.
- <u>Dark matter</u>: in the early universe WISPs are produced in phase transitions and would compose very cold dark matter in spite of their low mass.
- <u>Additional benefit:</u> with axions (the longest known WISP) the CP conservation of QCD could be explained, axion-like particles could explain different astrophysical phenomena.

Standard Model

> Prediction:

Dark matter is composed out of elementary particles with masses below 1 meV. Its number density is larger than 10¹² 1/cm³.

Axions and other WISPs in theory

Axion and other Nambu-Goldstone bosons arising from spontaneous breakdown of global symmetries are theoretically well-motivated very weakly interacting slim (ultra-light) particles. The coefficients are determined by specific ultraviolet extension of SM.

Axions and other WISPs in theory

Axion and other Nambu-Goldstone bosons arising from spontaneous breakdown of global symmetries are theoretically well-motivated very weakly interacting slim (ultra-light) particles. The coefficients are determined by specific ultraviolet extension of SM.

Properties of the axion

- > The QCD axion: light, neutral pseudoscalar boson.
- > The QCD axion: the light cousin of the π^0 .
 - Mass and the symmetry breaking scale f_a are related: m_a = 0.6eV · (10⁷GeV / f_a)
 - The coupling strength to photons is $g_{a\gamma\gamma} = \alpha \cdot g_{\gamma} / (\pi \cdot f_a),$ where g_{γ} is model dependent and O(1). <u>Note:</u> $g_{a\gamma\gamma} = \alpha \cdot g_{\gamma} / (\pi \cdot 6 \cdot 10^6 \text{GeV}) \cdot m_a$
 - The axion abundance in the universe is $\Omega_a / \Omega_c \sim (f_a / 10^{12} GeV)^{7/6}$.

 $f_a < 10^{12}GeV$ $m_a > \mu eV$

а

axion

Properties of the axion

- > The QCD axion: light, neutral pseudoscalar boson.
- > The QCD axion: the light cousin of the π^0 .
 - Mass and the symmetry breaking scale f_a are related: m_a = 0.6eV · (10⁷GeV / f_a)
 - The coupling strength to photons is $g_{a\gamma\gamma} = \alpha \cdot g_{\gamma} / (\pi \cdot f_a),$ where g_{γ} is model dependent and O(1). <u>Note:</u> $g_{a\gamma\gamma} = \alpha \cdot g_{\gamma} / (\pi \cdot 6 \cdot 10^6 \text{GeV}) \cdot m_a$
 - The axion abundance in the universe is $\Omega_a / \Omega_c \sim (f_a / 10^{12} GeV)^{7/6}$.

 $f_a < 10^{12} GeV$ $m_a > \mu eV$

The Search for Axions, Carosi, van Bibber, Pivovaroff, Contemp. Phys. 49, No. 4, 2008

Other WISPy particles as predicted by theory

Weakly Interacting Slim Particles (WISPs):

- Axions and axion-like particles ALPs, pseudoscalar or scalar bosons, m and g are not related by an f.
- > Hidden photons (neutral vector bosons) $\sim \sim$

Mini-charged particles

Chameleons (self-shielding scalars), massive gravity scalars

Basics of many WISP experiments

- Basic idea: due to their very weak interaction WISPs may traverse any wall opaque to Standard Model constituents (except v and gravitons).
 - WISP could transfer energy out of a shielded environment
 - WISP could convert back into detectable photons behind a shielding.

Light-shining-through-a-wall" (LSW)

A brief primer on

> Why are we looking for WISPs Indications for WISPs? Searches for WISPs > Plans for WISPs at DESY: ALPS II > Summary

Axel Lindner | ALPS II Status | CERN – 150917 | Page 13

Hints for WISPs / ALPs?

- Is the universe more transparent to TeV photons than predicted?
- Do stars cool down too fast?
- Is there a Cosmic Axion-like-particle Background (CAB)?

Phenomenon	ALP mass [eV]	ALP-γ coupl. [GeV ⁻¹]	Reference
TeV transparency	< 10 ⁻⁷	> 10 ⁻¹¹	arXiv:1302.1208 [astro-ph.HE]
Globular cluster stars (HB)	< 10 ⁴	≈ 5·10 ⁻¹¹	arXiv:1406.6053 [astro-ph.SR]
CAB (Coma Cluster)	< 10 ⁻¹³	10 ⁻¹² to 10 ⁻¹³	arXiv:1406.5188 [hep-ph]
White dwarfs	< 10 ⁻²	$(g_{ae} \approx 5 \cdot 10^{-13})$	arXiv:1304.7652 [astro-ph.SR]

There are allowed regions in parameter space where an ALP can simultaneously explain the gamma ray transparency, the cooling of HB stars, and the soft X-ray excess from Coma and be a subdominant contribution to CDM.

The big picture: ALPs

The big picture: ALPs

QCD axion range

Excluded by WISP experiments Excluded by astronomy (ass. ALP DM) Excluded by astrophysics / cosmology Axions or ALPs being cold dark matter WISP hints from astrophysics

Sensitivity of next generation WISP exp.

Particular interesting:

ALP-photon couplings around 10⁻¹¹GeV⁻¹, masses below 1 meV. This can be probed by the next generation of experiments.

A brief primer on

> Why are we looking for WISPs > Indications for WIS Searches for WISPs > Plans for WISPs at DESY: ALPS II > Summary

Dark matter (DM) search strategies: WISPs

> Direct:

an experiment detects particles of the DM halo all around us.

Indirect:

an experiment finds astrophysical signatures (next to gravitation) of the DM halo particles.

Candidates:

an experiment identifies new particles which are candidates for the constituents of the DM halo.

Dark matter (DM) search strategies: WISPs

> Direct:

an experiment detects particles of the DM halo all around us.

Indirect:

an experiment finds astrophysical signatures (next to gravitation) of the DM halo particles.

Candidates:

an experiment identifies new particles which are candidates for the constituents of the DM halo.

Signatures for Bose-Einstein condensation of DM

Figure 7-22. The giant elliptical galaxy NGC 3923 is surrounded by faint ripples of brightness. Courtesy of D. F. Malin and the Anglo-Australian Telescope Board.

Dark matter (DM) search strategies: WISPs

> Direct:

an experiment detects particles of the DM halo all around us.

Indirect:

an experiment finds astrophysical signatures (next to gravitation) of the DM halo particles.

Candidates:

an experiment identifies new particles which are candidates for the constituents of the DM halo.

 $B \overset{\bigstar}{\times}_{\gamma^*}$

×Β

Searching for WISPs

Weakly Interacting Slim Particles (WISPs) are searched for by

Purely laboratory experiments ("light-shining-through-walls") optical photons,

 Helioscopes (WISPs emitted by the sun), X-rays.

Searching for WISPs

Weakly Interacting Slim Particles (WISPs) are searched for by

Purely laboratory experiments ("light-shining-through-walls") optical photons,

 Helioscopes (WISPs emitted by the sun), X-rays.

Helioscopes

http://middleboop.blogspot.de/2011/02/vessels-helioscope.html

CAST: the dominating helioscope

"Just" point a magnet to the sun!

Axions or ALPs from the center of the sun would come with X-ray energies.

CAST: the dominating helioscope

> LHC prototype magnet pointing to the sun.

> Most sensitive experiment searching for axion-like particles.

- Unfortunately no hints for WISPs yet.
- If a WISP is found, it would be compatible with known solar physics!

IAXO proposal

- > The International Axion Observatory
 - CAST principle with dramatically enlarging the aperture
 - Use of toroid magnet similar to ATLAS @ LHC
 - X-ray optics similar to satellite experiments.

Laboratory experiments

A brief primer on

> Why are we looking for WISPs
> Indications for WISPs?
> Searches for WISPs
> Plans for WISPs at DESY: ALPS II

ALPS @ DESY in Hamburg

FLASH

3

ALPS

European XFEL

ALPS II

PETRA III CFEL

CSSB

MPI

in the HERA tunnel?

PETRA III-Extension

ALPS I at DESY in Hamburg

Any Light Particle Search @ DESY: ALPS I

Approved in 2007, concluded in 2010

ALPS I results

(PLB Vol. 689 (2010), 149, or http://arxiv.org/abs/1004.1313)

> Unfortunately, no light was shining through the wall!

> The most sensitive WISP search experiment in the laboratory (up to 2014).

ш

Prospects for ALPS II @ DESY

Laser with optical cavity to recycle laser power, switch from 532 nm to 1064 nm, increase effective power from 1 to 150 kW.

 Magnet: upgrade to 10+10 straightened HERA dipoles instead of ½+½ used for ALPS I.

Regeneration cavity to increase WISP-photon conversions, single photon counter (superconducting transition edge sensor).

ALPS II essentials: laser & optics

First realization of a 24 year old proposal!

ALPS II is realized in stages

The ALPS II challenge

> Photon regeneration probability:

$$P_{\gamma \to \phi \to \gamma} = \frac{1}{16} \cdot \mathcal{F}_{PC} \mathcal{F}_{RC} \cdot (g_{a\gamma\gamma} Bl)^4 = 6 \cdot 10^{-38} \cdot \mathcal{F}_{PC} \mathcal{F}_{RC} \cdot \left(\frac{g_{a\gamma\gamma}}{10^{-10} GeV^{-1}} \frac{B}{1T} \frac{l}{10m}\right)^4$$

> ALPS II:

- $F_{PC} = 5000$, $F_{RC} = 40000$ (power build-up in the optical resonators)
- B = 5.3 T, I = 88 m

 $P_{\gamma \to \phi \to \gamma} = 6 \cdot 10^{-23}$ for g=10⁻¹⁰GeV⁻¹ resp. 6 \cdot 10^{-27} for g=10^{-11}GeV^{-1}

• With a laser power of 35 W (1064 nm):

expected photon rates:

 $dn/dt = 30 h^{-1}$ for $g=10^{-10}GeV^{-1}$ resp. 3 month⁻¹ for $g=10^{-11}GeV^{-1}$

> ALPS II will probe the ALP region indicated by astrophysics phenomena.

ALPS II optics

ALPS II optics

The photon source

The laser has been developed for LIGO: 35 W, 1064 nm, M²<1.1 based on 2 W NPRO by Innolight/Mephisto (Nd:YAG (neodymiumdoped yttrium aluminium garnet)

The central optics

Axel Lindner | ALPS II Status | CERN – 150917 | Page 40

The central optics breadboard

See Jan's presentation.

Axel Lindner | ALPS II Status | CERN – 150917 | Page 41

Transition Edge Sensor (TES)

Transition Edge Sensor (TES)

Transition Edge Sensor (TES)

Transition Edge Sensor (TES)

Expectation: very high quantum efficiency, also at 1064 nm, very low noise.

Axel Lindner | ALPS II Status | CERN – 150917 | Page 45

module with two channels (scale $\sim 3 \text{cm x } 3 \text{cm}$)

- Tungsten film kept at the transition to superconductivity at 80 mK.
- Sensor size 25µm x 25µm x 20nm.

- Single 1066 nm photon pulses!
- > Energy resolution $\approx 8\%$.
- > Dark background 10⁻⁴ counts/second.
- Ongoing: background studies, optimize fibers, minimize background from ambient thermal photons.

Sensor size 25µm x 25µm x 20nm.

Four Ph.D. theses!

At Single 1066 nm photon pulses! Energy resolution ≈8%.

module with two channels $(\text{scale} \sim 3\text{cm x }3\text{cm})$

> Dark background 10⁻⁴ counts/second.

Ongoing: background studies, optimize fibers, minimize background from ambient thermal photons.

ALPS II schedule (rough)

ALPS II schedule (rough)

The axion-like particle landscape

ALPS II sensitivity

- > Well beyond current limits.
- > Aim for data taking in 2019.
- > QCD axions not in reach.
- > Able to probe hints from astrophysics.
- The ALPS optics+detector combined with two LHCdipoles could reach (9T·14.3m) / (10·5.3T·8.8m) = 30% of the ALPS II sensitivity allowing to just surpass CAST (if we are lucky).

The ALPS collaboration

ALPS II is a joint effort of

- > DESY,
- > Hamburg University,
- > AEI Hannover (MPG & Hannover Uni.),
- Mainz University,
- University of Florida (Gainesville)

with strong support from

> neoLASE, PTB Berlin, NIST (Boulder).

Summary

- The axion "invented" to explain the CP-conservation in QCD is also a perfect and extremely lightweight cold dark matter candidate.
- In addition to axions theory predicts axion-like particles (ALPs) as well as other Weakly Interacting Slim Particles (WISPs).
 - Such ALPs and other WISPs might also constitute the dark matter.
 - Astrophysics phenomena might point at the existence of WISPs.
- Experiments like ALPS II have sufficient sensitivity to discover axion-like particles or other WISPs.
- > New ideas for dark matter experiments are being tested.
- Small scale and short term WISP experiments offer a fascinating complement to accelerator based "big science".
- There is plenty of room for new ideas and quick experiments having the potential to change the (particle physicist's) world!

BSM physics might hide anywhere!

