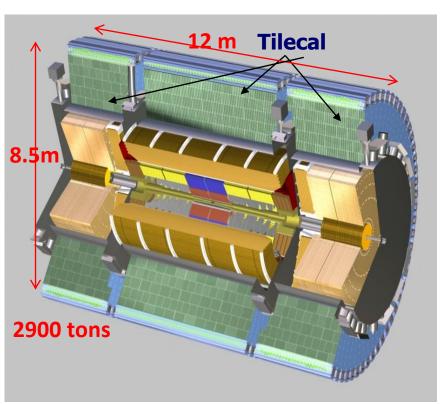
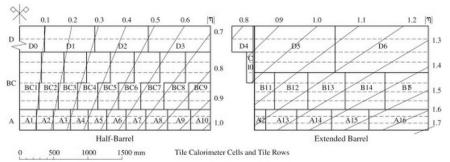
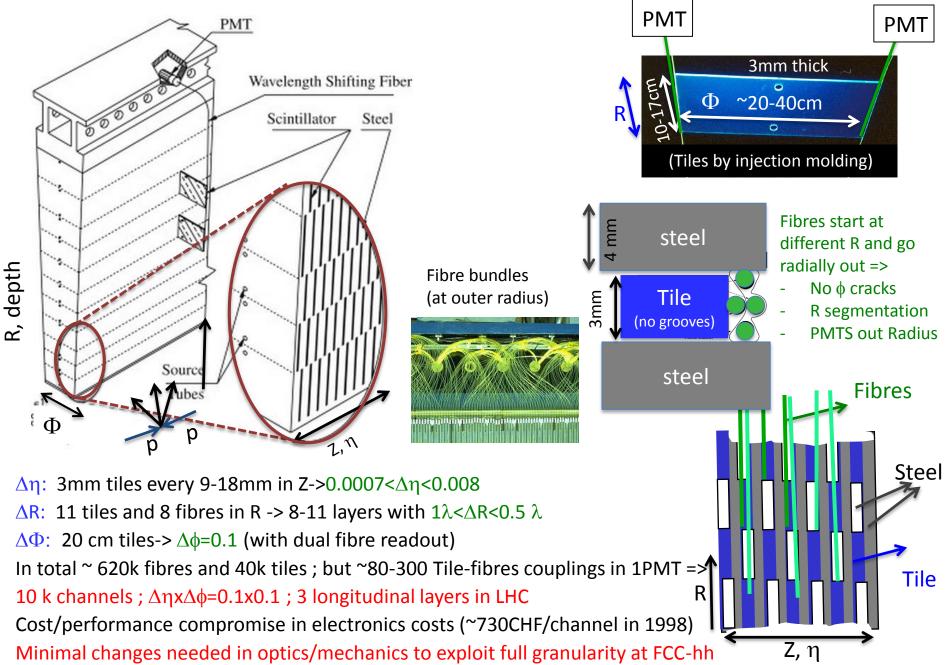

Mechanics and granularity considerations of a Tile hadronic calorimeter for FCC hh barrel


<u>Nikolay Topilin/Dubna</u>+ Sergey Kolesnikov/Dubna Ana Henriques/CERN - The ATLAS Tile barrel had. Calorimeter concept using Si-PMTs as readout was presented in the February 2015 FCC-hh detector Workshop :


https://indico.cern.ch/event/358198/session/2/contribution/1/3/attachments/713312/979278/ANA_TALK_FCC_scint-1.pdf

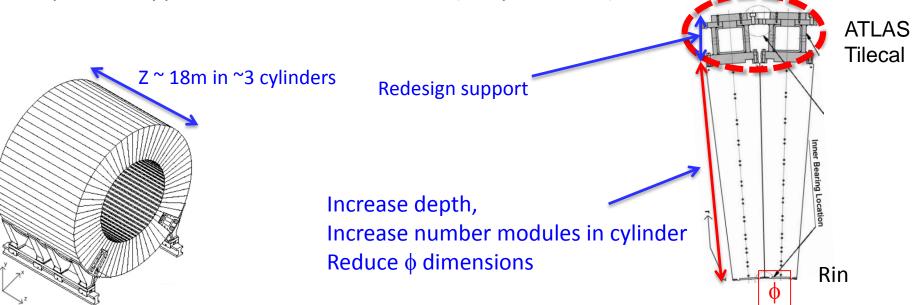
- For FCC-hh optimisations are needed at the level of mechanics, optics, electronics readout, ...
- Today will discuss barrel HCAL mechanics and granularity matters

ATLAS Tile hadron calorimeter ($|\eta|$ <1.7)

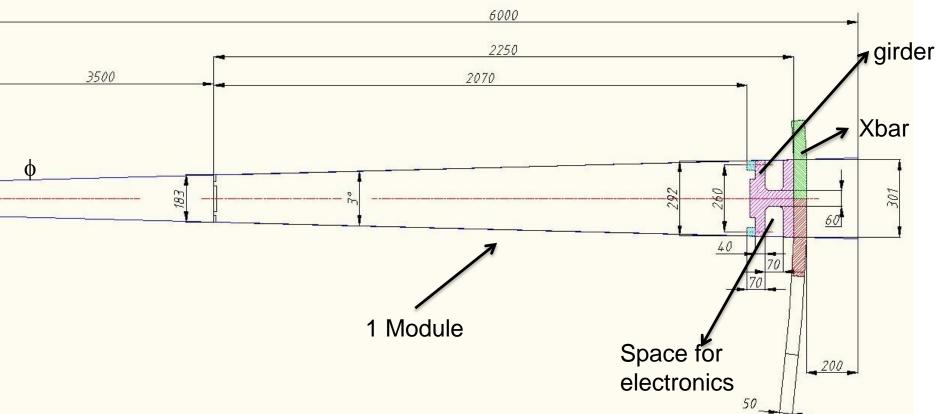


- Scint. Tiles; fibres II to incoming particles at $\eta\text{=}0$
- Steel/Tiles: = 4.7 : 1 (λ = 20.7 cm)
- Active cells volume: ~ 372m3
- ~ 620k fibres ; 40k Tiles
- 10 k channels
- 7.7 $\lambda\,$ at $|\eta|$ =0 ; (9.7 λ with the em LAr calo)
- Transversal granularity $\Delta \eta x \Delta \phi$ =0.1x0.1
- Longitudinal segmentation: 3 layers
- e/h = 1.33

•Pion resolution (test beam):

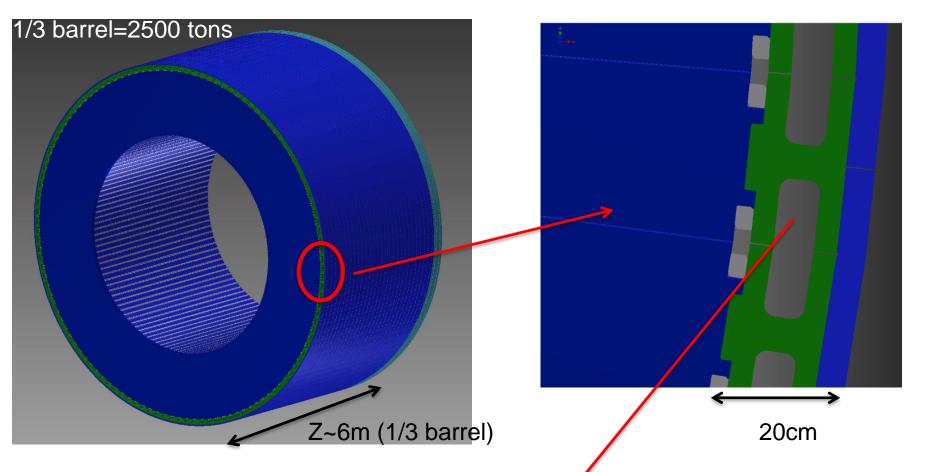

- $\sigma_{\rm E}$ /E~52%/ $\sqrt{\rm E} \oplus$ 5.7 % (7.9 λ)
- $\sigma_{\rm E}$ /E~45%/ $\sqrt{\rm E} \oplus$ 2 % (9.2 λ)
- target (with e.m. LAR) at ATLAS/LHC:
 - Jet $\sigma_{\rm E}/{\rm E}^{\rm \sim}50\text{-}60\%/\sqrt{\rm E}\oplus3\%$
 - Containment ~ 98% TeV hadrons, jets

Today's ATLAS Tilecal optics granularity (but merged at readout...)

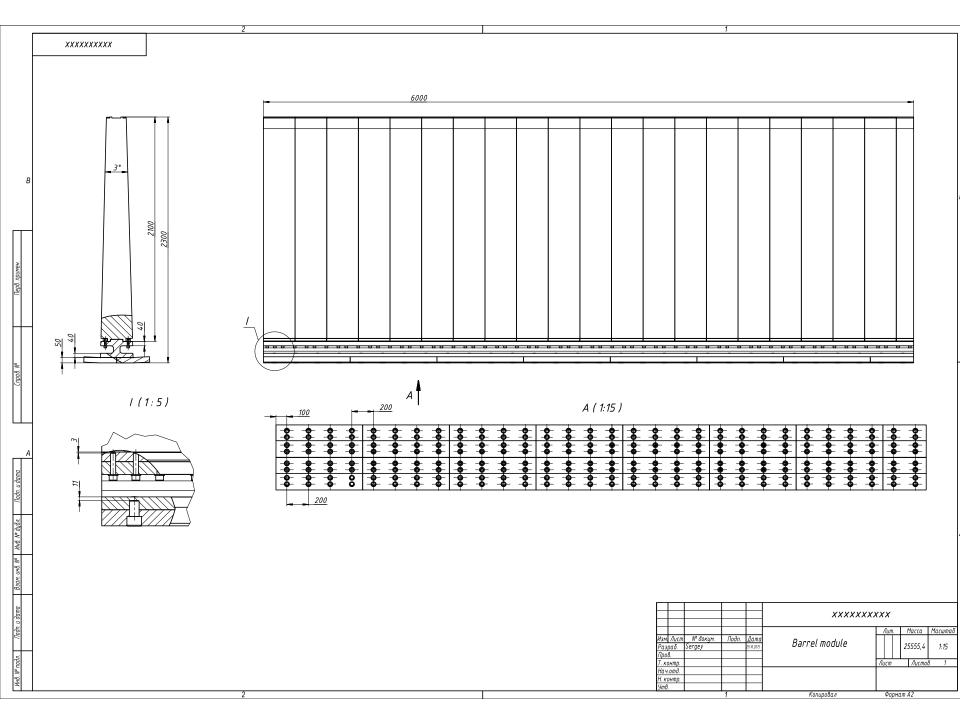


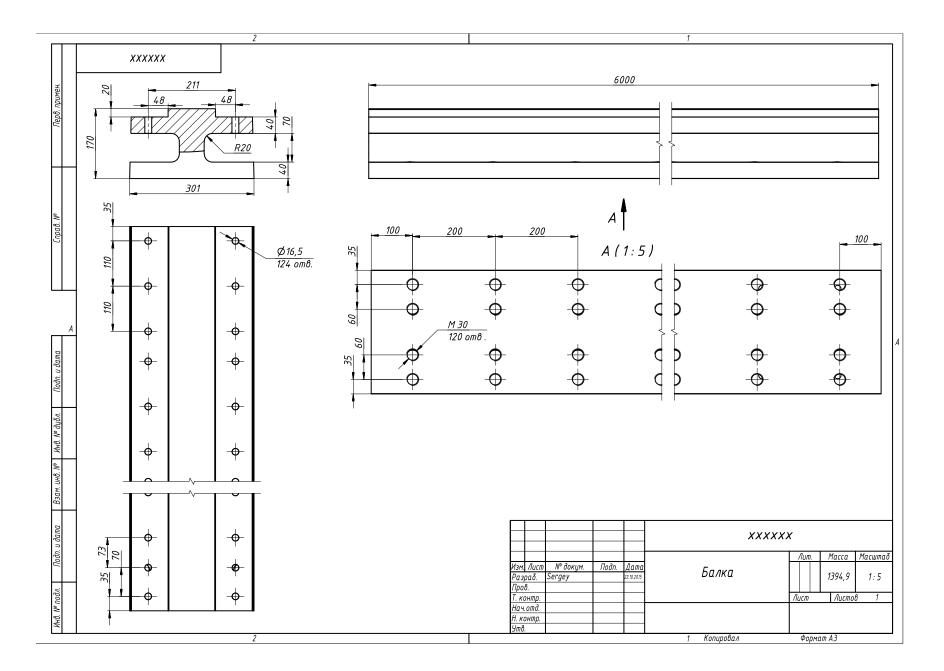
Main R&D/improvements needed in Mechanics vs ATLAS

- Stainless Steel (ok) for faster showers, less μ tails, non magnetic for solenoid compatibility
- Increase cells thickness to at least 10λ (assuming 2λ e.m. calo + tracker (?))
- <u>Redesign outer support/girder:</u>
 - reduce girder thickness (ATLAS ~30 cm; 1.5 λ)
 - optimize electronics location/space (no need to shield Si-PMT)
 - Optimize fibres to Si-Pmts coupling (not yet studied)
- Improve ϕ granularity to $\Delta \phi$ = 0.05= 120 modules; (64 modules; $\Delta \phi$ = 0.1 in ATLAS). Could study also 180 modules and implications on girder design if needed)
- Mechanics granularity in Z:
 - Propose central barrel in 3 cylinders of ~ 6m each (ATLAS Tilecal barrel=5.6m)
 - Minimize cracks in the Z between 3 cylinders (not yet studied)
- Optimize supports/interface with solenoid (not yet studied)



FCC Tile Had. Calo module Dimensions (version 120 modules in a cylinder)




- **120 modules in** ϕ , 6m long in Z is ok => $\Delta \phi$ =0.05, 2 times better than ATLAS
- **Rmin=3.5m** (OR 3.4m IF em calo+tracker $< 2\lambda$). Need to keep 12λ in total...
- Rout =5.8m (with supports and Xbars). Need 20cm for cables before solenoid...
- Depth active cells = 207 cm = 10λ (+29% than ATLAS; $\lambda_{tilecal}$ =20.7cm).
- Depth Outer Supports=20cm (15cm girder+5cm Xbars);~1.5 shorter than ATLAS !
- 20 tons each module of 6 m long in Z + 0.7 tons Xbars per module
- Total FCC Tilecal barrel weight of 18m long = 7500 tons (3x2500)

1/3 FCC Tile Had. Calorimeter barrel (version 120 modules and 6m length)

- Barrel made of 3 cylinders of ~ 6m long each (need to minimize cracks in Z between 3 cylinders, not yet studied)
- Reduced support radius/space for drawers electronics (Si-PMTS+FE electronics)
- Need carefully design to access electronics in shutdowns, moveable in Z, with good alignment between fibres-Si-PMTS along 18m overall cylinder...(not yet studied)

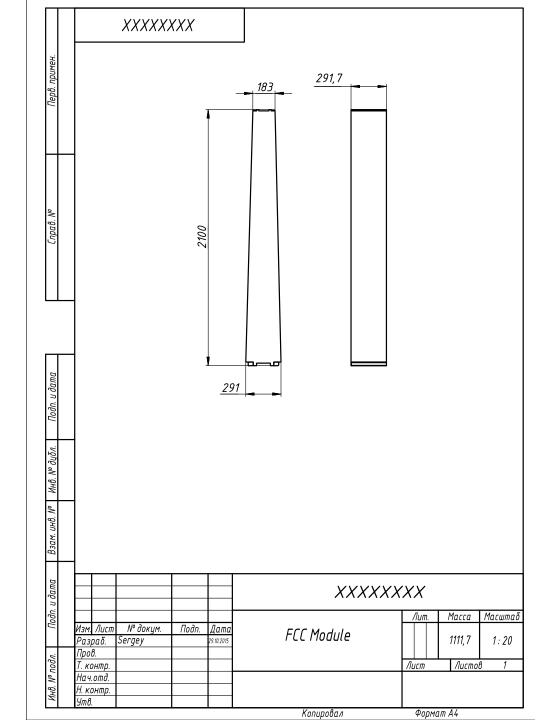
Summary

- It is feasible φ granularity=0.05 (120 modules /cylinder; Rin=3.5m; Rout = 5.8m; Tilecal effective depth =10λ=2.07m= (assuming 2λ in em calorimeter). If Δφ=0.025 is needed can be "easily" achieved using half trapezoidal tiles and single fibre readout.
- Outer support reduced to ~ 20cm (~1 λ)
- Propose divide barrrel in 3 cylinders (~6m max each in Z), but need to minimize cracks in Z...
- Need to optimize interface fibres-Si-PMTS, new location of electronics and it's access during maintenance
- Need to look at supports and interface with solenoid and em calo not studied
- etc, etc,....

Back-up slides

Main R&D/improvements needed for an "ATLAS-Tile layout using si-PMTS" in the central HCAL FCC-hh detector (η~<1.5) (cont.)

Optics:


- Example $\Delta \phi = 0.1 -> 0.025$:
- Move outer radius; $R_{min} = 2.2 \text{ m}$ (ATLAS-tilecal) -> 3.0m => $\Delta \phi = 0.1 \rightarrow 0.07$ (64 ->87 modules in cylinder).
- Half trapezoidal tiles read by fibres in 1 side ($\Delta \phi$ =0.07-> 0.035) ; 87 modules; loose light and uniformity
- Modules/tiles with smaller ϕ dimensions ($\Delta \phi = 0.035 \rightarrow 0.025$ (87 -> 122 modules/cylinder)
- •Optimize depth granularity with the best match tiles-fibres and Tile depth dimensions (depends on real needs)

ATLAS Tile calorimeter characteristics

Characteristics	ATLAS η <1.7
Absorber Absorber/scintillator ratio Geometry Tiles-Fe periodicity in Z	Steel 4.7:1 Tiles & fibres ⊥ to pp beam axis 18 mm (3mm Tiles+14mm Fe)
 Tiles characteristics: Tile dimensions (ηxφxR): Inner radius Outer radius WLS Fibres 	Polystyrene+1.5%PTP+0.04%POPOP by injection molding, no grooves ; ~ 70 tons 11 trapezoidal sizes in depth/R ; ~ 40105 tiles 3 mm x ~22 cm x ~10 cm ; 3 mm x ~35 cm x ~19 cm Kurary Y11 ; 1mm diameter ; ~1062 Km ; ~620 000 fibres
3 cylinders (Barrel+2 Ext B): Length in Z Outer radius(w/supports+elect.) Outer active radius Inner active radius Active depth ΔR at η =0 Volume (inner-outer active R) Weight	12m 4.2 m 3.9 m 2.3 m 1.6m; 7.7 λ 372m3 2900 T
Longitudinal Segmentation	3 layers
Transversal granularity ($\Delta\eta x\Delta\phi$)	0.1x0.1 inner and middle layers ; 0.2x0.1 outer layer
# channels/PMTs	10 000 channels
Gain-dynamic range	10 ⁵ ; 2 gain 10 bits ADCs
Xo ; λ_p ; Moliere Radius	22.4 mm ; 20.7 cm ;20.5 mm

ATLAS Tile calorimeter Performance

Characteristics	ATLAS η <1.7
Light yield	70 phe/GeV
$\sigma_{\rm E}/{\rm E}$ (tbeam standalone)	52%/√E+ 5.7% (7.7 λ) 45%/√E+2 % (if 9.2 λ)
Jet resolution target	~50-60%/VE ⊕ 3%
e/h	1.33
em sampling fraction	3%
Max dose at HL LHC (3000 fb-1)	0.2Mard
Max light reduction due to irradiation in run1 Max. light reduction expected at HL LHC	-2% -15%

