FCC EMCAL Simulation Plans

Summary of SW Discussions on Nov. 25

M. Aleksa

after discussions with

A. Dell'Acqua, C. Helsens, A. Henriques, C. Solans, G. Unal

Some Thoughts on EMCAL for FCC

Barrel (|n|<1.5): EMCAL space:

− R=2.5m to R= 3.6m \rightarrow ΔR=1.1m

EndCap (1.5<| η |<2.5): EMCAL space:

− z=8m to z= 9.1m \rightarrow Δz=1.1m

Forward ($|\eta|$ >2.5): EMCAL space:

− z=24m to z= 25.1m \rightarrow Δz=1.1m

"Precision" region up to p_T of $\approx 100 \text{GeV}$ and up to $|\eta| \approx 4$ (to be closer defined by physics requirements)

Some introductory thoughts

- EM energy measurement will not be able to rely on the EMCAL only, but will need to heavily rely on tracker measurement as well (of course the jet and E_T^{miss} measurement even more so)
 - High magnetic field and large radius: Bremsstrahlungs photons will end up far away from electron (i.e. will
 mostly not be contained in the same cluster, e.g. distance of e⁻ and brem γ is up to ~30cm for 20GeV e⁻),
 similar problem for photon conversions
 - High pile-up: pile-up rejection (e.g. for isolation requirement for EM objects) will also need to rely on tracker information
- → EM energy measurement in FCC will consist in an intelligent combination between tracker measurement and EMCAL measurement
- Track-cluster matching is essential to achieve the above → rather fine (lateral) granularity and position resolution

M. Aleksa (CERN)

Plans for EMCAL Software

- Fellow will start on Feb. 2016 + interested people helping
- Start with implementing simple ECAL geometry (barrel) in GEANT4 (sensitive volume information, i.e. including cell boundaries)
- Put GEANT4 model into GAUDI module (preferably via gdml)
- For the cell out-put use official I/O (Benedikt Hegner's event data model)
- In parallel continue developing DD4HEP and integration of EMCAL into DD4HEP.
- Working towards full mock-up

Plans for the next months (preliminary)

- Implement simple geometry into GEANT4 within FCCSW
 - Start standalone: Implement sampling calorimeter, stack of absorbers (e.g. Pb, W) and active material (e.g. LAr, Kr, Si).
 - Energy measurement based on truth energy deposit in active material, (no digitization, no reconstruction, like for HCAL)
 - Validation by comparing obtained performance for single particles to known calorimeter (e.g. ATLAS LAr)
 - Combine with HCAL GEANT4 model validation
 - Combined studies possible in GAUDI framework
 - Validate EDM, need magnetic field map(!), approx. material of Inner Tracker, approx. material of cryostats (for the case of LAr/Kr).
 - Eventually implement this simple calorimeter into DD4HEP inside baseline FCC detector geometry (towards full mock-up detector)
- Studies:
 - transverse granularity, Pb vs W, position resolution, track matching, π_0 rejection, particle ID (e/ γ jet distinction).
 - sampling fraction (LAr/Kr/Si and Pb/W), EM energy resolution, linearity (important to extrapolate energy scale from Z-peak or use E/p), longitudinal segmentation
 - EM energy resolution with strong magnetic field (Bremsstrahlung!), photon conversions.
 - Jet performance
 - Pile-up

M. Aleksa (CERN)