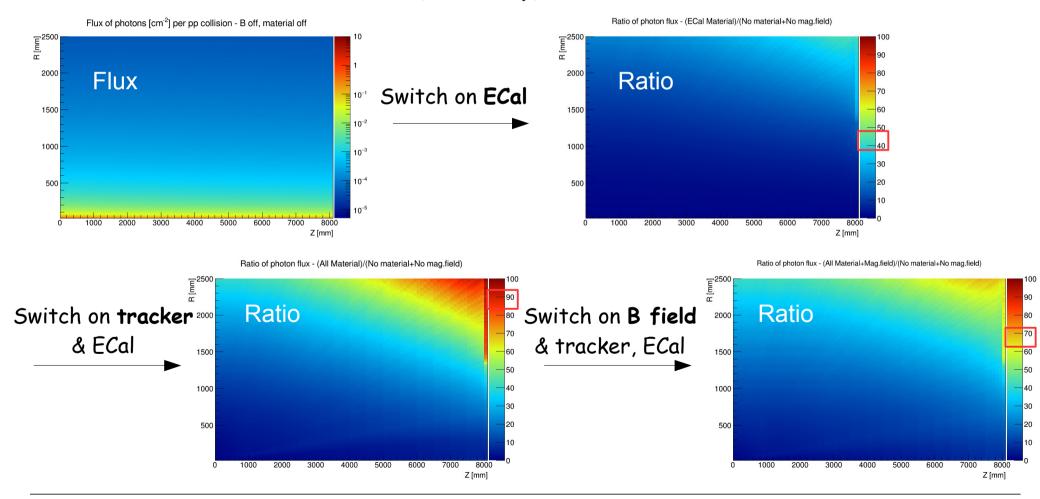
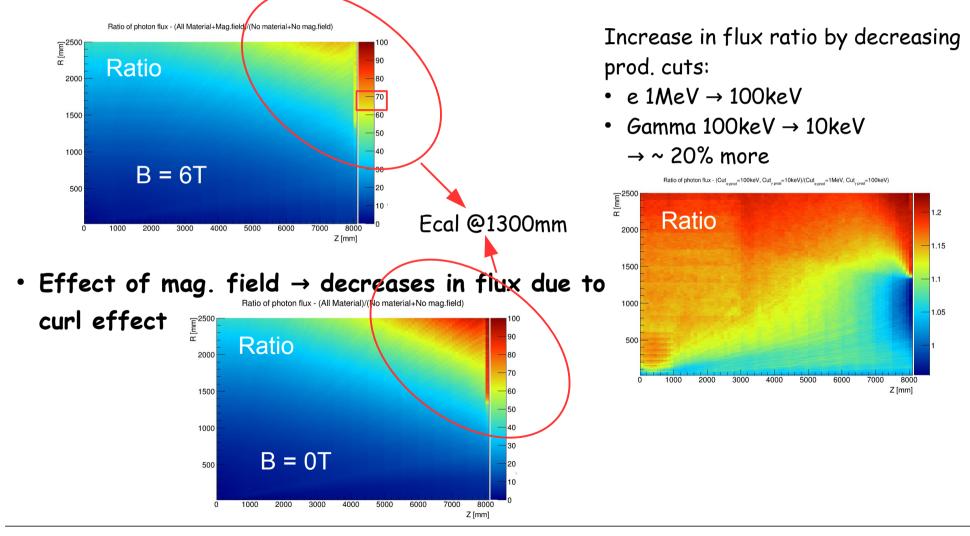
Tracker Occupancy & Material Studies for FCC-hh

Zbyněk Drásal CERN

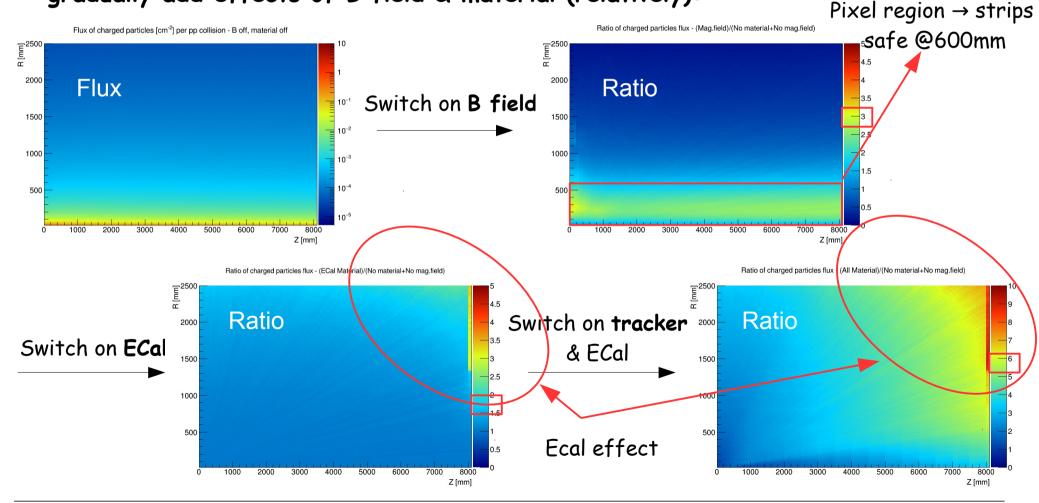

With M. Mannelli

Overview

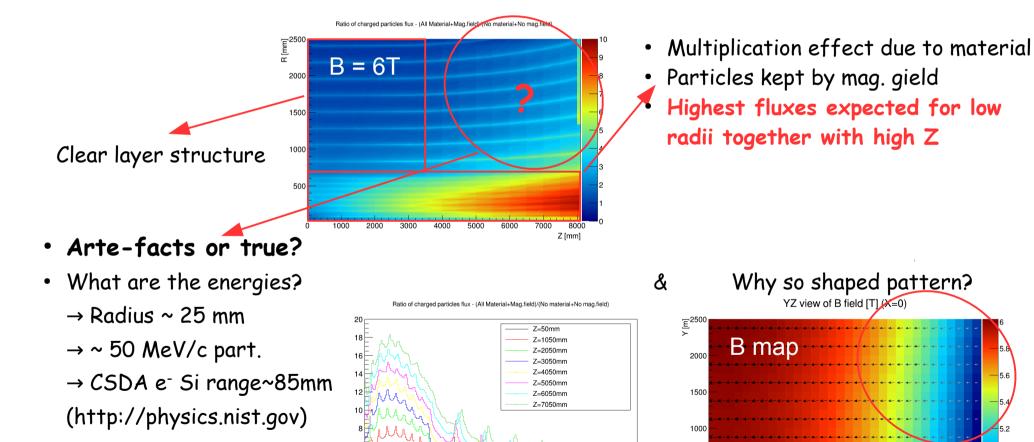
- Impact of Fluka irradiation studies on FCC-hh tracker (Fluka fluence maps kindly provided by F. Cerutti & M.I.Besana, B field map by H.T.Kate & M.Mentink)
- Tracker occupancy studies:
 - Estimation of minimum pixel sizes
 - Estimation of minimum required strip sizes
- "Extrapolation" of CMS phase 2 upgrade design to FCC-hh design in tkLayout (with significant help by S.Mersi!):
 - TkLayout verification study
 - Study of material budget
 - Study of tracker resolution
- Summary & Plans


Fluka Simulations: Photons?

 Let's have a look at irradiation map per pp collision @ 100TeV and gradually add effects of B field & material (relatively):


Photons Irradiation - Summary

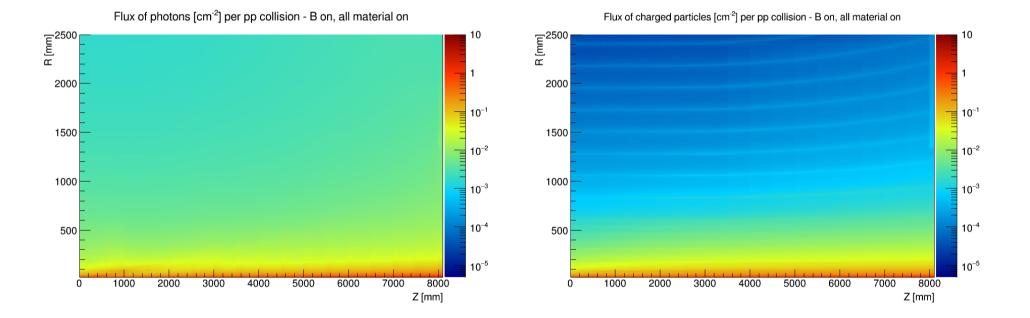
• Effects of Ecal (backscattered particles?) are clearly visible as increase in flux


Fluka Simulations: Charged particles?

• The same for charged particles (irradiation map per pp collision @ 100TeV), gradually add effects of B field & material (relatively):

Charged particles irradiation - Summary

All combined effects with B field:


December 9th 2015 - FCC-hh

R [mm]

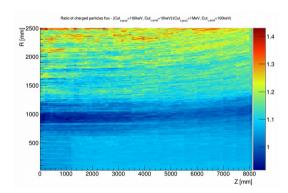
Z [m]

Fluka Simulations: Tracker Results

- Photons versus charged particles estimated fluxes:
 - Production cuts for gammas=10keV, for electrons=100 keV (effect of cuts ~ tenths of %)
 - These maps have been used to estimate the tracker occupancy ...

TkLayout: Tracker Occupancy Studies

- With the FCC-hh high pile-up ~ 200-1000 environment some natural questions arise and need to be addressed...
 - What pixel/strip size to use in order to have reasonable occupancy (i.e. ~ 1% for pixel tracker)? (will be addressed here)
 - Where to define a border, from which it is safe to use the strip detector? (answered on previous slide ~ 600mm)
 - How many high-granular pixel layers (or hybrid pixel-strip modules) & with what granularity do we need to use in order to handle the pile-up?
 - What are the expected data-rates (bandwidth needed)?


- ...

 \rightarrow all these questions can be approximately answered using the Fluka simulations in tkLayout software

Occupancy Studies - Description

• Let's assume that we want to achieve 1% occupancy in the worst case ...

- Use charged particles irradiation map normalized to pp collision
- Scale the map to 200 pp pile-up or 1000 pp pile-up
- Scan all sensors in each layer (all rings in each disc) and find the weakest spot with the highest flux → notice that the spot corresponds to the highest Z in most cases
- Calculate the pixel/strip area to have the required 1% occupancy
- Geometry used is "coverage optimized" FCC-hh baseline geometry
- Natural questions:
 - What is the effect of applied cuts?
 → ~ 5-10% in the pixel region
 → no dramatic increase
 - Do the gammas also contribute?
 - \rightarrow cut set to 10keV

- \rightarrow so they contribute mostly due e-,e+, i.e charged particles
- Is the cluster size taken into account?
 - \rightarrow No! Only full simulation (or data input) would answer such a question...

Occupancy Studies - Pixel Barrel

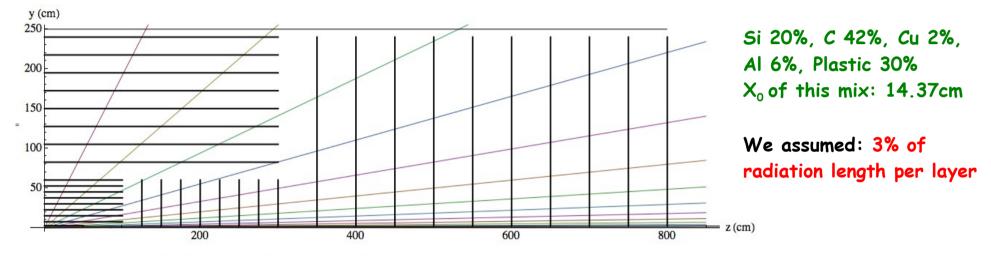
Number of pile-up events: 200 Layer no : 1 2 3 4 5 6 7 8 9 Radius [mm] : 25 0 93 3 169.2 232.9 317.9 381.6 466.5 530.1 600.0 2.5 1.3 Min flux in Z [particles/cm⁻²]: 93.8 10.4 4.1 1.0 0.6 0.5 0.3 Max flux in Z [particles/cm^-2] : 3.3 1.7 1.2 118.5 14.9 5.5 0.7 0.6 0.4 Z position [mm] related to max flux : 500.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 Max cell area in Z (1% occupancy) [mm^2]: 0.0084 0.0673 0.1834 0.3047 0.6013 0.8308 1.4028 1.7710 2.4990 Number of pile-up events: 1000 Laver no : 1 2 3 5 6 7 8 9 4 Radius [mm] : 25.0 93.3 169.2 232.9 317.9 381.6 466.5 530.1 600.0 Min flux in Z [particles/cm^-2] : 12.3 6.7 2.4 468.9 51.8 20.3 4.8 3.0 1.7 Max flux in Z [particles/cm^-2] : 592.5 74.3 27.3 16.4 8.3 6.0 3.6 2.8 2.0 Z position [mm] related to max flux : 500.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 Max cell area in Z (1% occupancy) [mm^2]: 0.0017 0.0135 0.0367 0.0609 0.1203 0.1662 0.2806 0.3542 0.4998

Summary: In the worst scenario (#pile-ups=1000) → 40x40um² @ 1st layer should be sufficient, but ...

→ current Fluka model is without services! Supports, electronics, ... are accounted for in a detector material as a mixture of Si, Cu, ... → more detailed model needed (composition matters some elements might get activated ...)

 \rightarrow tkLayout can export the geometry&material in csv format (CMS Fluka approach)

 \rightarrow estimation on cluster size should be incorporated \rightarrow not possible here (technology dependent)

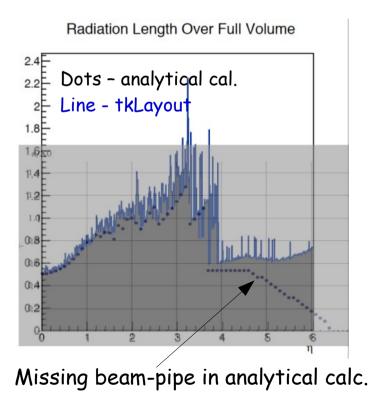

Occupancy Studies - Pixel End-cap

Number of pile-up events: 200											
Ring no :	1	2	3	4	5	6	7	8	9	10	11
Average radius [mm] :	53.5	78.5	123.5	179.5	235.5	291.5	347.5	403.5	459.5	515.5	571.5
Min flux in R [particles/cm^-2] :	22.1	12.2	7.7	4.0	2.5	1.8	1.3	0.9	0.7	0.5	0.4
Max flux in R [particles/cm^-2] :	229.2	61.7	25.8	12.1	7.3	5.0	3.4	2.5	1.9	1.4	1.1
Z position [mm] related to max flux :	7996.0	8004.0	7996.0	8004.0	7996.0	8004.0	7996.0	8004.0	7996.0	8004.0	7996.0
Max cell area in R (1% occupancy) [mm^2]:	0.0044	0.0162	0.0388	0.0825	0.1366	0.1980	0.2941	0.4061	0.5373	0.7292	0.9509
Number of pile-up events: 1000											
Ring no :	1	2	3	4	5	6	7	8	9	10	11
Average radius [mm] :	53.5	78.5	123.5	179.5	235.5	291.5	347.5	403.5	459.5	515.5	571.5
Min flux in R [particles/cm^-2] :	110.5	61.1	38.6	20.1	12.6	8.9	6.7	4.5	3.3	2.7	2.1
Max flux in R [particles/cm^-2] :	1145.8	308.6	128.8	60.6	36.6	25.2	17.0	12.3	9.3	6.9	5.3
Z position [mm] related to max flux :	7996.0	8004.0	7996.0	8004.0	7996.0	8004.0	7996.0	8004.0	7996.0	8004.0	7996.0
Max cell area in R (1% occupancy) [mm^2]:	0.0009	0.0032	0.0078	0.0165	0.0273	0.0396	0.0588	0.0812	0.1075	0.1458	0.1902

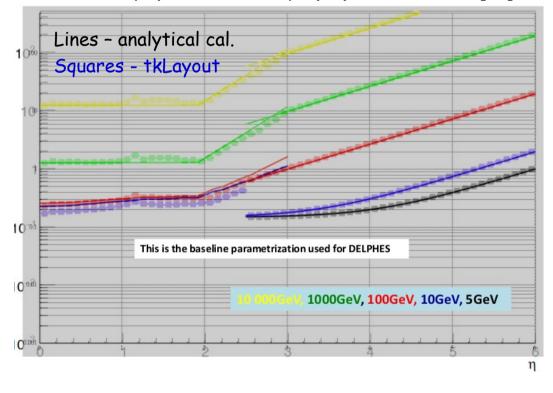
 Summary: In the worst scenario (#pile-ups=1000) → 30×30um² @ 1st ring should be sufficient, but the same arguments apply...

Tracker Material & Resolution

• W.Riegler showed the results for a simplified tracker layout:

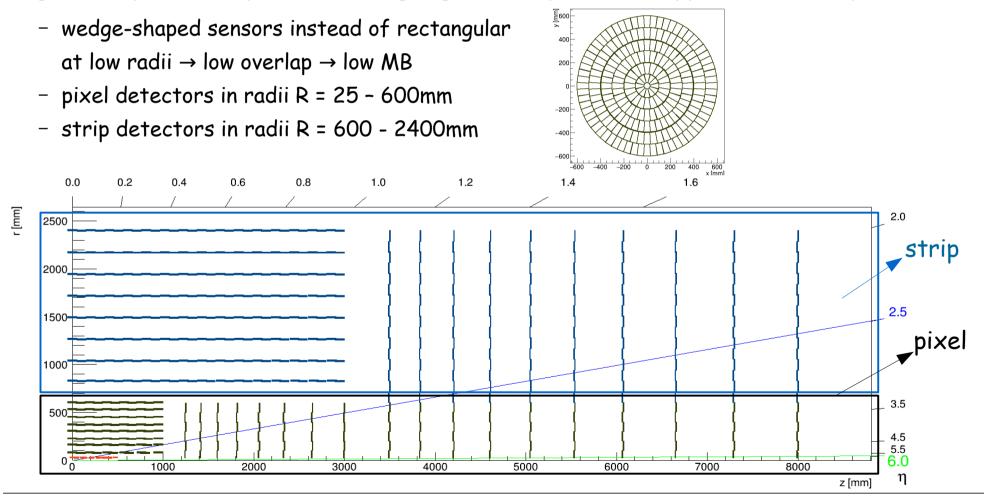


 \rightarrow the question was, how a realistic model (services, supports, etc.) would change these results, if at all?

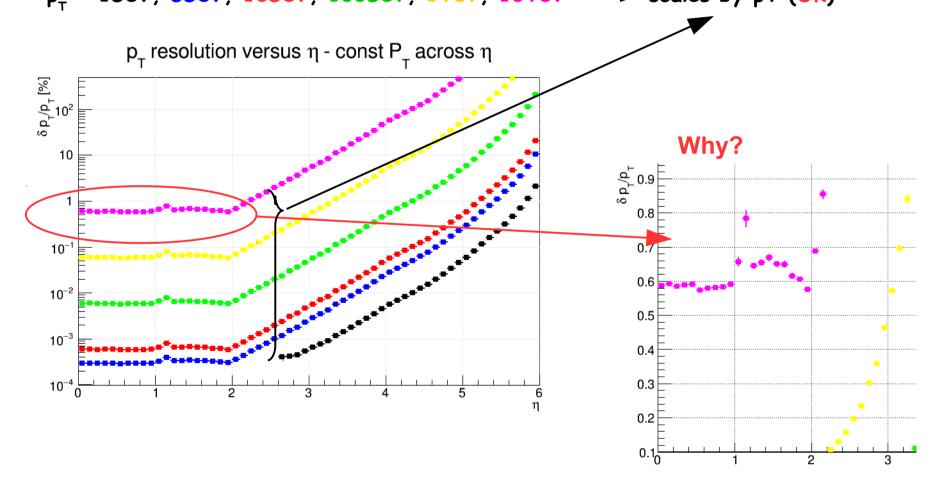

Simplified Tracker Layout

Previous results with simplified layout:

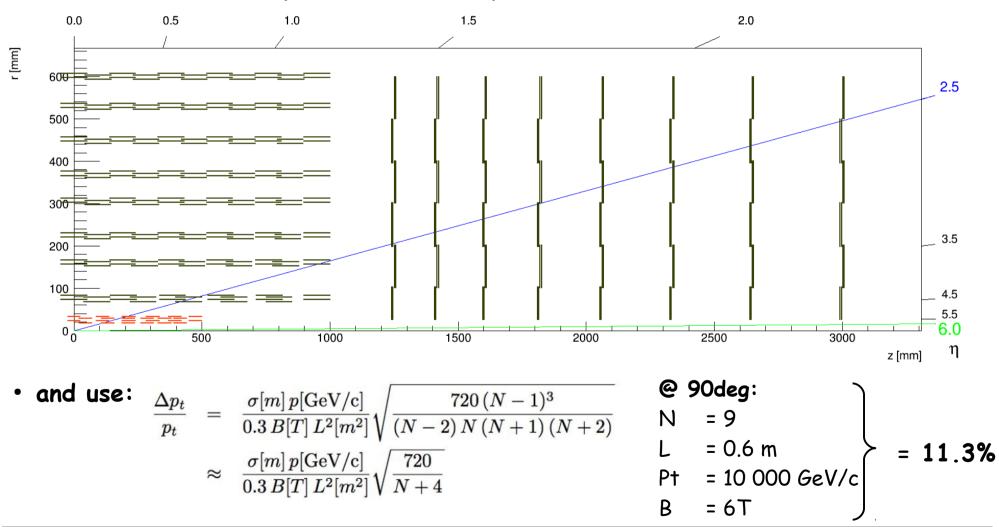
 \rightarrow Comparison of analytical calculations (W.Riegler) versus TkLayout with track parameter calculations based on parabolic approximation (Z.Drasal) \rightarrow good agreement



Total (dipole+central) dpt/pt resolution [%]


TkLayout - Verification Study (VS)

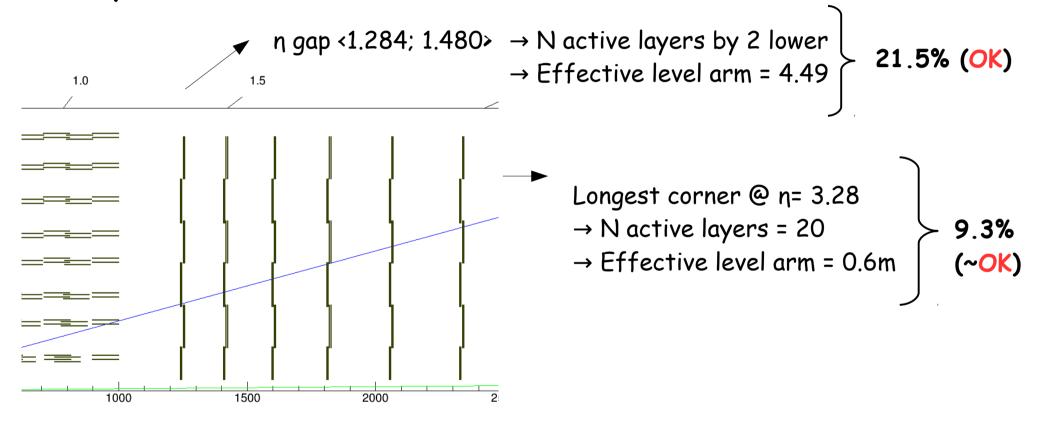
 Before going to the realistic geometry results by tkLayout, let me build a test geometry to verify the tracking algorithm (parabolic approx.) in tkLayout:


TkLayout (VS) - Ideal resolution

All detectors defined with 1um × 1um space resolution, no MS:
 p_T = 1GeV, 5GeV, 10GeV, 100GeV, 1TeV, 10TeV → scales by pT (OK)

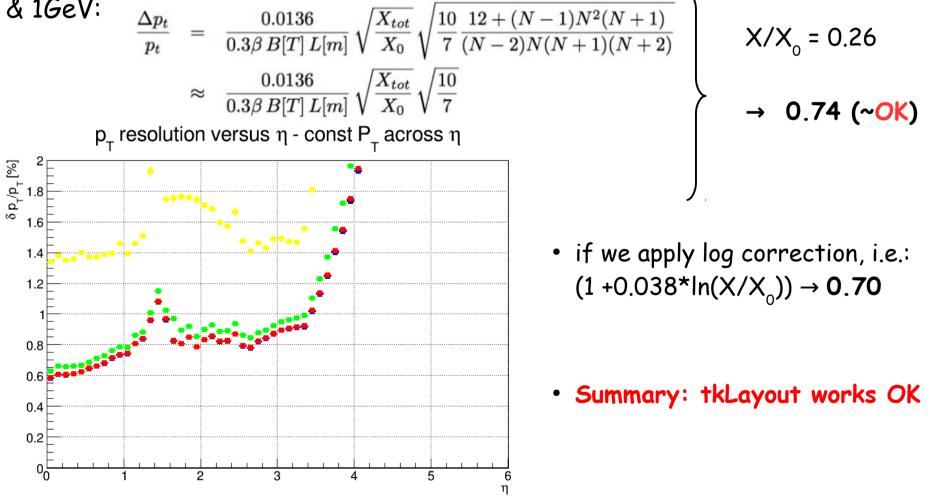
TkLayout (VS) - Ideal resolution (pixel only)

• Let's have a look at pixel detector only (easier)...

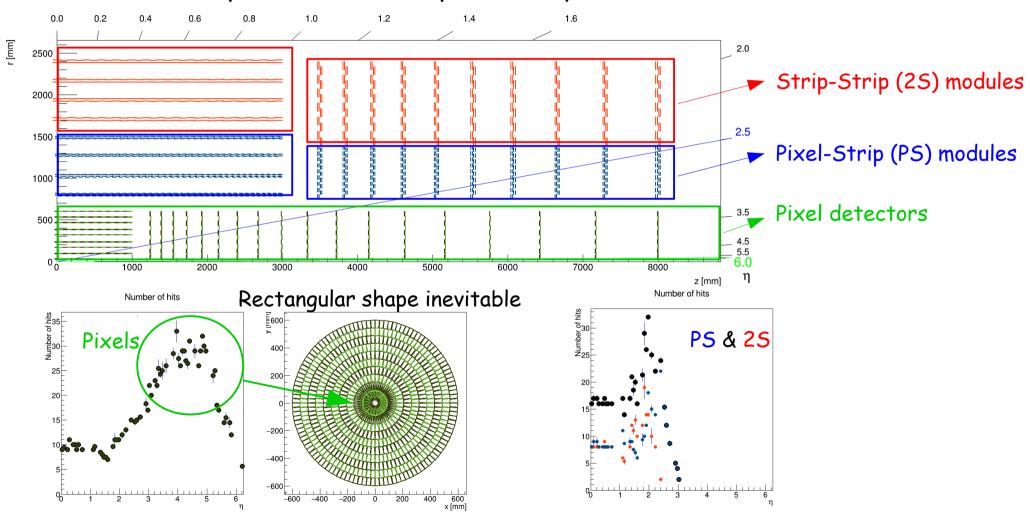

TkLayout (VS) - Ideal resolution (pixel only)

$p_{_{\rm T}}$ resolution versus η - const $P_{_{\rm T}}$ across η $\delta p_T/p_T$ [%] 24 Why? 22 ٠ Increase (max @ 20.5%) 20 18 ÷ 16 ٠ 14 Decrease ~ 10% 12 ·· ··· · 10 8 6 Break point @ $\eta \simeq 3.25$ ñ 2 З 5 Λ $L \sim 0.6m, Z = 8m$ \rightarrow η = 3.28 (OK)

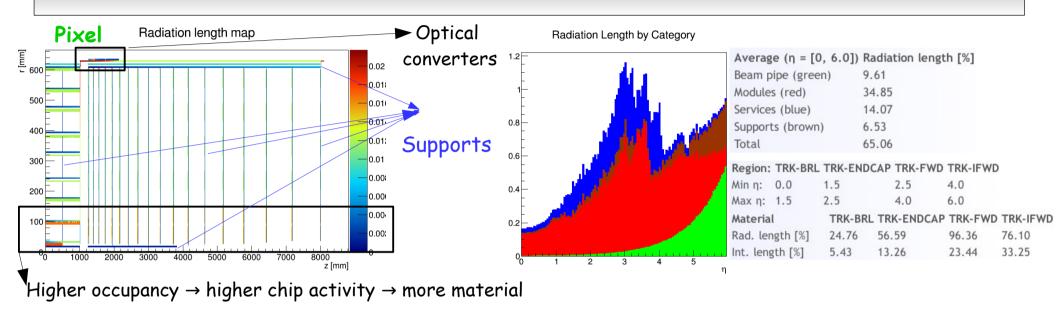
• And the result is 11.6% (OK), but ...

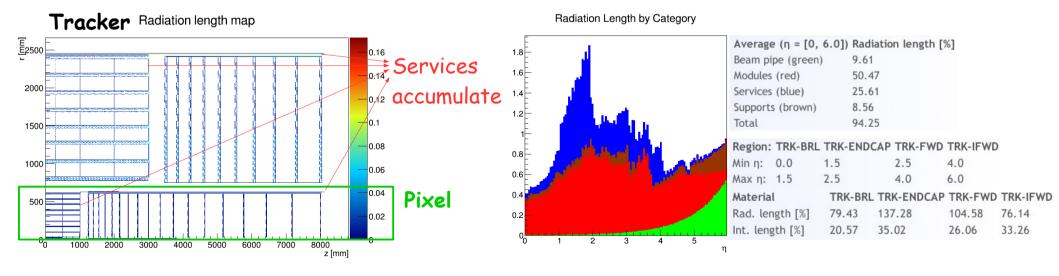

TkLayout (VS) - Ideal resolution (pixel only)

• Why increase & decrease in resolution?

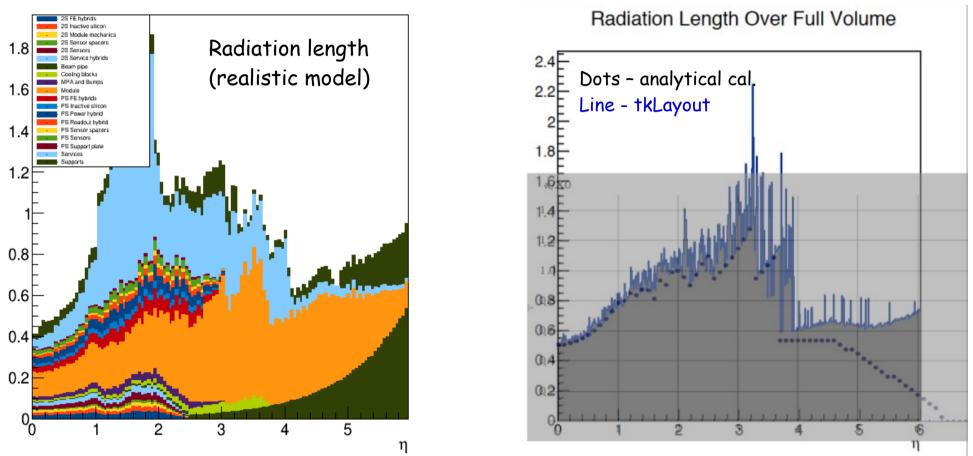

TkLayout (VS) - Ideal resolution + MS

• For low pt, resolution dominated by MS \rightarrow let's have a look at pixel detector & 1GeV:




TkLayout - Realistic Design

• Let me "extrapolate" the CMS phase 2 layout to FCC dimensions



Realistic Design: Material Budget

Tracker Comparison: Realistic versus Simplified

- Summary: The simplistic approach provides reasonable estimate on MB!
- "Disclaimer": One has to be careful when using an extrapolated geometry (without true engineering design correct supports, mechanics, ...), but still good hint!

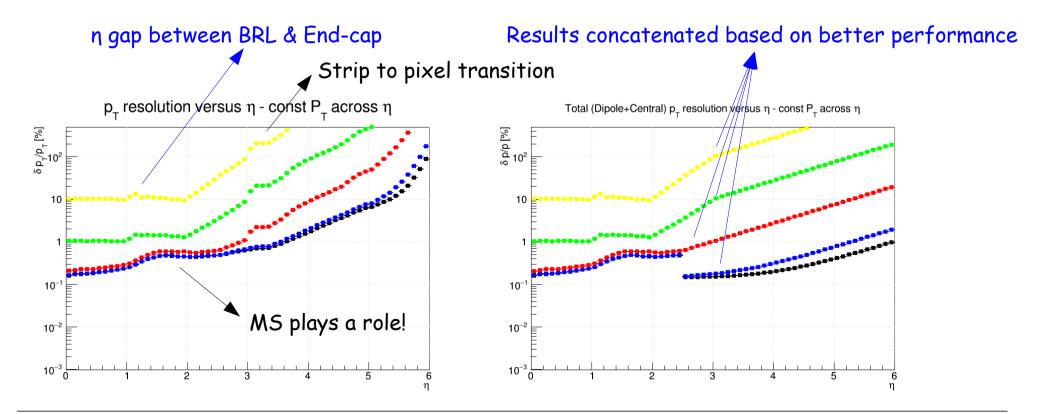
For Reference: Pixel Parameters

Layer no :	1	2	3	4	5	6	7		8	9)	Total								
Radius [mm] :	25.0	93.3	169.2	232.9	317.9	9 381	.6 4	66.5	530.	1 6	00.0									
Z-min [mm] :	-500.0	-1000.0) -1000.	0 -1000	.0 -100	0.0 -10	00.0 -	1000.0	-100	0.0 -	1000.0									
Z-max [mm] :	500.0	1000.0	1000.0	1000.	0 1000	.0 100	0.0 1	000.0	1000	0.0 1	000.0									
Number of rods :	12	36	32	44	60	72	8	8	100	1	16									
Number of modules per rod :	19	35	35	35	35	35	3	5	35	3	5									
Number of modules :	228	1260	1120	1540	2100	252	0 3	080	3500) 4	1060	19408								
Disk no :	1	2	3	4	5	6	7	8	9		10	11	12	13	14	15	16	17	18	Total
Radius-min [mm] :	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.	0 2	5.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	
Radius-max [mm] :	600.0	600.0	600.0	600.0	600.0	600.0	600.	0 600	.0 6	00.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	
Average Z pos. [mm] :	1250.	0 1394.2	2 1555.1	1734.5	1934.6	2157.9	9 2406	.8 268	4.5 2	994.	3 3339.	7 3725.1	4154.9	4634.2	5168.9	5765.3	6430.5	5 7172.5	5 8000.0)
Number of rings :	11	11	11	11	11	11	11	11	1	1	11	11	11	11	11	11	11	11	11	
Number of modules per disk	: 744	744	744	744	744	744	744	744	7	44	744	744	744	744	744	744	744	744	744	13392
Ring no :	1 2	2 3	4	5	6	7 8	8	9	10	11										
R-min [mm] :	25.0 5	50.0 95	.0 151	.0 207.0	263.0	319.0	375.0	431.0	487.0	543.	.0									
R-max [mm] :	82.0	107.0 15	2.0 208	.0 264.0	320.0	376.0 4	432.0	488.0	544.0	600.	.0									
Number of modules per ring	20	36 60	40	52	64	72 8	84	96	104	116										

Tag	PXBL01 PXBL02	PXBL03 PXBL04 PXBL05 PXBL06 PXBL07 PXBL08 PXBL09	PXER01 PXER02 PXER03	PXER04 PXER05 PXER06 PXER07 PXER08 PXER09 PXER09 PXER10 PXER11		
Туре	pixel	pixel	pixel	pixel		
Sensor spacing	0	0	0	0		/
Sensor area (mm ²)	969.0	1938.0	969.0	1938.0		
Total area (m ²)	1.4	34.7	4.0	43.8	84.0	/
N. mod	1488	17920	4176	22608	46192	
N. sens	1488	17920	4176	22608	46192	
Channels (M)	195.04	2348.81	547.36	2963.28	6054.48	
Pitch (min/max)	16	33	16	33		
R/Phi resolution (µm)	10	25	18	25		
Y resolution (µm)	10	25	18	25		

🖌 Total area

For Reference: PS&2S Parameters


Layer no :	1	2 3	4 5	6	7	8	Total														
Radius [mm] :			2.3 1485.2 1	-		-															
Z-min [mm] :			0.0 -3000.0 -3)														
Z-max [mm] :		3000.0 3000		000.0 3000.		3000.0															
Number of rods :		68 84		18 134	150	168															
Number of modules per rod	: 147	143 137	135 6	1 61	61	61															
Number of modules :		9724 115		198 8174	9150	10248	77170														
Disk no :	1	2 3	4 5	6 7	8	9	10	Total													
Radius-min [mm] :	756.6	756.6 756.6	5 756.6 756.	6 756.6 7	56.6 756	.6 756.6	756.6														
Radius-max [mm] :	2400.0	2400.0 2400.	.0 2400.0 2400	0.0 2400.0 24	400.0 240	0.0 2400.	0 2400.0	0													
Average Z pos. [mm] :	3500.0	3836.7 4205	.8 4610.4 5054	4.0 5540.2 60	073.2 665	7.4 7297.	9 8000.0	0													
Number of rings :	29	29 29	29 29	29 29	9 29	29	29														
Number of modules per disk	: 2900	2900 2900	2900 2900	2900 29	900 290	0 2900	2900	29000													
Ring no 1 2 3	4 5	6 7	8 9	10	11 1	2 13	14	15	16	17	18	19	20	21	22 23	3 24	25	26	27	28	29
R-min 754 (002 2 022 0													sanno S. Sansanna	2 1992 (1993) 13 1993 (1993)							
[mm] : 756.6 803.2 833.8	880.5 909	7 956.5 98	4.5 1031.4 10	058.0 1105.1	1 1130.5 1	177.6 120	01.8 124	19.0 1271.	9 1319	.3 1341	.0 1388.	5 1462.3	3 1564.3	1635.	1 1737.4 18	305.1 1907	7.7 1972.	5 2075	.4 2137.3	2240.4	1 2299.5
R-max 802 9 849 5 880 0	076 7 054	0 1002 9 10	20 7 1077 7 4	104 3 1151	1 1 1 7 4 7 1	222 0 12	48 0 120	5 2 1210	2 1245	6 1297	3 1/190	0 1542 0	2 1664 0	1725	6 1827 0 10	05 6 2000	2 2 2072	0 2175	0 2227 0	2240 0	2400 0
[mm] : 802.9 849.5 880.0	720./ 930	0 1002.0 10	30.7 1077.7 1	104.3 1131.4	+ 11/0./ 1	223.9 124	40.0 129	J.J 1310.	2 1303	.0 1367	.5 1409.	0 1302.8	0004.0	1/33.	0 1037.9 19	00.0 2008	5.2 20/3.	0 21/5	.7 2237.8	2340.9	7 2400.0
Number																					
of modules 56 56 60	64 64	68 68	72 7	6 76	80 8	4 84	88	88	92	92	104	108	116	120	128 13	32 140	144	152	156	164	168
per ring		50	//					50													
Tag Type	TBL03 TBL03 TBL03 TBL03	TBL03 TBL04 ptPS	TBL01 TBL02 ptPS	TEDDR18 T TEDDR19 T TEDDR20 T TEDDR21 T TEDDR23 T TEDDR23 T TEDDR24 T TEDDR26 T TEDDR26 T TEDDR29 T TEDDR29 T TEDDR29 T TEDDR29 T TEDDR29 T	EDDR01 EDDR02 EDDR03 EDDR04 EDDR05 EDDR06 EDDR07 EDDR07 EDDR09 EDDR10 EDDR10 EDDR11 EDDR11 EDDR11 EDDR13 EDDR14 EDDR15 EDDR16 EDDR17 DtPS	To	tal 🗸	area			Tag				TBL05 TBL06 TBL07 TBL08	TBL03 TBL04	TBL0 TBL0		TEDDR18 TEDDR19 TEDDR20 TEDDR21 TEDDR22 TEDDR23 TEDDR24 TEDDR25 TEDR26 TEDDR26 TEDDR27 TEDDR28 TEDDR28 TEDDR29	TEDDR01 TEDDR02 TEDDR04 TEDDR05 TEDDR06 TEDDR07 TEDDR09 TEDDR10 TEDDR11 TEDDR11 TEDDR13 TEDDR14 TEDDR15 TEDDR16	2 3 4 5 5 7 7 8 9 0 0 1 1 2 3 4 5 5 5
Sensor spacing	1.8	1.6	2.6	4 4																TEDDR17	7
Sensor area (mm ²)		.7 4441.0	4441.0	9189.7 4		/															
Total area (m ²)	639.		156.9		25.2	1840.8	2			F	Pitch (mi	in/max)			90	100	10	0	90	100	
N. mod	3477		17662		25360	135170				F	R/Phi res	solution	(µm)		18	20	20	6	18	20	
N. sens	6954		35324		50720	270340					resolut				14506	417	41	7	14506	417	5
Channels (M)		31 807.45	576.49	132.65 8		2485.6						N.									
citatitets (m)	1-11.	51 007.45	570.47	152.05 0		2403.0															

December 9th 2015 - FCC-hh

Tracker Resolution

 Resolution plots for the realistic geometry layout: central tracker (left) versus full tracker (right)

→ dipole resolution calculated based on standard formula (see W.Riegler calculation https://indico.cern.ch/event/443015/)

Summary

• Important message:

- One can use different levels of geometry layout details and tracking algorithm (pattern recognition) complexity to understand the key parameters of the tracker
- For that purpose the CMS Phase 2 design has been extrapolated to FCC-hh dimensions (with its limitations) & material budget and resolution have been studied → the results are compatible with the simplistic design, nevertheless more details are clear/more precise with the detailed geometry
- Fluka flux simulations have been used to understand the detector occupancy and how the occupancy is influenced by magnetic field strength & material budget. These simulations are of crucial importance to study the pattern recognition, layout design ... → in order to have more realistic estimation, more layout details should be implemented within Fluka (e.g. using tkLayout geometry + material output)
- Plans: Have a look at pattern recognition using tkLayout & Fluka simulations