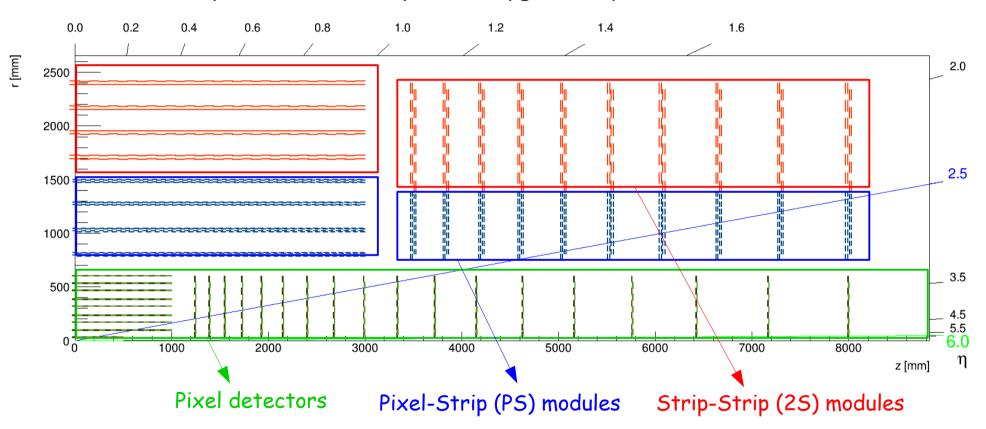

Tracker Data Rate Studies for FCC-hh

Zbyněk Drásal CERN

With M. Mannelli

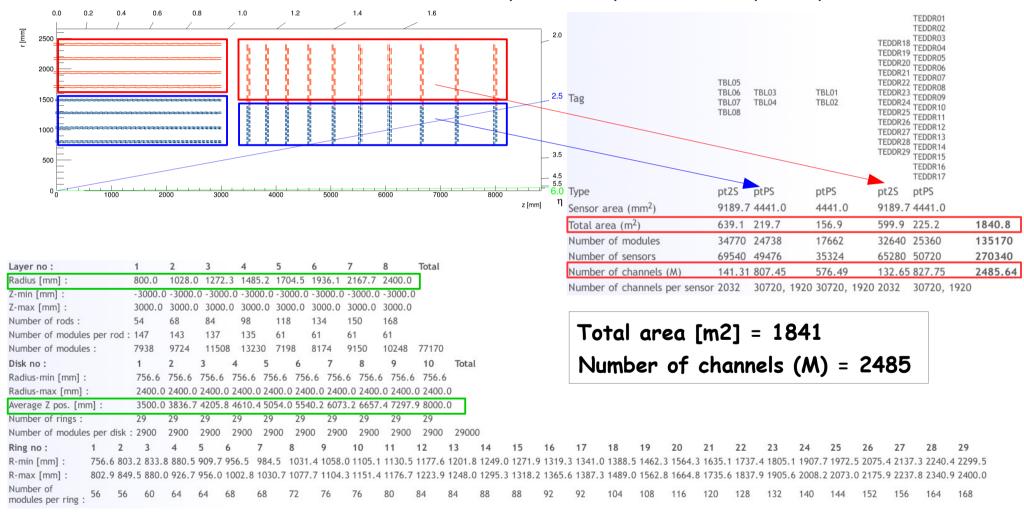


• Data rate studies:

- FCC-hh tracker model based on CMS phase 2 upgrade design pixel, PS, 2S modules
- Fluka irradiation map (F. Cerutti & M.I.Besana) & hit occupancy estimation
- Data addressing scheme
- Results & conclusions

FCC-hh Tracker Model

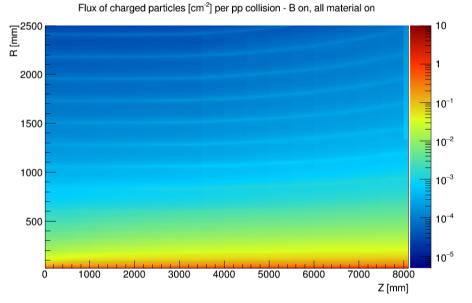
• Let me "extrapolate" the CMS phase 2 upgrade layout to FCC dimensions


FCC-hh Tracker Model - Inner Geometry

• Geometry parameters of the inner tracker with pixel modules

	2.0		2.5						3	1.5	Tag				PXBL01 PXBL02	PXBL03 PXBL04 PXBL05 PXBL06 PXBL07 PXBL07 PXBL08 PXBL09	PXER01 PXER02 PXER03	PXER04 PXER05 PXER06 PXER07 PXER08 PXER09 PXER10 PXER11	
300					l l						Туре				pixel	pixel	pixel	pixel	
200									4	.5		or area (r				1938.0	969.0	1938.0	
											-	l area (m	,		1.4	34.7	4.0	43.8	84.0
100									Г	i.5		ber of mo			1488	17920	4176	22608	46192
		3000	4000	5000	6000	70	000	8000	6	.0		ber of ser		0	1488	17920	4176	22608	46192
								z	[mm]	η		ber of cha		· ·		2348.81			6054.48
Layer no :	1	2	3	4	5	6	7	8		9	Total	Toto	al ar	ea [[m2]	= 8	4		
										-									
Radius [mm] :	25.0	93.3	169.2	232.9	317.9	381.6	6 466.	5 530).1 (600.0		Num	ber	of	chan	nels	(M)	= 6	054
Radius [mm] : Z-min [mm] :				232.9 0 -1000.								Nur	ber	of	chan	nels	(M)	= 6	054
				0 -1000.	0 -1000	.0 -1000	0.0 -100	0.0 -10	00.0	600.0		Nur	nber	of	chan	nels	(M)	= 6	054
Z-min [mm] :	-500.0	-1000.0	-1000.0	0 -1000.	0 -1000	.0 -1000	0.0 -100	0.0 -10	00.0 · 00.0 ·	600.0 -1000.0		Nur	ber	of	chan	nels	(M)	= 6	054
Z-min [mm] : Z-max [mm] :	-500.0 500.0 12	-1000.0 1000.0	-1000.0 1000.0	0 -1000. 1000.0	0 -1000 1000.	0.0 -1000 0 1000.	0.0 -100 .0 1000	00.0 -10 0.0 100	00.0 · 00.0 ·	600.0 -1000.0 1000.0		Nur	ıber	of	chan	nels	(M)	= 6	054
Z-min [mm] : Z-max [mm] : Number of rods :	-500.0 500.0 12	-1000.0 1000.0 36	-1000.0 1000.0 32	0 -1000.0 1000.0 44	0 -1000 1000. 60	0.0 -1000 0 1000. 72	0.0 -100 .0 1000 88	00.0 -10 0.0 100 100 35	00.0 ·)0.0 ·	600.0 -1000.0 1000.0 116	19408	Nur	ıber	of	chan	nels	(M)) = 6	054
Z-min [mm] : Z-max [mm] : Number of rods : Number of modules per rod :	-500.0 500.0 12 19	-1000.0 1000.0 36 35	-1000.0 1000.0 32 35	0 -1000.0 1000.0 44 35 1540	0 -1000 1000. 60 35 2100	0.0 -1000 0 1000. 72 35	0.0 -100 .0 1000 88 35 3080	00.0 -10 0.0 100 100 35 0 350	00.0 ·)0.0 ·	600.0 -1000.0 1000.0 116 35		Nur	13	of (15	nels	(M)	18	054 Total
Z-min [mm] : Z-max [mm] : Number of rods : Number of modules per rod : Number of modules :	-500.0 500.0 12 19	-1000.0 1000.0 36 35 1260	-1000.0 1000.0 32 35 1120	0 -1000. 1000.0 44 35 1540 4	0 -1000 1000. 60 35 2100 5	0.0 -1000 0 1000. 72 35 2520 6	0.0 -100 .0 1000 88 35 3080 7	00.0 -10 0.0 100 100 35 0 350 8	00.0 ·)0.0 ·)	600.0 -1000.0 1000.0 116 35 4060	19408								
Z-min [mm] : Z-max [mm] : Number of rods : Number of modules per rod : Number of modules : Disk no :	-500.0 500.0 12 19 228 1	-1000.0 1000.0 36 35 1260 2	-1000.0 1000.0 32 35 1120 3	0 -1000. 1000.0 44 35 1540 4 25.0	0 -1000 1000. 60 35 2100 5 25.0	0.0 -1000 0 1000 72 35 2520 6 25.0	0.0 -100 .0 1000 88 35 3080 7 5 25.0 5	00.0 -10 0.0 100 100 35 0 350 8 25.0	00.0 ·)0.0 ·))0 · 9	600.0 -1000.0 110 35 4060 10 25.0	19408 11	12	13	14	15	16	17	18 25.0	Total
Z-min [mm] : Z-max [mm] : Number of rods : Number of modules per rod : Number of modules : Disk no : Radius-min [mm] :	-500.0 500.0 12 19 228 1 25.0 600.0	-1000.0 1000.0 36 35 1260 2 25.0	-1000.0 1000.0 32 35 1120 3 25.0 600.0	0 -1000. 1000.0 44 35 1540 4 25.0	0 -1000 1000. 60 35 2100 5 25.0 600.0	0.0 -1000 0 1000. 72 35 2520 6 25.0 600.0	0.0 -100 .0 1000 88 35 3080 7 25.0 2 600.0 1	00.0 -10 0.0 100 100 35 0 350 8 25.0 600.0	00.0 ·)0.0 ·))0 · 9 25.0 600.0	600.0 -1000.0 1000.0 116 35 4060 10 25.0 600.0	19408 11 25.0	12 25.0 600.0	13 25.0 600.0	14 25.0 600.0	15 25.0 600.0	16 25.0	17 25.0 600.0	18 25.0 600.0	Total
Z-min [mm] : Z-max [mm] : Number of rods : Number of modules per rod : Number of modules : Disk no : Radius-min [mm] : Radius-max [mm] :	-500.0 500.0 12 19 228 1 25.0 600.0	-1000.0 1000.0 36 35 1260 2 25.0 600.0	-1000.0 1000.0 32 35 1120 3 25.0 600.0	0 -1000. 1000.0 44 35 1540 4 25.0 600.0 1734.5	0 -1000 1000. 60 35 2100 5 25.0 600.0	0 -1000 0 1000 72 35 2520 6 25.0 600.0 2157.9	0.0 -100 .0 1000 88 35 3080 7 25.0 600.0 2406.8	00.0 -10 0.0 100 100 35 0 350 8 25.0 600.0 2684.5	00.0 ·)0.0 ·))0 · 9 25.0 600.0	600.0 -1000.0 1000.0 116 35 4060 10 25.0 600.0	19408 11 25.0 600.0	12 25.0 600.0	13 25.0 600.0	14 25.0 600.0	15 25.0 600.0	16 25.0 600.0	17 25.0 600.0	18 25.0 600.0	Total

FCC-hh Tracker Model - Outer Geometry


• Parameters of the inner tracker with PS (pixel-strip) & 25 (strip-strip) modules

Fluka Simulations & Hit Occupancy

• How to estimate the occupancy & hit-rates?

- Use Fluka simulated fluence of charged particles [particles/cm⁻²] per pp collision

- Scan detector module by module \rightarrow find corresponding fluences
- Scale these numbers to expected max pile-ups = 1000 \rightarrow i.e. get fluence per bunch crossing
- Calculate hit-rates:
 - Non-triggered data \rightarrow f = 40 MHz
 - Triggered data \rightarrow f ~ 1 MHz (value given by hardware limits, e.g. FPGA etc.)

Data Bandwidth & Data Rates

- How to calculate the required bandwidth from hit rates? Two options how to address the data:
 - 1) Sparsified data:
 - \rightarrow address each channel: nBits = log₂(nRows) + log₂(nColumns)
 - \rightarrow add data block for cluster width: assuming avg cluster-size~3 \rightarrow 2bits
 - → add data block for pulse-height: Obits (binary read-out), 4-8bits (analog read-out)

2) Unsparsified data:

 \rightarrow address the whole matrix: nBits = 1bit/channel x nRows x nColumns (x 4-8bits for analog)

Inner barrel: 1 st layer (binary re	ead-out)		
#Hit-channels per module per BX :	5224		Hit rate/collision/module * nPileUps=1000
Module avg occupancy (max[sen1,sen2])[%] :	3.99		
Module bandwidth/(addr+clsWidth=2b[b] :	19		Sparsified data: 17bits (address) + 2bits (clsWidth)
Mod. bandwidth(#chnls*(addr+clsWidth)[kb] :	96.93	\longrightarrow	Module bandwidth \rightarrow sparsified data, binary read-out
Mod. bandwidth (matrix*1b/channel) [kb] :	128.00		Module bandwidth \rightarrow unsparsified data, binary r-o
Data rate per layer - 40MHz,spars [Tb/s] :	823		
Data rate per layer - 1MHz, spars [Tb/s] :	20		
Data rate per ladder - 40Mhz,spars [Gb/s] :	70257		
Data rate per ladder - 1Mhz,spars [Gb/s] :	1756		
Data rate per module - 40Mhz, spars [Gb/s]:	3697.74		Data rate per module for untriggered data (40MHz)
Data rate per module - 1Mhz, spars [Gb/s]:	92.44		Data rate per module for triggered data (1MHz)

Results: Inner Barrel (Binary read-out)

Pixel detector

Total data flow from inner barrel

lumber of pile-up events: 1000											
ayer no :	1	2	3	4	5	6	7	8	9	Total [TB/s]	
tadius [mm] :	25.0	93.3	169.2	232.9	317.9	381.6	466.5	530.1	600.0		
Ain flux in Z [particles/cm^-2] :	480.9	52.6	20.8	12.5	6.9	4.9	3.1	2.4	1.7		
Nax flux in Z [particles/cm^-2] :	605.7	75.5	27.7	16.7	8.5	6.1	3.6	2.9	2.0		
position [mm] related to max flux :	500.0	1000.0	1000.0	1000.0	1000.0	1000.0	1000.0	1000.0	1000.0		
Max cell area in Z (1% occupancy) [mm^2] :	0.0017	0.0133	0.0361	0.0600	0.1170	0.1631	0.2740	0.3455	0.4892		
Hits per BX (bunch crossing) :	1191126	782118	520512	427240	306090	262404	195096	173950	143898		
Hit-channels per BX :	1191126	782118	520512	427240	306090	262404	195096	173950	143898		
Hit-channels per module per BX :	5224	620	464	277	145	104	63	49	35		
Nodule avg occupancy (max[sen1,sen2])[%] :	3.99	0.47	0.35	0.21	0.11	0.08	0.05	0.04	0.03		
Nodule bandwidth/(addr+clsWidth=2b[b] :	19	19	19	19	19	19	19	19	19		
Nod. bandwidth(#chnls*(addr+clsWidth)[kb] :	96.93	11.52	8.62	5.15	2.70	1.93	1.18	0.92	0.66		
Nod. bandwidth (matrix*1b/channel) [kb] :	128.00	128.00	128.00	128.00	128.00	128.00	128.00	128.00	128.00		
ata rate per layer - 40MHz,spars [Tb/s] :	823	540	359	295	211	181	134	120	99	345	
ata rate per layer - 1MHz,spars [Tb/s] :	20	13	8	7	5	4	3	3	2	8	
Data rate per ladder - 40Mhz,spars [Gb/s] :	70257	15377	11513	6872	3610	2579	1569	1231	878		I
ata rate per ladder - 1Mhz,spars [Gb/s] :	1756	384	287	171	90	64	39	30	21	_	
ata rate per module - 40Mhz,spars [Gb/s]:	3697.74	439.35	328.95	196.37	103.17	73.70	44.83	35.18	25.09		
ata rate per module - 1Mhz,spars [Gb/s]:	92.44	10.98	8.22	4.91	2.58	1.84	1.12	0.88	0.63		
		9.5	(1.1)	Gb/s/	′cm²		L		0.05	_ (0.03) Gt	o/s/

January 21st 2016 - FCC-hh

Results: Inner End-cap (Binary read-out)

Pixel detector

Total data flow from inner end-cap

Number of pile-up events: 1000												<u> </u>
Ring no :	1	2	3	4	5	6	7	8	9	10	11	Total [TB/s]
Average radius [mm] :	53.5	78.5	123.5	179.5	235.5	291.5	347.5	403.5	459.5	515.5	571.5	
Min flux in R [particles/cm^-2] :	113.4	62.0	39.3	20.5	12.8	9.1	6.9	4.6	3.4	2.7	2.2	
Max flux in R [particles/cm^-2] :	1169.2	317.8	131.3	61.7	37.3	25.6	17.4	12.5	9.5	7.0	5.3	
Z position [mm] related to max flux :	7996.0	8004.0	7996.0	8004.0	7996.0	8004.0	7996.0	8004.0	7996.0	8004.0	7996.0	
Max cell area in R (1% occupancy) [mm^2]:	0.0009	0.0031	0.0076	0.0162	0.0268	0.0390	0.0575	0.0799	0.1058	0.1430	0.1873	
#Hits per BX (bunch crossing) :	1431460	1770732	1324020	1000360	845416	673728	518976	442680	385632	305136	256360	
#Hit-channels per BX :	1431460	1770732	1324020	1000360	845416	673728	518976	442680	385632	305136	256360	
#Hit-channels per module per BX :	1988	1366	612	694	451	292	200	146	111	81	61	
Module avg occupancy (max[sen1,sen2]) [%] :	1.52	1.04	0.47	0.53	0.34	0.22	0.15	0.11	0.09	0.06	0.05	
Module bandwidth/(addr+clsWidth=2b[b] :	19	19	19	19	19	19	19	19	19	19	19	
Mod. bandwidth(#chnls*(addr+clsWidth)[kb] :	36.89	25.35	11.37	12.89	8.38	5.43	3.72	2.72	2.07	1.51	1.14	
Mod. bandwidth (matrix*1b/channel) [kb] :	128.00	128.00	128.00	128.00	128.00	128.00	128.00	128.00	128.00	128.00	128.00	
Data rate per ringLayer-40MHz,spars [Tb/s]:	989	1223	915	691	584	465	358	305	266	210	177	773
Data rate per ringLayer- 1MHz, spars [Tb/s]:	24	30	22	17	14	11	8	7	6	5	4	19
Data rate per ring - 40Mhz, spars [Gb/s] :	28144	34814	26031	19668	16621	13246	10203	8703	7582	5999	5040	
Data rate per ring - 1Mhz, spars [Gb/s] :	703	870	650	491	415	331	255	217	189	149	126	_
Data rate per module - 40Mhz, spars [Gb/s]:	1407.21	967.08	433.86	491.71	319.65	206.97	141.72	103.61	78.98	57.69	43.45]
Data rate per module - 1Mhz, spars [Gb/s]:	35.18	24.18	10.85	12.29	7.99	5.17	3.54	2.59	1.97	1.44	1.09	
			3.6 (2.5) <i>G</i> I	b/s/c	m²			0.	07 (0.	06) G	b/s/cm ²

Comment: To get a 4b analog data output, use conversion factor \rightarrow f=((19+4)/19)

Results: Outer Barrel (Binary read-out)

Pixel-strip or strip-strip detector

Total data flow <u>from</u> outer barrel

Layer no :	1	2	3	4	5	6	7	8	Total [TB/s
Radius [mm] :	800.0	1028.0	1272.3	1485.2	1704.5	1936.1	2167.7	2400.0	6.3 2
Min flux in Z [particles/cm^-2] :	0.7	0.4	0.3	0.2	0.1	0.1	0.1	0.1	
Max flux in Z [particles/cm^-2] :	0.9	0.5	0.4	0.2	0.1	0.1	0.1	0.1	
Z position [mm] related to max flux :	3000.0	3000.0	3000.0	3000.0	2900.0	2600.0	3000.0	2500.0	
Max cell area in Z (1% occupancy) [mm^2] :	1.11	2.18	2.70	5.04	7.37	8.88	10.33	12.27	
#Hits per BX (bunch crossing) :	562950	357136	286272	215600	176764	160666	138750	108864	
#Hit-channels per BX :	562950	357136	286272	215600	176764	160666	138750	108864	
#Hit-channels per module per BX :	70	36	24	16	24	19	15	10	
Module avg occupancy (max[sen1,sen2])[%] :	1.85	0.96	0.65	0.42	0.60	0.48	0.37	0.26	
Module bandwidth/(addr+clsWidth=2b[b] :	30	30	30	30	26	26	26	26	
Mod. bandwidth(#chnls*(addr+clsWidth)[kb] :	1.04	0.54	0.36	0.24	0.31	0.25	0.19	0.13	
Mod. bandwidth (matrix*1b/channel) [kb] :	31.88	31.88	31.88	31.88	3.97	3.97	3.97	3.97	
Data rate per layer - 40MHz,spars [Tb/s] :	307	194	156	117	83	75	65	51	131
Data rate per layer - 1MHz,spars [Tb/s] :	7	4	3	2	2	1	1	1	3
Data rate per ladder - 40Mhz,spars [Gb/s] :	5825	2934	1904	1229	725	580	447	313	
Data rate per ladder - 1Mhz,spars [Gb/s] :	145	73	47	30	18	14	11	7	
Data rate per module - 40Mhz,spars [Gb/s]:	39.63	20.52	13.90	9.11	11.89	9.52	7.34	5.14	
Data rate per module - 1Mhz,spars [Gb/s]:	0.99	0.51	0.35	0.23	0.30	0.24	0.18	0.13	

Comment: To get a 4b analog data output, use conversion factor $\rightarrow f_1 = (34/30)$ for the first 4 layers

& f_2 =(30/26) for the second 4 layers

Results: Outer End-cap (Binary read-out)

Pixel-strip or strip-strip detector

Total data flow from outer end-cap

Ring no :	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	Total [TB/s]
Average radius [mm] :	779.8	826.3	856.9	903.6	932.9	979.7	1007.6	1054.5	5 1081.2	1128.2	1153.0	5 1200.8	1224.9	1272.2	2 1295.1	1342.	5 1364.	1 1438.8	1512.5	5 1614.6	1685.3	3 1787.6	6 1855.4	1958.0	2022.8	8 2125.7	7 2187.6	2290.7	2349.8	
Min flux in R [particles/cm^-2] :	0.96	1.00	0.71	0.57	0.50	0.48	0.47	0.50	0.38	0.32	0.29	0.29	0.28	0.29	0.27	0.21	0.19	0.18	0.16	0.13	0.13	0.10	0.09	0.10	0.07	0.07	0.07	0.05	0.05	1 1
Max flux in R [particles/cm^-2] :	1.92	1.61	1.44	1.40	1.36	1.18	0.96	0.79	0.73	0.72	0.73	0.70	0.67	0.50	0.46	0.64	0.50	0.64	0.50	0.47	0.37	0.38	0.26	0.31	0.24	0.24	0.20	0.21	0.15	
Z position [mm] related to max flux :	7981.5	8018.5	7981.5	6675.9	7981.5	8018.5	7981.5	i 8018.5	5521.7	6091.7	7279.4	4 8018.5	7981.5	5 8018.5	5 7981.5	8018.	5 7981.	5 8018.5	7981.5	5 8018.5	7981.5	5 8018.5	5 7981.5	5 8018.5	5 7981.	5 8018.5	5 7981.5	8018.5	5 7981.5	
Max cell area in R (1% occupancy) [mm^2]:	0.5	0.6	0.7	0.7	0.7	0.8	1.0	1.3	1.4	1.4	1.4	1.4	1.5	2.0	2.2	1.6	2.0	1.6	2.0	2.1	2.7	2.6	3.8	3.2	4.1	4.2	5.0	4.7	6.8	
#Hits per BX (bunch crossing) :	127568	122080	124680	105984	1 92032	79832	72896	77904	80560	67488	64960	59136	54264	55792	60368	57408	51520	106288	10454	4 92568	79200	86272	72072	75880	69120	60192	62400	57072	48048	1
		122080	124680	105984	1 92032	79832	72896	77904	80560	67488	64960	59136	54264	55792	60368	57408	51520	106288	10454	4 92568	79200	86272	72072	75880	69120	60192	62400	57072	48048	1
#Hit-channels per module per BX	113	109	103	82	71	58	53	54	53	44	40	35	32	31	34	31	28	51	48	39	33	33	27	27	24	19	20	17	14	
Module avg occupancy (max[sen1,sen2]) [%] :	2.97	2.84	2.71	2.16	1.87	1.53	1.40	1.41	1.38	1.16	1.06	0.92	0.84	0.83	0.89	0.81	0.73	1.26	1.19	0.98	0.81	0.83	0.67	0.67	0.59	0.49	0.49	0.43	0.35	
Module bandwidth/(addr+clsWidth=2b[b] :	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	26	26	26	26	26	26	26	26	26	26	26	26	
Mod. bandwidth(#chnls* (addr+clsWidth)[kb] :	1.67	1.60	1.52	1.21	1.05	0.86	0.79	0.79	0.78	0.65	0.59	0.52	0.47	0.46	0.50	0.46	0.41	0.65	0.61	0.51	0.42	0.43	0.35	0.34	0.30	0.25	0.25	0.22	0.18	
Mod. bandwidth (matrix*1b/channel) [kb] :	31.88	31.88	31.88	31.88	31.88	31.88	31.88	31.88	31.88	31.88	31.88	31.88	31.88	31.88	31.88	31.88	31.88	3.97	3.97	3.97	3.97	3.97	3.97	3.97	3.97	3.97	3.97	3.97	3.97	
Data rate per ringLayer- 40MHz,spars [Tb/s]:	69	66	68	57	50	43	39	42	43	36	35	32	29	30	32	31	28	50	49	43	37	40	34	35	32	28	29	26	22	146
Data rate per ringLayer- 1MHz,spars [Tb/s]:	1	1	1	1	1	1	0	1	1	0	0	0	0	0	0	0	0	1	1	1	0	1	0	0	0	0	0	0	0	3
Data rate per ring - 40Mhz,spars [Gb/s] :	3564	3410	3483	2961	2571	2230	2036	2176	2250	1885	1814	1652	1516	1558	1686	1603	1439	2573	2531	2241	1917	2089	1745	1837	1673	1457	1510	1381	1163	
Data rate per ring - 1Mhz,spars [Gb/s] :	89	85	87	74	64	55	50	54	56	47	45	41	37	38	42	40	35	64	63	56	47	52	43	45	41	36	37	34	29	
Data rate per module - 40Mhz,spars [Gb/s]:	63.65	60.91	58.06	46.27	40.18	32.80	29.95	30.23	29.62	24.81	22.69	19.67	18.05	17.71	19.17	17.43	15.65	24.75	23.44	19.32	15.98	16.32	13.22	13.12	11.62	9.59	9.69	8.43	6.93	
Data rate per module - 1Mhz,spars [Gb/s]:	1.59	1.52	1.45	1.16	1.00	0.82	0.75	0.76	0.74	0.62	0.57	0.49	0.45	0.44	0.48	0.44	0.39	0.62	0.59	0.48	0.40	0.41	0.33	0.33	0.29	0.24	0.24	0.21	0.17	

Comment: To get a 4b analog data output, use conversion factor $\rightarrow f_1 = (34/30)$ for the first 17 rings & $f_2 = (30/26)$ for the second 12 rings

January 21st 2016 - FCC-hh

Summary

- Summary & comments:
 - Data rates estimated for a CMS phase 2 upgrade design extrapolated to FCC-hh dimensions
 - \rightarrow not an optimized design
 - \rightarrow results need to be taken at the order of magnitude, but still good approximation!
 - The triggered (1MHz) first 2 layers in the inner barrel region and the first 2 "ringlayers" in the inner end-cap with data flows >> 10Gb/s per module
 - \rightarrow 1st (2nd) layer in inner barrel: 9.5 (1.1) Gb/s/cm²
 - \rightarrow 1st (2nd) ring-layer in inner end-cap: 3.6 (2.5) Gb/s/cm²
 - \rightarrow out of scale for the current technology \rightarrow need for trigger & special technology!
 - For comparison the triggered (1MHz) outermost layers in the inner detector:
 - \rightarrow 8th (9th) layer in inner barrel: 0.05 (0.03) Gb/s/cm²
 - \rightarrow 10th (11th) ring-layer in inner end-cap: 0.07 (0.06) Gb/s/cm²
 - \rightarrow compatible with the current technology ~ 10Gb/s, when triggered
 - Outer tracker from R~140cm compatible with the current technology even untriggered!

Summary Cont.

- Comment:
 - CMS phase2 upgr. experience: optical link converters for pixel tracker need to be
 positioned out of radiation hard region (i.e. on the pixel support envelope ~ R=200mm) → all
 data need to be transmitted through twisted-pair cables (with limited bandwidth) to
 converters
 - \rightarrow for FCC-hh design that would mean significant increase in material budget!
 - → need for optical link technology, which can deal with significant increase in bandwidth & increased tolerance to radiation