EMCAL Simulations

Martin Aleksa, Andrea Dell'Acqua, **Jana Faltova**, Clement Helsens, Ana Henriques, Brandon Roach

3rd March 2016

EMCAL implementation

- Added simplistic implementation
 - Both in standalone example and under FCCSW
 - LAr/Lead calorimeter with simple "onion" geometry (absorber-active layers)
 - Very simplistic cryostat implemented (Aluminium slab)
 - FCCSW implementation via standard DD4Hep machinery, parameters to be set in FCChh_Ecal.xml
- Next
 - Improve description to allow simulating Si/W calorimeter (i.e. no cryostat etc.)
 - Work on sensitive detectors (mostly on FCCSW side)
 - Implement EndCaps

Magnetic field

- First implementation of a Field tool
 - Both on standalone example and on FCCSW
- Constant 6 T field to start with
 - Good enough for calorimeter studies
- FCCSW implementation creating problems with Fast Simulation example
 - Under investigation, apparently a G4 bug/feature?
- Field map implementation as a next step
 - Tried Zbynek's class to read in the field in the standalone example, some problems to be ironed out
 - Decide on a MagFieldSvc on the FCCSW side
- Optimization work needed to improve on G4 simulation performance

Detector dimensions

- Dimensions of the barrel
 - Inner tracker: 0.04 < r < 2.5 m
 - EMCAL: 2.6 < *r* < 3.5 m
 - LAr technology: 10 cm for cryostat on both sides Calorimeter volume 2.7 < *r* < 3.4 m (33 X_o, 1.6 λ) (Might be a bit optimistic)
 - HCAL: 3.6 < *r* < 6.0 m
 - Tile technology: 18 cm for support Calorimeter volume 3.6 < r < 5.8 m (10 λ)

EMCAL studies

- Goal: Optimize the detector design for the FCC conditions
 - Study different materials (LAr/Lead, Si/W)
 - Optimal detector segmentation
- First tests with LAr/Lead detector in standalone example
 - Segmentation in radial direction: 5 mm absorber + 5 mm LAr
 - Constant magnetic field of 6 T
 - Simulations with beams of single particles at fixed angle (η =0.25)

Electrons in EMCAL

- 100 GeV electron beam
- Conversion factor from hit to cell energy no B field: 1/SF = 10.1

with B field: 1/SF = 9.4

- Plans
 - Calibration hits for more detailed studies
 - Simulations at different energies

Pion shower

- 100 GeV pions in the EMCAL+HCAL
 - Without magnetic field
- Cell energy at the EMSCALE

Conclusions

- First implementation of the EMCAL geometry
 - Tested with beams of single particles
- More to come
 - Endcaps geometry
 - Detailed B field map
 - Implementations in FCCSW (e.g. sensitive detector, calibration hits)
 - Energy resolution studies

Backup

Pions

