

Geant4 simulation of a high-granular calorimeters for performance studies

S. Chekanov HEP/ANL March 3, 2016

FCC hadron detector meeting

A.Kotwal (Fermilab/Duke), L.Gray (Fermilab), J.Strube (PNNL), N.Tran (Fermilab), S. Yu (NCU), S.Sen (Duke), J.Repond (ANL)

Requirements for the FCC-hh hadronic calorimeter

(what we know already)

- Good containment up to 30 TeV jets
 - affects jet energy resolution & leakage biases
 - 12 λ_{I} is baseline for FCC-hh
- Good longitudinal segmentation
 - Realistic Gean4 simulation helps to determine
- Good transverse segmentation for resolving boosted particles
 - baseline 5x5 cm for FCC-hh (from previous Delphes studies)

Optimize performance and sensitivity to new physics using appropriate technologies

Require detailed Geant4 simulations

SiD detector for ILC

- Multi-purpose detector for the ILC
- The key characteristics of the SiD detector:
 - 5 Tesla solenoid
 - Silicon tracker: 50 um readout pitch
 - ECAL: (0.35 cm cell size, W / silicon)
 - HCAL:
 - 1x1 cm cell size (RPC)
 - 40 layers for barrel (HCAL) ~4.5 λ_{μ}
- Optimized for particle-flow algorithms (PFA)
- <u>Fully configurable using SLIC software</u>

Leverage large investments to R&D and software designs Re-purpose SLIC software for FCC-hh performance studies

Geant4 simulations for FCC calorimeter. S.Chekanov (ANL)

3000 4000 5000 5000

3

Software for future circular colliders

Re-purposing the Simulator for the Linear Collider (SLIC)

- Developed for the ILC.
- Optimized for the SiD detector at SLAC (T.Johnson, N.Graf, J.McCormick, J.Strube)
- Optimizing for future pp collider studies (S.C., A.Kotwal, J.Strube)
 - Integrated with HepSim. Output files are publicly accessible
 - Deployed on Open-Science Grid (OSG)

Analysis package: FPaDsoft - software for "Future Particle Detector" studies

Designing calorimeters for FCC-hh

http://atlaswww.hep.anl.gov/asc/hepsim/detectors/sifcch2.html

- SiFcch2 geometry:
 - 5 T solenoid as for SiD
 - Increase Z-position of outer tracking, vertex detector and ECAL/HCAL by a factor 3
 - |eta|<1.7 for barrel calorimeter
 - Increase the outer radius of ECAL, HCAL, solenoid and muon detector by a factor ~2
 - HCAL (Scint+Fe):
- ~ FCC baseline
- 5x5 cm cells + analog readout
- 12 lambda depth. 40 layers (as for SiD)
- 5 cm absorber / layer (Fe)
- ECAL (Si/W):
 - 1x1 cm cells + analog readout
 - 32 layers, ~58 X0 (need optimization!)
- Note: SiFcc1 geometry with "imaging" calorimeter was presented previously by S.Sen

Physics processes for boosted jet studies

- Avoid complications due proton beams
- Processes for benchmarks using Pythia6:

$$- \mu + \mu - \rightarrow Z' \rightarrow W + W -$$

−
$$\mu$$
+ μ - → Z' → qq

$$- \mu + \mu - \rightarrow Z' \rightarrow t\bar{t}$$

⁻ μ + μ - \rightarrow Z' \rightarrow tau+tau-

- ΔΓ(Ζ')~ 1 MeV
- Z'(20 TeV), Z'(30 TeV), Z'(40 TeV)
- Apply favorite jet substructure techniques to identify W+W-, $t\bar{t}$ (and compare with Z' $\rightarrow q\bar{q}$)

Response to 1 TeV pions

1 TeV pions are important for "benchmarking" (C.Helsens & C.Solans studies)
~10% will be carried by 1 TeV hadrons (~9 hadrons/jet) for pT(jet)>30 TeV

Based on http://atlaswww.hep.anl.gov/hepsim/info.php?item=182

Geant4 simulations for FCC calorimeter. S.Chekanov (ANL)

SiFcch2

Response to 100 GeV pions

Based on: http://atlaswww.hep.anl.gov/hepsim/info.php?item=182

Geant4 simulations for FCC calorimeter. S.Chekanov (ANL)

SiFcch2

Event display of Z' (40 TeV) $\rightarrow q\bar{q}$

Known issues:

- HCAL hits are miscalibrated
- Graphics needs to be improved:
 - remove low-energy cells, correct cell sizes

Geant4 simulations for FCC calorimeter. S.Chekanov (ANL)

Simulation & reconstruction of 1 event takes ~4h

Preliminary MC reconstructed samples

SiFCCh2 geometry description. Reco tag rfull004 http://atlaswww.hep.anl.gov/asc/hepsim/detectors/sifcch2.html

- Available single-particle samples after full reconstruction:
 - Pions with P=10,100,1000,10000 GeV. Uniform Eta and Phi
 - http://atlaswww.hep.anl.gov/hepsim/info.php?item=182
- Z'(10 TeV) decaying to $q\overline{q}$, $t\overline{t}$, W+W-
 - ~2000 fully reconstructed events per sample (Tracks, PFA, CaloClusters, HITS)
 - created on Open-Science Grid (UChicago/ANL. ~100,000 CPU*h)
 - http://atlaswww.hep.anl.gov/hepsim/index.php?c=mupmum&e=10000&t=all
- Warning/known issues:
 - RecoCalor clusters are miscalibrated
 - Use HCAL HITs offline and apply sampling fractions / corrections?
 - Work in progress (changing the Pandora algorithm)

Backup

Estimating HCAL depth

pT(jet)>30 TeV: ~10% will be carried by 1 TeV hadrons (~9 hadrons/jet) 12 λ_1 is needed to contain 98% of energy of a 1 TeV hadron

Geant4 simulation agrees with calculations for SSC (.. 1984 Gordon&Grannis. Snowmass)

Resolution for single pions

- a stochastic/sampling term,
- b electronic noise term
- c constant term

"c" dominates for jet with pT>5 TeV

- Geant4 TileCal inspired simulation based on FTFP_BERT
- Calculate single-particle resolution
- Stochastic term is close to $45\%/\sqrt{E}$
- Constant term improves by ~20% with increase of $1\lambda_{\mu}$

Constant term c~2.5% is achievable for 12 $\lambda_{\rm L}$

Resolutions for substructure variables for pT(jet)>10 TeV (fast simulation)

Presented at Boost2015. Chicago, Aug. 10-15, 2015

Decrease in RMS values compared to $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$

	Δη x Δφ = 0.05 x 0.05	Δη x Δφ = 0.025 x 0.025
tau21	18%	28%
tau32	9%	13%
jet mass	80%	120%

Large improvement in resolution for $\Delta \eta \propto \Delta \phi = 0.025 \times 0.025$