GENERAL RISKS WITH RADIATION

Mario Medvedec, BSc(EE) MSc PhD
CED&HTAD/IFMBE Board
mario.medvedec@kbc-zagreb.hr

Division of Biophysics and Radiopharmacy
Department of Nuclear Medicine and Radiation Protection
University Hospital Centre Zagreb
University of Zagreb School of Medicine
Zagreb, Croatia
medical physicists & biomedical engineers - integral part of the health work force, i.e. are health professionals
Free Material

- Diagnostic and Interventional Radiology
- Radiotherapy
- Nuclear Medicine
- Prevention of Accidental Exposure in Radiotherapy
- Cardiology
- PET/CT
- Paediatric Radiology
- Digital Radiology
- Doctors using fluoroscopy outside radiology (Urologists, Gastroenterologists, Orthopaedic surgeons etc.)
International Atomic Energy Agency

Safety Series No. 115

International Basic Safety Standards
for Protection against Ionizing Radiation and for the Safety of Radiation Sources

Jointly sponsored by FAO, IAEA, ILO, OECD/NEA, PAHO, UNEP, WHO

International Atomic Energy Agency, Vienna, 1996

IAEA Safety Standards
for protecting people and the environment

Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards

Jointly sponsored by EC, FAO, IAEA, ILO, OECD/NEA, PAHO, UNEP, WHO

General Safety Requirements Part 3
No. GSR Part 3

IAEA
International Atomic Energy Agency

2011/2014
II

(Non-legislative acts)

DIRECTIVES

COUNCIL DIRECTIVE 2013/59/EURATOM

of 5 December 2013

laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom

THE COUNCIL OF THE EUROPEAN UNION,

Having regard to the Treaty establishing the European Atomic Energy Community, and in particular Articles 31 and 32 thereof,

(3) Directive 96/29/Euratom establishes the basic safety standards. The provisions of that Directive apply to normal and emergency situations and have been supplemented by more specific legislation.
International Atomic Energy Agency

RADIATION PROTECTION IN NUCLEAR MEDICINE

Part 1: Biological effects of ionizing radiation
Part 1. Biological effects

Module 1.1. Basic concepts
Early Observations of the Effects of Ionizing Radiation

- 1895 X-rays discovered by Roentgen
- 1896 First skin burns reported
- 1896 First use of x-rays in the treatment of cancer
- 1896 Becquerel: Discovery of radioactivity
- 1897 First cases of skin damage reported
- 1902 First report of x-ray induced cancer
- 1911 First report of leukaemia in humans and lung cancer from occupational exposure
- 1911 94 cases of tumour reported in Germany (50 being radiologists)
Risk is the effect of uncertainty on objectives (ISO*).

An effect is a positive or negative deviation from what is expected.

Uncertainty (or lack of certainty) is a state or condition that involves a deficiency of information and leads to inadequate or incomplete knowledge or understanding.

*International Organization for Standardization
Radiation risks

Detrimental health effects of exposure to radiation (including the likelihood of such effects occurring), and any other safety related risks (including those to the environment) that might arise as a direct consequence of:

(a) Exposure to radiation;
(b) The presence of radioactive material (including radioactive waste) or its release to the environment;
(c) A loss of control over a nuclear reactor core, nuclear chain reaction, radioactive source or any other source of radiation.
Information comes from:

✓ studies of humans (epidemiology)
✓ studies of animals and plants (experimental radiobiology)
✓ fundamental studies of cells and their components (cellular and molecular biology)

The key to understanding the health effects of radiation is the interaction between these sources of information.
Radiation exposure affects the center of life: the cell. Chromosomes...
DNA Bases
- C
- T
- A
- G

- Sugar
- Phosphodiesters
The critical target:
deoxyribonucleic acid - DNA

nucleobases: adenine – A; cytosine – C; guanine – G; thymine - T
Interaction of ionizing radiation with DNA

DIRECT ACTION
Damage to DNA

Base alteration

Abasic site

Single-strand break

Simple double-strand break

Complex lesion
Exposure of the cell

radiation hit cell nucleus!

No change

DNA mutation
Outcomes after cell exposure

DNA Mutation

Mutation repaired

Cell death

Cell survives but mutated

Viable Cell

Unviable Cell

Cancer?
The human body contains about 10^{14} cells. An absorbed dose of 1 mGy per year (natural sources) will produce about 10^{16} ionizations, which means 100 per cell in the body. If we assume that the mass of DNA is 1% of the mass of the cell, the result will be one ionization in the DNA-molecule in every cell in the body each year.
Cell killing
Radiosensitivity (RS)

- RS = Probability of a cell, tissue or organ of suffering an effect per unit of dose.

- Bergonie and Tribondeau (1906): “RS LAWS”: RS will be greater if the cell:
 - is highly mitotic.
 - is undifferentiated.
BIOLOGICAL EFFECTS

Part 1. Biological effects of ionizing radiation

- **Direct effects**
 - Cell death
 - Damage to organ
 - Death of organism

- **Indirect effects**
 - Modified cell
 - Somatic cells
 - Cancer
 - Germ cells
 - Hereditary effects

- **Deterministic effects**
- **Stochastic effects**

- **Primary damage**

- **Repair**
Timing of events leading to radiation effects

- **Energy deposition**
- **Excitation/ionization**
- **Initial particle tracks**
 - **Radical formation**
 - **Diffusion, chemical reactions**
 - **Initial DNA damage**
 - **DNA breaks / base damage**

TIME (sec)
- 1 ms
- 1 second
- 1 hour
- 1 day
- 1 year
- 100 years

PHYSICAL INTERACTIONS

PHYSICO-CHEMICAL INTERACTIONS

BIOLOGICAL RESPONSE
- **Repair processes**
- **Damage fixation**
- **Cell killing**
- **Mutations(transformations/aberrations)**
- **Proliferation of "damaged" cells**
- **Promotion/completion**

MEDICAL EFFECTS
- Teratogenesis
- Cancer
- Hereditary defects
Part 1. Biological effects

Module 1.2. Deterministic effects
EFFECTS OF CELL DEATH

Probability of death

100%

Dose

D

Nuclear Medicine

Part 1. Biological effects of ionizing radiation
Deterministic effects

concept of threshold dose

threshold dose - dose needed to create clinically observed injury in the most radiosensitive individual.
Threshold Doses for Deterministic Effects

• Cataracts of the lens of the eye 2-10 Gy

• Permanent sterility
 • males 3.5-6 Gy
 • females 2.5-6 Gy

• Temporary sterility
 • males 0.15 Gy
 • females 0.6 Gy
Note on threshold values

• Depend on dose delivery mode:
 • single high dose most effective
 • fractionation increases threshold dose in most cases significantly
 • decreasing the dose rate increases threshold in most cases

• Threshold may differ in different persons
Systemic effects

• Effects may be morphological and/or functional
• Factors:
 • Which *Organ*
 • Which *Dose*
• Effects
 • Immediate (usually *reversible*): < 6 months e.g.: inflammation, bleeding.
 • Delayed (usually *irreversible*): > 6 months e.g.: atrophy, sclerosis, fibrosis.
• Criteria of dose
 • < 1 Gy: LOW DOSE
 • 1-10 Gy: MODERATE DOSE
 • > 10 Gy: HIGH DOSE
• *Regeneration* means replacement by the original tissue while *Repair* means replacement by connective tissue.
Part 1. Biological effects

Module 1.3. Stochastic effects
significant increase in the frequency of leukemia among the A-bomb survivors in Hiroshima the years following the exposure
Health consequences of Chernobyl accident

- 1800 children diagnosed with thyroid cancer (1998)
Genetic Effects

• Ionising radiation is known to cause heritable mutations in many plants and animals

BUT

• intensive studies of 70,000 offspring of the atomic bomb survivors have failed to identify an increase in congenital anomalies, cancer, chromosome aberrations in circulating lymphocytes or mutational blood protein changes.

Part 1. Biological effects

Module 1.4. Effects on embryo and fetus
Fetal Radiation Risk

- There are radiation-related risks throughout pregnancy which are related to the stage of pregnancy and absorbed dose.

- Radiation risks are most significant during organogenesis (>3-5w after conception) and in the early fetal period, somewhat less in the 2nd trimester, and least in the third trimester.
Effects on embryo and fetus

<table>
<thead>
<tr>
<th>Age</th>
<th>Threshold for lethal effects (mGy)</th>
<th>Threshold for malformations (mGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 day</td>
<td>100</td>
<td>No effect</td>
</tr>
<tr>
<td>14 days</td>
<td>250</td>
<td>-</td>
</tr>
<tr>
<td>18 days</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>20 days</td>
<td>>500</td>
<td>250</td>
</tr>
<tr>
<td>50 days</td>
<td>>1000</td>
<td>500</td>
</tr>
<tr>
<td>50 days to birth</td>
<td>>1000</td>
<td>>500</td>
</tr>
</tbody>
</table>

estimates from animal experiments!
Leukemia and Cancer

- Radiation has been shown to increase the risk for leukemia and many types of cancer in adults and children
- Throughout most of pregnancy, the embryo/fetus is assumed to be at about the same risk for carcinogenic effects as children
Part 1. Biological effects

Module 1.5. Risk estimates
Risk Estimates

• Risk = probability of effect
• Different effects can be looked at - one needs to carefully look what effect is considered: e.g. thyroid cancer mortality is NOT identical to thyroid cancer incidence!
• Risk estimates usually obtained from high doses and extrapolated to low doses
Tissue risk factor (1)

- **RISK FACTOR**: The quotient of increase in probability of a stochastic effect and the received dose. It is measured in Sv⁻¹ or mSv⁻¹.

\[
\text{Risk factor} = \frac{\Delta \text{probability}}{\Delta \text{dose}}
\]
EXAMPLE: A risk factor of 0.005 Sv⁻¹ for bone marrow (lifetime mortality in a population of all ages from specific fatal cancer after exposure to low doses) means that if 1,000 people would receive 1 Sv to the bone marrow, 5 will die from a cancer induced by radiation.
In the latest Hiroshima-Nagasaki Life Span Study (1986-1990), LSS Report 12, (Pierce et al., 1996) find the nominal estimates of risk of dying from radiation induced cancer (5% per Sv) to apply down to a dose of about 50 mSv.

For childhood cancer following fetal irradiation, very similar risk estimates (6% per Sv) are found to apply to doses of 10 mSv (Doll and Wakeford, 1997).

The risk estimates and the uncertainties associated with them are expected to apply at low doses.
What happens at the low-dose end of the graph, below ~20-200 mSv?

a) Linear extrapolation
b) Threshold dose
c) Lower risk per dose for low doses
d) Higher risk per dose for low doses
The answer should include but not be limited to:

- Close to background radiation - dosimetry difficult
- Limited epidemiological evidence
- Research and experiments with humans are ethically impossible
- The effects are very small (if any)
- It is likely that there is a dose and dose rate effect
The following activities are associated with a risk of death that is 1/1000000

- 10 days work in a nuclear medicine department
- smoking 1.4 cigarette
- living 2 days in a polluted city
- traveling 6 min in a canoe
- 1.5 min mountaineering
- traveling 480 km in a car
- traveling 1600 km in an airplane
- living 2 months together with a smoker
- drinking 30 cans of diet soda
Expected reduction of life

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmarried man</td>
<td>3500</td>
</tr>
<tr>
<td>Smoking man</td>
<td>2250</td>
</tr>
<tr>
<td>Unmarried woman</td>
<td>1600</td>
</tr>
<tr>
<td>30% overweight</td>
<td>1300</td>
</tr>
<tr>
<td>Cancer</td>
<td>980</td>
</tr>
<tr>
<td>Construction work</td>
<td>300</td>
</tr>
<tr>
<td>Car accident</td>
<td>207</td>
</tr>
<tr>
<td>Accident at home</td>
<td>95</td>
</tr>
<tr>
<td>Administrative work</td>
<td>30</td>
</tr>
<tr>
<td>Radiological examination</td>
<td>6</td>
</tr>
</tbody>
</table>
Summary

- Effects of ionizing radiation may be deterministic and stochastic, immediate or delayed, somatic or genetic
- Some tissues are highly radiosensitive
- Each tissue has its own risk factor
- Risk from exposure may be assessed through such factors
Summary

• Cancer induction is the most significant risk from exposure to ionizing radiation at low doses
• Cancer induction is a stochastic effect
• At high radiation doses also deterministic effects play a role