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o ldeal harmonic oscillator
X = —%x = —w?x; x(t) = Acos(wt + )

o Amplitude A, frequency w un phase ¢

o Nonlinear van der Pol oscillator (source and dissipation)

X =p(1 = x*)x — x

o Model of phase dynamics:

¢i = wi + qi(di, ¢;) + &
Kuramoto, Springer 1984

o Interactions qi(¢i, ¢;) — Synchronization, Directionality, Coupling Function
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Coupling Function

o eg. qi(¢i,¢) = cisin(di — ¢))
o It describes the physical rule of how the interaction occurs

o Determines the possibility of qualitative transitions — e.g. synchronization

o Decomposition, gi(¢i, ¢;) periodic —
Fourier series

o Additional dimension - form of the function

o Prediction

o Unified and systematic way of describing mechanisms
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o Schematic example

2

2n o
©
3 .
= 0
Ea
-1
[ 2z
"LERATION ACCELERATION DECE-
k 1

5 ! @
%o

Time (s) 15T,=Ty

o Increasing interest: chemistry, biomedicine, mechanics, encryption
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Set of methods for biomedical oscillations and their interactions

o How to treat biomedical oscillations?
o Time-varying dynamics

o Four main aspects:

©

strength of oscillations — time-frequency wavelet power

o coordination of oscillations — wavelet phase coherence

[+

causality/directionality — information theory

o mechanisms of interactions — dynamical inference, coupling function

o Three types of conectivity - structural, functional and effective
Park&Friston, Science, 2013
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Dynamical Bayesian Inference

o Dynamical inference — reconstructing a model in terms of differential
equations from an analysis of time-series

K
di=wita(dnd)+&=di= Y b u(dd)+E

k=—K

Time-series from noisy interacting systems

Bayesian inferential framework

!

Time-varying parameters
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Synchronization  Directionality Coupling function
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o Unknown model parameters M = {cx, D;} are to be inferred, two key
‘ingredients’ —
o time-varying parameters ci

o noise Dj

©

Use of Bayes' probabilistic theory
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Construction of the log-likelihood function: Multivariate Gaussian
Distributed (MGD) prior — MGD posterior

o Recursive evaluation of the posterior distribution Nx(c|€,=7") defining
explicitly the dynamics
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Oscilations Theory Methods Applications
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Dynamical Bayesian Inference |l
o Unknown model parameters M = {cx, D;} are to be inferred, two key
‘ingredients’ —
o time-varying parameters ¢y

o noise Dj

©

Use of Bayes' probabilistic theory

©

Construction of the log-likelihood function: Multivariate Gaussian
Distributed (MGD) prior — MGD posterior

o Recursive evaluation of the posterior distribution Nx(c|€,=7") defining
explicitly the dynamics

o Specific information propagation to follow the time-variability of the
parameters: ¥ (" = ¥ +x

prior posterior dispersion
Details in:
Stankovski et al, PRL (2012)
Smelyanskiy et al, PRL (2005)
Stankovski, Springer (2014)
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Ramp-breathing protocol

Wavelet transform of carbon dioxide

during an entire experiment from Subject 4
Spont Ramp / amp \ Ramp /
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Wavelet power

O spontaneous vs. ramp

o significant differences across
broad frequency intervals

o large differences at very-low
frequencies (bellow the ramps)

o cardiovascular coupled
oscillators — possible reason

Median wavelet power for all subjects
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Wavelet phase coherence

Wavelet phase coherence from Subject 9 Wavelet phase coherence from Subject 9
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Wavelet phase coherence — group results

o MSNA-Diastolic high and not changed

o Systolic-RR changed around the breathing frequencies

Median wavelet phase shift and phase coherence for all subjects
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Cardiorespiratory interactions

o Human CR measurements with
ramped breathing

o inferred ramped respiration
frequency

o time-varying respiration-to-heart
directionality

o intermittent synchronization
transitions

o complex time-varying form of
the coupling functions
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Stankovski et al, PRL (2012)



Video available on:
http://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.109.
024101

Stankovski et al, PRL (2012)


http://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.109.024101
http://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.109.024101

o Evolution of cardiorespiratory interactions with age
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Cardiorespiratory interactions and ageing

o Evolution of cardiorespiratory interactions with age

Age 21 Age 71
(0,9, a,(6,,,)

o Direct coupling contribution of ¢, dynamics, identified as RSA
modulation, was found to decrease significantly with age

latsenko et al, PTRS-A (2013)
Kralemann et al, Nature Comm. (2013)
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Neuronal cross-frequency coupling functions

o Coupling functions and brain dynamics

o Inference of multivariate 5-oscillator network including 4,0, a, 3,y EEG
brain waves (anaesthesia)
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Stankovski et al, NJP (2015)
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Neuronal cross-frequency coupling functions Il

o Analysis of coupling function from multi-channel EEG (autism)

o International EEG 10-20 system
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Stankovski et al, NJP (2015)



o Theory and methods for coupled oscillators

Stankovski et al, PRE (2014)
Stankovski et al, EPJ-ST (2014)
Clemson et al, PRE (2014)
Duggento et al, PRE (2012)



Other (more purely physical) applications

o Theory and methods for coupled oscillators

Stankovski et al, PRE (2014)
Stankovski et al, EPJ-ST (2014)
Clemson et al, PRE (2014)
Duggento et al, PRE (2012)

o Example - from cardiorespiratory interactions to secure communications
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Stankovski et al, PRX (2014)
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Secure communications

o Subject to patent application GB1314114.8, W02015019054A1

o Covered by number of popular media — Gizmodo, Wired,... off.net.mk

New "Unbreakable" Encryption Is Inspired By Your Insides

o Two small UK-EPRSC projects for implementation of hardware and
software prototypes
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Conclusion

o Characterisation of biomedical oscillations and interactions
— set of methods

o Two main contributions

o Method for Dynamical Bayesian Inference for time-varying dynamics

o Detection and application of Coupling Function

o Application in different (bio-) medical states: anaesthesia, ageing,
hypertension, ramp-breathing, resting state,...

o Plans to link the work with images from nuclear medicine — exploiting
dynamical changes e.g. of the heart
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Thank you for the attention!
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