Interactions of Biomedical Oscillations

Tomislav Stankovski

Faculty of Medicine, Ss Cyril and Methodius University, Skopje, Macedonia Department of Physics, Lancaster University, UK

September 18, 2015

Oscillations

Oscillations

Theory

Oscillations

Theory

Methods

Oscillations

Theory

Methods

Applications and results

	<u> </u>	
0	Oscil	lations

Theory

Methods

Applications and results

Ongoing projects

• Oscillation - repetitive, rhythmic and periodic dynamics

• Oscillation - repetitive, rhythmic and periodic dynamics

ECG -

• Oscillation – repetitive, rhythmic and periodic dynamics

• Oscillation - repetitive, rhythmic and periodic dynamics

• Oscillation - repetitive, rhythmic and periodic dynamics

Oscillation – repetitive, rhythmic and periodic dynamics

Ideal harmonic oscillator

$$\ddot{x} = -\frac{k}{m}x = -\omega^2 x; \quad x(t) = A\cos(\omega t + \phi)$$

ullet Amplitude A, frequency ω и phase ϕ

Ideal harmonic oscillator

$$\ddot{x} = -\frac{k}{m}x = -\omega^2 x; \quad x(t) = A\cos(\omega t + \phi)$$

- ullet Amplitude A, frequency ω и phase ϕ
- Nonlinear van der Pol oscillator (source and dissipation)

$$\ddot{x} = \mu(1 - x^2)\dot{x} - x$$

Ideal harmonic oscillator

$$\ddot{x} = -\frac{k}{m}x = -\omega^2x; \quad x(t) = A\cos(\omega t + \phi)$$

- ullet Amplitude A, frequency ω и phase ϕ
- Nonlinear van der Pol oscillator (source and dissipation)

$$\ddot{x} = \mu(1 - x^2)\dot{x} - x$$

• Model of phase dynamics:

$$\dot{\phi}_i = \omega_i + q_i(\phi_i, \phi_i) + \xi_i$$

Ideal harmonic oscillator

$$\ddot{x} = -\frac{k}{m}x = -\omega^2 x; \quad x(t) = A\cos(\omega t + \phi)$$

- ullet Amplitude A, frequency ω и phase ϕ
- Nonlinear van der Pol oscillator (source and dissipation)

$$\ddot{x} = \mu(1 - x^2)\dot{x} - x$$

• Model of phase dynamics:

$$\dot{\phi}_i = \omega_i + q_i(\phi_i, \phi_i) + \xi_i$$

Kuramoto, Springer 1984

• Interactions $q_i(\phi_i, \phi_i)$ – Synchronization, Directionality, Coupling Function

• e.g.
$$q_i(\phi_i, \phi_i) = c_i \sin(\phi_i - \phi_i)$$

• e.g.
$$q_i(\phi_i, \phi_j) = c_i \sin(\phi_i - \phi_j)$$

• It describes the physical rule of how the interaction occurs

• e.g.
$$q_i(\phi_i, \phi_j) = c_i \sin(\phi_i - \phi_j)$$

- It describes the physical rule of how the interaction occurs
- Determines the possibility of qualitative transitions e.g. synchronization

• e.g.
$$q_i(\phi_i, \phi_j) = c_i \sin(\phi_i - \phi_j)$$

- It describes the physical rule of how the interaction occurs
- Determines the possibility of qualitative transitions e.g. synchronization
- Decomposition, $q_i(\phi_i, \phi_j)$ periodic Fourier series
- Additional dimension form of the function
- Prediction

• e.g.
$$q_i(\phi_i, \phi_j) = c_i \sin(\phi_i - \phi_j)$$

- It describes the physical rule of how the interaction occurs
- Determines the possibility of qualitative transitions e.g. synchronization
- Decomposition, $q_i(\phi_i, \phi_j)$ periodic Fourier series
- Additional dimension form of the function
- Prediction

Unified and systematic way of describing mechanisms

Schematic example

Schematic example

Schematic example

• Increasing interest: chemistry, biomedicine, mechanics, encryption

• How to treat biomedical oscillations?

- How to treat biomedical oscillations?
- Time-varying dynamics

- How to treat biomedical oscillations?
- Time-varying dynamics
- Four main aspects:

- How to treat biomedical oscillations?
- Time-varying dynamics
- Four main aspects:
 - strength of oscillations time-frequency wavelet power

- How to treat biomedical oscillations?
- Time-varying dynamics
- Four main aspects:
 - strength of oscillations time-frequency wavelet power
 - coordination of oscillations wavelet phase coherence

- How to treat biomedical oscillations?
- Time-varying dynamics
- Four main aspects:
 - strength of oscillations time-frequency wavelet power
 - coordination of oscillations wavelet phase coherence
 - causality/directionality information theory

- How to treat biomedical oscillations?
- Time-varying dynamics
- Four main aspects:
 - strength of oscillations time-frequency wavelet power
 - coordination of oscillations wavelet phase coherence
 - causality/directionality information theory
 - mechanisms of interactions dynamical inference, coupling function

- How to treat biomedical oscillations?
- Time-varying dynamics
- Four main aspects:
 - strength of oscillations time-frequency wavelet power
 - coordination of oscillations wavelet phase coherence
 - causality/directionality information theory
 - mechanisms of interactions dynamical inference, coupling function
- Three types of conectivity structural, functional and effective

• Dynamical inference – reconstructing a model in terms of differential equations from an analysis of time-series

• Dynamical inference – reconstructing a model in terms of differential equations from an analysis of time-series

 Dynamical inference – reconstructing a model in terms of differential equations from an analysis of time-series

$$\dot{\phi}_i = \omega_i + q_i(\phi_i, \phi_j) + \xi_i \Rightarrow \dot{\phi}_i = \sum_{k_l=-K}^K c_{k_l}^{(r)} \Phi_{r,k_l}(\phi_i, \phi_j) + \xi_i$$

 Dynamical inference – reconstructing a model in terms of differential equations from an analysis of time-series

$$\dot{\phi}_i = \omega_i + q_i(\phi_i, \phi_j) + \xi_i \Rightarrow \dot{\phi}_i = \sum_{k_l = -K}^K c_{k_l}^{(r)} \Phi_{r, k_l}(\phi_i, \phi_j) + \xi_i$$

Time-series from noisy interacting systems

Bayesian inferential framework

Time-varying parameters

Synchronization Directionality Coupling function

- ullet Unknown model parameters $\mathcal{M} = \{c_k, D_{ij}\}$ are to be inferred, two key 'ingredients'
 - time-varying parameters c_k
 - noise D_{ij}

- Unknown model parameters $\mathcal{M} = \{c_k, D_{ij}\}$ are to be inferred, two key 'ingredients' –
 - \bullet time-varying parameters c_k
 - noise D_{ij}
- Use of Bayes' probabilistic theory

- ullet Unknown model parameters $\mathcal{M} = \{c_k, D_{ij}\}$ are to be inferred, two key 'ingredients'
 - time-varying parameters c_k
 - noise D_{ij}
- Use of Bayes' probabilistic theory
- \bullet Construction of the $log\mbox{-}likelihood$ function: Multivariate Gaussian Distributed (MGD) prior \to MGD posterior

- ullet Unknown model parameters $\mathcal{M} = \{c_k, D_{ij}\}$ are to be inferred, two key 'ingredients'
 - time-varying parameters c_k
 - noise D_{ij}
- Use of Bayes' probabilistic theory
- ullet Construction of the *log-likelihood* function: Multivariate Gaussian Distributed (MGD) prior ullet MGD posterior
- Recursive evaluation of the posterior distribution $\mathcal{N}_{\mathcal{X}}(c|\bar{c},\Xi^{-1})$ defining explicitly the dynamics

Oscilations

- Unknown model parameters $\mathcal{M} = \{c_k, D_{ii}\}$ are to be inferred, two key 'ingredients' -
 - time-varying parameters ck
 - noise D_{ii}
- Use of Bayes' probabilistic theory
- Construction of the log-likelihood function: Multivariate Gaussian Distributed (MGD) prior → MGD posterior
- Recursive evaluation of the posterior distribution $\mathcal{N}_{\mathcal{X}}(c|\bar{c},\Xi^{-1})$ defining explicitly the dynamics
- Specific information propagation to follow the time-variability of the parameters: $\Sigma_{prior}^{(n+1)} = \Sigma_{posterior}^{(n)} + \Sigma_{dispersion}^{(n)}$

Oscilations

- Unknown model parameters $\mathcal{M} = \{c_k, D_{ii}\}$ are to be inferred, two key 'ingredients' -
 - time-varying parameters ck
 - noise D_{ii}
- Use of Bayes' probabilistic theory
- Construction of the log-likelihood function: Multivariate Gaussian Distributed (MGD) prior → MGD posterior
- Recursive evaluation of the posterior distribution $\mathcal{N}_{\mathcal{X}}(c|\bar{c},\Xi^{-1})$ defining explicitly the dynamics
- Specific information propagation to follow the time-variability of the parameters: $\Sigma_{prior}^{(n+1)} = \Sigma_{posterior}^{(n)} + \Sigma_{dispersion}^{(n)}$

Details in: Stankovski et al. PRL (2012) Smelyanskiy et al, PRL (2005) Stankovski, Springer (2014)

Ramp-breathing protocol

Ramp-breathing protocol

Details in: Stankovski et al, JAP (2013)

Wavelet power

- spontaneous vs. ramp
- significant differences across broad frequency intervals
- large differences at very-low frequencies (bellow the ramps)
- cardiovascular coupled oscillators – possible reason

Median wavelet power for all subjects

Wavelet phase coherence

Wavelet phase coherence - group results

- MSNA-Diastolic high and not changed
- Systolic-RR changed around the breathing frequencies

Median wavelet phase shift and phase coherence for all subjects

Cardiorespiratory interactions

- Human CR measurements with ramped breathing
- inferred ramped respiration frequency
- time-varying respiration-to-heart directionality
- intermittent synchronization transitions
- complex time-varying form of the coupling functions

Cardiorespiratory interactions II

Video available on:

http://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.109.024101

Stankovski et al, PRL (2012)

Evolution of cardiorespiratory interactions with age

Evolution of cardiorespiratory interactions with age

Evolution of cardiorespiratory interactions with age

• Direct coupling contribution of ϕ_h dynamics, identified as RSA modulation, was found to decrease significantly with age

Oscilations

Evolution of cardiorespiratory interactions with age

• Direct coupling contribution of ϕ_h dynamics, identified as RSA modulation, was found to decrease significantly with age

Neuronal cross-frequency coupling functions

Coupling functions and brain dynamics

Applications

Neuronal cross-frequency coupling functions

- Coupling functions and brain dynamics
- Inference of multivariate 5-oscillator network including $\delta, \theta, \alpha, \beta, \gamma$ EEG brain waves (anaesthesia)

Neuronal cross-frequency coupling functions

- Coupling functions and brain dynamics
- Inference of multivariate 5-oscillator network including $\delta, \theta, \alpha, \beta, \gamma$ EEG brain waves (anaesthesia)

 δ - α coupling function; θ - α - γ triplet coupling function;

Neuronal cross-frequency coupling functions II

- Analysis of coupling function from multi-channel EEG (autism)
- International EEG 10-20 system

Neuronal cross-frequency coupling functions II

- Analysis of coupling function from multi-channel EEG (autism)
- International EEG 10-20 system

Coupling strength

Neuronal cross-frequency coupling functions II

- Analysis of coupling function from multi-channel EEG (autism)
- International EEG 10-20 system

Coupling strength

Group and average coupling function

Other (more purely physical) applications

• Theory and methods for coupled oscillators

Stankovski et al, PRE (2014) Stankovski et al, EPJ-ST (2014) Clemson et al, PRE (2014) Duggento et al, PRE (2012)

Other (more purely physical) applications

Theory and methods for coupled oscillators

Stankovski et al, PRE (2014) Stankovski et al, EPJ-ST (2014) Clemson et al, PRE (2014) Duggento et al, PRE (2012)

Example - from cardiorespiratory interactions to secure communications

Secure communications

• Subject to patent application GB1314114.8, WO2015019054A1

Secure communications

- Subject to patent application GB1314114.8, WO2015019054A1
- Covered by number of popular media Gizmodo, Wired,... off.net.mk

New "Unbreakable" Encryption Is Inspired By Your Insides

Secure communications

- Subject to patent application GB1314114.8, WO2015019054A1
- Covered by number of popular media Gizmodo, Wired,... off.net.mk

New "Unbreakable" Encryption Is Inspired By Your Insides

 Two small UK-EPRSC projects for implementation of hardware and software prototypes

- Characterisation of biomedical oscillations and interactions
 - set of methods

- Characterisation of biomedical oscillations and interactions
 - set of methods
- Two main contributions
 - Method for Dynamical Bayesian Inference for time-varying dynamics
 - Detection and application of Coupling Function

- Characterisation of biomedical oscillations and interactions
 - set of methods
- Two main contributions
 - Method for Dynamical Bayesian Inference for time-varying dynamics
 - Detection and application of Coupling Function
- Application in different (bio-) medical states: anaesthesia, ageing, hypertension, ramp-breathing, resting state,...

- Characterisation of biomedical oscillations and interactions
 - set of methods
- Two main contributions
 - Method for Dynamical Bayesian Inference for time-varying dynamics
 - Detection and application of Coupling Function
- Application in different (bio-) medical states: anaesthesia, ageing, hypertension, ramp-breathing, resting state,...
- Plans to link the work with images from nuclear medicine exploiting dynamical changes e.g. of the heart

 Acknowledgments: to the collaborators and the mentors Prof. Aneta Stefanovska and Prof. Peter McClintock from Lancaster University, UK

- Acknowledgments: to the collaborators and the mentors Prof. Aneta Stefanovska and Prof. Peter McClintock from Lancaster University, UK
- Tutorial and Matlab Toolbox available for Dynamical Bayesian Inference: Stankovski et al, EPJ-ST, 223.13: 2685-2703, (2014).
 Toolbox download from: http://py-biomedical.lancaster.ac.uk or email: t.stankovski@ukim.edu.mk

- Acknowledgments: to the collaborators and the mentors Prof. Aneta Stefanovska and Prof. Peter McClintock from Lancaster University, UK
- Tutorial and Matlab Toolbox available for Dynamical Bayesian Inference: Stankovski et al, EPJ-ST, 223.13: 2685-2703, (2014).
 Toolbox download from: http://py-biomedical.lancaster.ac.uk or email: t.stankovski@ukim.edu.mk

Thank you for the attention!