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Short theory

Ideal harmonic oscillator

ẍ = − k

m
x = −ω2x ; x(t) = A cos(ωt + φ)

Amplitude A, frequency ω и phase φ

Nonlinear van der Pol oscillator (source and dissipation)

ẍ = µ(1− x2)ẋ − x

Model of phase dynamics:

φ̇i = ωi + qi (φi , φj) + ξi

Kuramoto, Springer 1984

Interactions qi (φi , φj) – Synchronization, Directionality, Coupling Function
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Coupling Function

e.g. qi (φi , φj) = ci sin(φi − φj)

It describes the physical rule of how the interaction occurs

Determines the possibility of qualitative transitions – e.g. synchronization

Decomposition, qi (φi , φj) periodic –
Fourier series

Additional dimension - form of the function

Prediction

Unified and systematic way of describing mechanisms
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Schematic example

Increasing interest: chemistry, biomedicine, mechanics, encryption
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Set of methods for biomedical oscillations and their interactions

How to treat biomedical oscillations?

Time-varying dynamics

Four main aspects:

strength of oscillations – time-frequency wavelet power

coordination of oscillations – wavelet phase coherence

causality/directionality – information theory

mechanisms of interactions – dynamical inference, coupling function

Three types of conectivity - structural, functional and effective
Park&Friston, Science, 2013
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Dynamical Bayesian Inference

Dynamical inference – reconstructing a model in terms of differential
equations from an analysis of time-series

φ̇i = ωi + qi (φi , φj) + ξi ⇒ φ̇i =
K∑

kl=−K

c
(r)
kl

Φr,kl (φi , φj) + ξi

Time-series from noisy interacting systems

↓
Bayesian inferential framework

↓
Time-varying parameters

↙ ↓ ↘
Synchronization Directionality Coupling function
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Dynamical Bayesian Inference II

Unknown model parametersM = {ck ,Dij} are to be inferred, two key
‘ingredients’ –

time-varying parameters ck

noise Dij

Use of Bayes’ probabilistic theory

Construction of the log-likelihood function: Multivariate Gaussian
Distributed (MGD) prior → MGD posterior

Recursive evaluation of the posterior distribution NX (c|c̄,Ξ−1) defining
explicitly the dynamics

Specific information propagation to follow the time-variability of the
parameters: Σ

(n+1)
prior = Σ

(n)
posterior + Σ

(n)
dispersion

Details in:
Stankovski et al, PRL (2012)

Smelyanskiy et al, PRL (2005)
Stankovski, Springer (2014)
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Details in: Stankovski et al, JАР (2013)
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Wavelet power

spontaneous vs. ramp

significant differences across
broad frequency intervals

large differences at very-low
frequencies (bellow the ramps)

cardiovascular coupled
oscillators – possible reason
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Wavelet phase coherence
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Wavelet phase coherence – group results

MSNA-Diastolic high and not changed

Systolic-RR changed around the breathing frequencies
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Cardiorespiratory interactions

Human CR measurements with
ramped breathing

inferred ramped respiration
frequency

time-varying respiration-to-heart
directionality

intermittent synchronization
transitions

complex time-varying form of
the coupling functions

Stankovski et al, PRL (2012)
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Cardiorespiratory interactions II

Video available on:
http://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.109.
024101

Stankovski et al, PRL (2012)

http://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.109.024101
http://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.109.024101
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Cardiorespiratory interactions and ageing

Evolution of cardiorespiratory interactions with age

Direct coupling contribution of φh dynamics, identified as RSA
modulation, was found to decrease significantly with age

Iatsenko et al, PTRS-A (2013)
Kralemann et al, Nature Comm. (2013)
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Neuronal cross-frequency coupling functions

Coupling functions and brain dynamics

Inference of multivariate 5-oscillator network including δ, θ, α, β, γ EEG
brain waves (anaesthesia)

δ-α coupling function; θ-α-γ triplet coupling function;

Stankovski et al, NJP (2015)
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Neuronal cross-frequency coupling functions II

Analysis of coupling function from multi-channel EEG (autism)

International EEG 10-20 system

Coupling strength

Group and average coupling function
Stankovski et al, NJP (2015)
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Other (more purely physical) applications

Theory and methods for coupled oscillators
Stankovski et al, PRE (2014)

Stankovski et al, EPJ-ST (2014)
Clemson et al, PRE (2014)

Duggento et al, PRE (2012)

Example - from cardiorespiratory interactions to secure communications

Stankovski et al, PRX (2014)
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Secure communications

Subject to patent application GB1314114.8, WO2015019054A1

Covered by number of popular media – Gizmodo, Wired,... off.net.mk

New "Unbreakable" Encryption Is Inspired By Your Insides

Two small UK-EPRSC projects for implementation of hardware and
software prototypes
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Characterisation of biomedical oscillations and interactions
– set of methods

Two main contributions

Method for Dynamical Bayesian Inference for time-varying dynamics

Detection and application of Coupling Function

Application in different (bio-) medical states: anaesthesia, ageing,
hypertension, ramp-breathing, resting state,...

Plans to link the work with images from nuclear medicine – exploiting
dynamical changes e.g. of the heart
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