

Application of fundamental physics in medicine

P. Le Dû

patrickledu@me.com

OOHID -2015

Who I am? -

- Large MWPC (4x4 m2)
- Trigger & DAQ
- LEP OPAL @ CERN (1980-1990)
 - TOF system
 - Trigger & DAQ → First Z⁰
- SSC- SDC @ Dallas/LBL Berkeley (1990-1994)
 - Trigger L2
 - Shower Max Detector electronics (APD & SCA)
- LHC- ATLAS @ CERN (1994-2000)
 - L2 trigger & LARG calorimeter Read Out electronics (SCA)
- D0 @ FNAL (1996-2005)
 - L1 Calormeter trigger and L2 trigger.
- ILC study group (1996-2008)
 - Trigger & DAQ convener -> Software trigger
- 2000→Technology transfer advisor for medical application (PET & Particle therapy)
- Ultra fast (picosecond) timing

Experimental Physicist
-CEA Saclay (1969-2008)
-IN2P3-IPN Lyon (2009 ...

NPSS ADCOM
-RITC Chair

IEEE Nuclear and Plasma Science Society

http://ieee-npss.org

- Technical Committees

 Radiation Instrumentation
 - Conferences
 NSS-MIC
- Publications

 Digital library

 Transaction in NS
- Network

- A flavor of valorisation of Particle Physics
 - Can we use the tools and techniques and state of the art technologies developped for HEP experiments in another field?
- Illustrate using sucessfull examples in the most challenging and innovative biomedical field for diagnostic and treatment of cancer (PET and particle therapy)
- X Ray Radiography and dose reduction (CT)

The best 'typical example > The PET

PET imaging From past, present to future

Positron Emission Tomography principle

- Functional imaging device
- Molecular tracers with doped beta + emitters
 - 11C(20 min), 15O (2min), 13N (10 min), 18F (2h)
 - Produced by a 18 Mev Proton cyclotron
 - The most common → 18F => 18FDG fluoro-deoxy-glucose
 - Sign the degree of activity of an organ hungry of glucose
- annihilation positron with an electron
 - emission of two 511 keV photons back to back

Positron Emission Tomography principle

Sign the degree of activity of an organ hungry of glucose ---> show abnormal glucose metabolism like cancer tumour cells

Colon cancer spots

27-mars-15

OOHID -2015

7

Produce radioactive sugar (FDG)

The PET sequence

10mC

Wait for accumulation in target site

Detect coincidence events

Get 2 gamma events Reconstruct image coincidence events

27-mars-15

OOHID -2015

The experimental aspect

Detector in coincidences Energy window around 511keV Time window < ns Limited Acceptance (Field Of View)

Signal: true concidences (25%)

Background: Compton + Random

Efficiency ≈ 0.01 (1 photon / 100)

True Random Scatter

TRUE coincidences

Scattered coincidences

Random coincidences

27-mars-15

OOHID -2015

9

First PET with Anger Cameras

University of Chicago 1975

when PET started at CERN ERNI Technology http://cern.ch/TTdb

First Steps Townsend & Jeavons

First mouse imaging with ¹⁸F

Historical Evolution of PET

C-PET Philips

1997

OOHID -2015

Biograph PET + X ray-CT

From Today ---> Tomorrow Challenge

TDM/PET-TOF (500 psec)

Today

Siemens

Philips

PET-MRI

Next ?

Few words about Particle Physics Detector

27-mars-15

Osaka Real Time Stylstiem Oschool

Particle detectors

Colliders

LHC

OOHID -2015

Challenging: The LHC

Event rate : ~ 109 Hz

Event selection : ~ 1/10¹³

Z -> µ µ event at LHC ATLAS 15 April 2012

The LHC challenge

- "Interesting" physics is about 6-8 orders of magnitude below (EWK & Top)
- "Exciting" physics involving new particles/discoveries is ≥ 9 orders of magnitude below σ_{tot}
- We just © need to efficiently identify these rare processes from the background before reading out & storing the whole event
- Conclusion: Need to watch out for high transverse momentum electrons, jets
 or muons

LHC Multilevels Selection scheme

LHC Detectors

Physics signals & Trigger signatures

Run Number: 154817, Event Number: 968871

Date: 2010-05-09 09:41:40 CEST

 $M_{ee} = 89 \text{ GeV}$

Z-ee candidate in 7 TeV collisions

HEP' state of the art' parameters

- Beam
 - 230 superimpose event every 25 ns @ SLHC
 - 700 picosecond collision time @ CLIC
- Tracking and vertexing
 - The Micron or less
- Energy
 - From Kev to Tev with very good resolution
- Timing
 - We are speaking today to achieve the PICOSECOND
- # Channels
 - Billions due to 'pixellated & high granularity detectors
- 27-mars-15 integration, large scale apparatus

1x1 mm² 1156 pixels

CMS HCAL 2 x 10³ SiPM

Some technologies that can make a breakthrough

Why a lot of experimental physicists are interested to TEP?

Calorimeter

HEP

HEP & PET

Similarities and differences

PET Camera

Biomedical Imaging

Similarities
Geometry and granularity
Detector (Crystals & scintillator)
Sensor Photodetectors (PMT,APD)
Digitizers: ADC,TDC,
Data volume (Gbytes)

OOHID -2015

Differences

Energy range

 $(10 \text{GeV} \rightarrow -511 \text{keV})$

Event Rate $40 \rightarrow 10 \text{ MHz}$

No synchronization Self triggered electronics Multiple vertices

27-mars-15

A survey of common areas

LSO

- Material for photon detection
 - ■Standard: Crystal
 - From LEP/L3 BGO ,LHC/CMS PbO4
 - → Crystal Clear Collaboration.
 - ■Possible alternatives: LXenon, MG-RPC's ...????
- Photon detectors: compact, high QE, high gain and stability
 - ■Standard: PMT ---> MAPMT --> MCP
 - Semiconductor: APD --> SiPM/MPPC, DSiPM

Scintillators for PET 1999 2003 1977 1995 2001 2007 1962 GSO:Ce LSO:Ce LuAP:Ce LaBr3:Ce LuAG:Ce NaI BGO Density (g/cm³) 8.34 3.67 6 71 5.29 6.73 7.13 7.40 Atomic number 51 75 59 66 65 47 63 0.17 0.35 0.30 Photofraction 0.25 0.32 0.13 0.30 230 35-45 Decay time (ns) 300 30-60 17 18 60 Light output (hv/ MeV) 27000 11400 43000 8200 12500 70000 >25000 Peak emission (nm) 415 480 430 420 365 356 535 Refraction index 1.85 1.85 2.15 1.82 1.97 1.88 1.84

■ No Scintillator with Superior Properties in All Aspects

27-mars-15 OOHID -2015 27

Scintillation Detectors in Nuclear Medical Imaging

28

Photomultiplier Tube (PMT)

Use since 75 years
Large gain
Bulky
Sensitive to magnetic field

OOHID -2015 29

Effect of PMT Inside Magnetic Field

Conventional PET Detector Block

PMT does not work inside magnetic field!!

The 'solid state' photodetector

- Electric field is created by an applied bias voltage
- e-h pairs are created by incoming radiation
- Electrons move to the anode and holes move to the cathode
- Electrical signal is induced on the electrodes by the moving charges

Photodiode (PIN) Avalanche Photodiode (APD) Silicon Photomultiplier (SiPM) CdZnTe 31 CdTe/

Evolution: PMT -> Silicon photodetectors : SiPM

Advantages:

- •High QE (>70% for 400-600 nm)
- •APD operating in Geiger mode
- •High internal gain (10⁵ − 10⁶)
- Very fast response (~100 ps rise time)
- Capable of detecting single photoelectron
- Insensitive to magnetic field

Drawbacks:

- Geometric fill factor
- •Limited micro-cell => limited dynamic range Sensitive to temperature and voltage fluctuations in analog mode, but not in purely digital mode
- Crossstalk and after-pulses issues 10 -2015

Scintillation Detectors vs Solid-State Detectors

Gamma Ray --> Visible Light --> Electrical Signal (Indirect Detection)

Gamma Ray --> Electrical Signal (Direct Detection)

Photodetector Technologies: A Comparison

Photo PMT detector **Technology** High Gain **Detection** Low to Moderate **Efficiency** Noise Low **Timing** Moderate to Fast Response **Packaging** Bulky **Sensitivity to** Yes **Magnetic Field Bias Voltage** >1kV

Conventional SPECT & PET detectors has been dominated by the use of PMT.

. . .

~50V 100-

Photodetector Technologies: A Comparison

Photo detector	PMT	/	PIN	APD	SiPM		
Technology	V. cuum-Bas	d	Solid-State	Solid-State	Solid-State		
Gain	High		Cannot be used in				
Detection Efficiency	Low to Moderate	Э	PET/MRI & SPECT/MRI.				
Noise	L		The timing response is				
Timing Response	Mode ate to Fas	t	fast, but may be the limiting factor in next generation TOF PET.				
Packaging	Bulky						
Sensitivity to Magnetic Field	Yes	\					
Bias Voltage	/ >1kV		~50V	100–1000V	~50V		

Photodetector Technologies: A Comparison

Photo detector	PMT	PIN	APD	SiPM
Technology	Vacuum-Based	So d-State	Solid-Sylia	∖ Solid-State
Gain	High	Poor	Moderate	High
Detection Efficiency	las low SNA	5	High	Moderate to High
Noise	nd not suite	able ate	M oderate	
	or TOF PE		Slow	Fast
Packaging	Bulky	Compact	Compact	Compact
Sensitivity to Magnetic Field	Yes	No	No	No
Bias Voltage	>1kV	~50V	100–1000V	~50V

27-mars-15

Photodetector Technologies: A Comparison

Photo detector	РМТ	PIN	APD	SiPM
Technology	Vacuum-Based	Solid-State	Solid-State	Solid-State
Gain	High	Poor	Moderate	High
Detection Efficiency	Low to Moderate	od choice	for	Low to Moderate
Noise			Moderate	
Timing Response		PE I/NIKI Q		Fast
Packaging	Bulky SP			Compact
Sensitivity to Magnetic Field	Yes	No	No	No
Bias Voltage	>1kV	~50V	100–1000V	~50V

Digital SiPM detectors (PDPC)

Analog signal sums many photons

Digital Silicon Photomultiplier Detector

Examples of CdTe/CdZnTe Detectors for SPECT and PET

CdTe: 11x22x1 mm³, 350 µm pixels

Source: L.J. Meng, et al., Nucl. Instr. Meth., vol. A604, 548 (2009) Y. Gu, et al., Phys. Med. Biol., vol. 56, 1563 (2011) 27-mars-15

CdZnTe: 39x39x5 mm³, double-sided strip

Edge-on geometry, 3-D positioning X position: anode strip, 1 mm pitch Z position: cathode-anode ratio, ~1 mm Y position: cathode strip, 5 mm pitch

Photek, HPK, Burle-Photonis 2" x 2"

The large area
Micro Channel Plate
Coming soon!

ALD Nanolayer

http://psec.uchicago.edu

Micro Channel Plate -> How does it work?

■ High, gain > 10^7 , low noise, low power, $\sigma(t) < 10$ psec, $\sigma(x) < 10$ mm

■ Goal → large area, low cost:

pore sizes 2-20 µm

Photonis

Large Area Micro-Channel Plates Devices

LAPPD project : Chicago-ANL-Hawaii

Large Area MCP pad 8" x 8"

Transmission lines 2D readout:

limits the number of electronic channels compared to pixels

Goal: Both position $\sigma(mm^2)$ and timing $\sigma(10-100ps)$

PSI, Orsay/Saclay, Chicago-Hawaii

- GigaSample/s Waveform Sampling and Digital Processing

Workshop on Pico-second sensors, LPC Clermont-Ferrand March 12-14th 2014

Coming soon

A Super Module holds 12 tiles in 32 rows.15 waveform sampling ASICS on each end of the tray Digitze 90 strips. 2\$layers of local Processing (Altera) measuer extract Charge, time, positon, goodness of fit

Application in tracker sampling calorimeters & PET

A survey of common area (cont't)

- Front end electronics & signal treatment
 - Fast shaping, integrated, low noise, low power, self trigger
 - Digital filtering and signal analysis
 - --> Waveform Digitizer : SCA

- Trigger & DAQ
 - Pipeline and parallel read-out \rightarrow FPGA
 - Feature extraction techniques → like Time Of Flight (TOF)
 - \blacksquare Real Time selection \rightarrow GPU's image processing
 - \blacksquare High bandwidth networks \rightarrow new telecom standard (xTCA)
- Computing & software: handling high quantity of data
 - Reconstruction, simulation & modelling --> GATE
- Global design
 - Compact integration of large number of channels

DRS4 (PSI)

Timing extraction method

Single threshold

The single threshold is the least precise time extraction measurement. It has the advantage of simplicity.

Multiple threshold

The multiple threshold method takes into account the finite slope of the signals. It is still easy to implement.

Constant fraction

The constant fraction algorithm is very often used due to its relatively good performance and its simplicity.

Waveform sampling

The waveform sampling above the Nyquist frequency is the best algorithm since it is preserves the signal integrity.

Analog memories -> Waveform digitizers

Switched Capacitor Arrays (SCA)
Store signal on capacitors (~pF)
High speed (up to 5 GHz)
Slower readout (~10MHz)
High channel density
9 channels on 5x5 mm²
Dynamic range: 10-13 bits
Depth: 100-2000 cells
Low power (10-40 mW / channel)
Low cost (~10€ / channel)

But possible loss of data integrity
limited deeph
leakage current,
non linear timing

DRS4

Exemple of Conceptual TOF-PET architecture model

- ◆Free-running analog waveform sampling and digitizer (SCA)
- ♦ Digital filter used to extract pulse amplitude and high resolution timing (FPGA)
- Pipelined processing architecture to avoid deadtimes (GPU's)
- ♦Parallel digital read out
- ◆Terabit network for communication and processing (×TCA)

27-mars-15

Detector and sensors

Detector Electronics Channels

Control and Monitoring

Trigger System

Read Out control system

Read Out Electronics

Custom

Read Out Network

Processing farm

Storage

DAQ = The evolution of architecture

LHCb

Average event size 55 kB Average rate into farm 1 MHz Average rate to tape 4 – 5 kHz Direct network access From Detectors and Machine

27-mars-15 OOHID -2015

50

Computer farm evolution \rightarrow GPU's

GPUs: Graphical Processor Units:

highly parallel, multithreaded, multicore processors with remarkable computational power and high memory bandwidth: promising candidate for fast track fitting at high luminosity

From the video game world

DAQ = Pipeline Architectures

LHC

40 MHz **DETECTOR CHANNELS** COLLISION RATE LEVEL-1 TRIGGER Time Pattern 100-50 kHz 1 Terabit/s READOUT 50.000 data channels SWITCH NETWORK 500 Gigabit/s 100 Hz **FILTERED EVENT** Computing Services Gigabit/s SERVICE LAN

Digitisation

Pipeline

Event builder

Future PET

Simulation

Higgs event at LHC (CMS) with Geant4

PET with GATE: Geant4 Application for Tomographic Emission

GATE: Geant4 Application for Tomographic Emission

Monte-Carlo simulation allowing to :

- √define geometries (size, materials,...)
- ✓ define sources (geometry, nature, activity)
- ✓ choice of physical process

 (low energy package of G4)
- √ follow track point by point

GATE specificities:

- ✓ CERN GEANT4 libraries
- √ Time modellign
 (sources, movement, random...)
- ✓ Script language(avoid C++)
- √Code interactivity
- ✓ Sharing development

Typical PET simulation

Geometry: number of detectors, dimension, Materials, movements...

Detection chain: light yield, energy threshold, energy resolution...

Source: nature, activity, movements, ... cross ring

GATE 'early 'Collaboration 2004)

Uni Louis Pasteur (IRES) Strasbourg
Uni Joseph Fourier (LPSC) Grenoble
Forschungszentrum-Jülich (IME)
Uni. Massachusetts, Worcester
CHU Morvan (LATIM) Brest
Uni California (CRUMP) Los Angeles
Uni Toronto (CAMH)
CEA (DAPNIA) Saclay
MSKCC New York
Uni Athens (IASA)

- Irène Buvat CEA SHFJF - Orsay-F)
- Technical Coordinator: 5. Jan (CEA - Orsay, F)

Uni Lausanne (IPHE) Uni Clermont-Ferrand (LPC) Uni Ghent (ELIS) CHU Pitié-Salpêtrière (U494 INSERM) Paris Vrije Uni Brussel (IIHE) CERMEP, Lyon CEA (SHFJ) Orsay CHU Nantes (U463 INSERM) Sungkyunkwan Uni. Seoul Uni Claude Bernard (IPNL) Lyon

MicroPET for small animals

- Φ=20cm
- FOV few cm
- Development
 - Radio pharmacology
 - Tracer development

RatCap BNL

The Rat Conscious

Animal PET scanner

Crystal Clear Col.

CLEARPET

RAYTEST

OOHID -2015

Small animal PET images

31 g mouse 1 mCi ¹⁸F-

Whole-body FDG-PET scan 250 g rat (Sherbrooke APD)

µPET vs whole body PET → different requirements

- High Spatial resolution → fundamental
 - Objective ~ 1mm or less
 - Today \rightarrow 1,2 mm
- High sensitivity
 - Less Compton event
 - Small dose
- Paralax correction
 - → Deph Of Interaction Technique

- High Efficiency (>85%)
- Good Spatial Resolution (<5 mm)</p>
- Low Cost (<\$100/cm2)</p>
- Short Dead Time (<1 μs)</p>
- High Timing Resolution (< ns fwhm)</p>
- Good Energy Resolution (<100 keV fwhm)</p>

The ClearPEM Breast Imaging Scanner

27-mars-15

- 160 x 180 mm2 active area
- 6144 scintillation crystals LYSO:Ce
- 12288 APD pixel channels
- Double readout of crystal pixels for Depth-of-Interaction measurent (to minimize parallax effect)

--> Reach 1,2 mm patial resolution

Prostate PET (LBL)

Sagittal View

Lower cost and higher performance than conventional commercial PET camera

W.Moses & al.

Surgical portable probes

- Developent of very sensitive detectors, miniaturized and ergonimics with a great capability of rejecting noise and background
 - Based on SiPM,CMOS
 pixels,Scintillating cristals
 LaBr3:Ce, LuI3:Ce, ..., and
 integrated electronics
- Objectives: portable small imaging systems for beta/gamma probes adapted to new tumor tracers

POCI: PHRC 162 patientes (Hôpital Tenon)
Barranger et al, 2007 Bull Cancer 94(5)
Barranger et al, 2007 The Breast 16

High resolution PET Imaging probes

Prostate PET probe principle

- Non-conventional PET configuration
- Assymetric: one PET head in near contact to ROI
- Endoscopic: one PET head inside the body
- Miniaturization
- High background from other organs (heart, bladder,...)
- Variable geometry
- Reconstruction problems

Novel multimodal
endoscopic
probes for simultaneous
PET/ultrasound imaging
for image-guided
interventions

TOFPET-US

EU FP7 project, call Health 2010

Magnetic Position Sensor

External PET Plate (16cm X 16cm)

27-mars-15

Courtesy P.Lecoq et

SiPM hand-held PET probe

- The 'Central' part
 - 64 MPPC
 - LYSO crystals

- The photosensor 'stick' part
 - 4x10 array of Hamamatsu MPPC
 - Amplifier and connector banks are in the handle region of the probe

5. Majewski et al. (WVU)

- Biopsy guidance
- Surgical imaging with radio-guided surgery procedures in breast, melanoma, head and neck, pulmonary, pancreas and prostate cancer cases

27-mars-15

Time-of-Flight in medical PET

- Can localize source along line of flight.
- Time of flight information reduces noise in images.
- Line Of Response ---> list mode

	δt (ps)	∆d (cm)	SNR*
	100	1.5	5.2
	300	4.5	3.0
oday	500	7.5	2.3
	600	9.0	2.1

* SNR gain for 40 cm phantom = SNR_{TOF} / SNR_{non-TOF}

W.Moses courtesy

TOF technique (Con't)

- But need to use list mode data
- More complex data analysis and computing power

TOF PET Cameras Built in the 1980's

- · ~One dozen TOF cameras constructed
- · Some were commercial cameras
- 500 ps timing resolution
- BaF₂ scintillator
- ~1 cm spatial resolution
- 1-4 layers
- Advantages of TOF were experimentally verified

Problems With TOF in the 1980's

- CsF & BaF₂ have drawbacks (compared to BGO)
 - Lower density & atomic number (worse spatial resolution & efficiency)
 - "Fast" emission of BaF₂ is in UV (quartz PMTs, no transparent glues)
- Few "fast" PMTs (most 2" diameter, all expensive)
- · GHz electronics was "beyond state-of-the-art"
 - Time alignment and stability problems

Non-TOF PET with BGO Dominates

74

27-mars-15 OOHID -2015

The 2000's — The LSO Explosion in PET

- 220 ps coincidence timing resolution demonstrated with small crystals
- 350 ps coincidence timing resolution demonstrated with PET-shaped crystal
- 550 ps coincidence timing resolution demonstrated for PET detector module
- First Commercial LSO PET camera in 2001
- Camera not designed for TOF run in TOF mode
 1.2 ns timing resolution (electronics limited)

Commercial TOF PET Available in 2006

Can time of flight change PET/CT imaging?

PET/CT Satellite Lunch Symposium Saturday, March 4th, Vienna, Austria

* Uses LYSO: ~550 ps Timing Resolution * <u>Similar Prototype Camera</u> Developed by Siemens

TOF PET example

TOF-PET allows

- better images
- shorter scans
- smaller radiation dose to patients
- Time of Flight provides a Huge performance increase
- Largest improvment for large patients

However: Impaired Image Quality in Larger Patients

Slim Patient

For an equivalent data signal to noise ratio, a 120 kg person would have to be scanned 2.3 times longer than a 60 kg person

Courtesy

What is the limit?

Hardware	Δt (ps)	TOF Gain
BGO Block Detector	3000	0.8
LSO Block (non-TOF)	1400	1.7
LSO Block (TOF)	550	4.2
LaBr ₃ Block	350	6.7
LSO Single Crystal	210	11.1
LuI ₃ Single Crystal	125	18.7
LaBr ₃ Single Crystal	70	33.3

Research LaBr₃ Camera Built by U. Penn
~350 ps Intrinsic Detector Resolution
420–500 ps Camera Resolution (Electronics Limited)
New 'picosecond development → 100 psec goal

On going TOF-PET module development

Monolithic scintillator TUDelf)

- Goal
 - _ TOF: 100 psec resolution
 - _ Position: 1 mm
 - DOI* capability

The various types (modalities) of imaging

Organ Function Cell

- Complementary!
- Depends on what you want to see

MRI/MMR* = Magnetic resonnance

Multimodalities issues --> Image fusion

Metastases of a prostate carcinoma Courtesy: N. Abolmaali, OncoRay Dresden

(a) "tandem" PET/MRI

PET-MRI

Philips Gemini TF (PET) and Achieva 3T (MRI)

- Standard 'old' approach
 - Existing technologies
 - PET design not limited by geometrical constraints
 - Interferences minimized
 - Require image fusion
 - Not simultaneous

Courtesy Philips and University Hospital of Geneva

(b) "integrated" PET/MRI

A lot of developments Since SiPM availablility

PET/MRI

- New approach
 - Simultaneous image acquisition
 - Shorter acquisition time geometrical constraints
 - Some geometrical constraints
 - System interference

27-mars-15

OOHID -2015

The SUBLIMA project: High resolution TOF-PET / MRI

Monolithic TOF/DOI detector

Improved performance due to Ca co-doped LSO scintillator,

Digital photon counting (dSiPM)

Optimized readout algorithms

www.sublima-pet-mr.eu

APD detectors in human PET/MRI

Siemens Biograph mMR

Drzezga SNM 2011

		Biograph mMR
Ring diameter	r	65.6 cm
Axial FOV		25.8 cm
Energy windo	w	430 – 610 keV
Sensitivity	(0 cm)	1.47 % (1.47 %)
	(10 cm)	1.38 % (1.38 %)
Scatter fraction ¹		36.7 %
Spatial resolution ²		4.3 mm (4.3 mm)

^{27-mars} Echnische Universität München

OOHID=2015 PET (PET/CT)

PET/CT-3D Fusion

PET/MR-3D Fusion

PET (MR/PET)

The total body 'explorer' project

Davis, LBL, Upenn

- Modular "Block" Detectors
- $\sim 3.1 \times 3.1 \times 20 \text{ mm L(Y)} = 0.16 \times 16$
 - 880 kg of L(Y)SO!
- PMT (possibly SiPM) readout
- Time of flight and 1-bit DOI
- 40 rings, 48 detectors/ring
- ~78.6 cm ring diameter
- 215 cm axial FOV
- OpenPET electronics

S. Cherry, J3-7 NSS-MIC 2013 Seoul

Estimated data production

Singles: Prompts: Randoms:

164 MHz 47 MHz 34 MHz

A very interesting subject for T/DAQ experts

This idea is coming

■ The Total body PET

The Challenge Total-Body "Explorer" Project

- Very large number of channels (20 \rightarrow 2m FOV)
 - ~ 500 k channels (2x2 mm2 pixels)
- High trigger rate ~ 10 MHz (10 mCi, 20% sensitivity)
- High data rate~ 10 Gbyte/s (1 kbyte event size)
- Large number of events
 - 160 x 160 x 1000 image matrix
 - Large data volume per image
 - ■1 billion events
 - Real Time analysis
- Simultaneous merging of multimodality data
 - CT- MRI

Looks like

Deacreasing the dose with HEP Gazeous detector

Patient Radiation Dose is Limited!

- Image Noise Is Limited by Counting Statistics
- Cannot Increase too much Source Strength

Natural versus medical irradiation

27-mars-15

OOHID -2015

Exposure for radiological exams

Some examples

organ	dose skin	effective dose
Thorax, face	0,2 - 0,5	0,015 - 0,15

27-mars-15

OOHID -2015

Gas Detector History

Multi Wires Proportional chambers MWPC

TWO-DIMENSIONAL LOCALIZATION

TWO-DIMENSIONAL LOCALIZATION FROM SIGNALS INDUCED ON CATHODE PLANES (Charpak & Fabio Sauli, ~1973)

LOW-DOSE DIGITAL RADIOGRAPHY WITH MWPC: CHARPAK'S HAND (2002):

The 1970's dream: Digital radiography with MWPC A tribute to George Charpak

■ With 10 time less dose

X Ray imaging

GEM for 2D Imaging:

Using the lower GEM signal, the readout can be self-triggered with energy discrimination:

Position resolution ~ 100 μm (limited by photoelectron range in the gas)

Wire Chamber Radiography:

Position resolution ~ 250 μm

A. Bressan et al, Nucl. Instr. and Meth. A 425(1999)254

F. Sauli, Nucl. Instr. and Meth.A 461(2001)47

G. Charpak, Eur. Phys. J. C 34, 77-83 (2004)

F. Sauli, http://www.cern.ch/GDD 27-mars-15

OOHID -2015

From MWPC's to MGPD's

MWPC

1990 -

UA2-LEP
Multiwire Proportional Chamber

1975 - 1995

Georges Charpak 1968

GEM F.Sauli) Micromegas Y. Giomataris

GEMs

Micromegas

MPGD

- From 1988-1998 Micro-technologies and etching techniques allowed development of Micro Patter Gaseous Detectors
 - MICROMEsh GAseous Structure
 - Thin gap Parallel Plate Chamber: micromesh stretched over readout electrode.

- Gas Electron Multiplier
 - Thin, metal-coated polymer foil with high density of holes, each hole acting as an individual proportional counter.

The Future: New Si detector and signal processing On the way to photon counting?

Medipix3

- 8 simultaneous energies
- 55 μm isometric resolution
- Excellent energy resolution
- 10⁸ photons per second per mm²

Next → INGRID

- InGrid integrate the Micromegas/GEM concept on top of a MediPix pixel CMOS chip (Timepix)
 - pixel size: $55 \times 55 \mu \text{ m}^2$
 - per pixel: preamp shaper 2 discr. -
 - Thresh. DAQ 14 bit counter

<u>metalized foil</u> ~100 μm ~1mm

107Cmos Medipix chip

Use → Large Trackers & Calorimeters

Timepix Hybrid detector

On the way of photon counting

- Medipix is a Silicon pixel-based detector technology AND signal processing that can be employed to measure charged particles, photons, and neutrons.
- It is based on a read-out chip that embeds the electronics for each pixel within the pixel's footprint!
- Detector and electronics readout are optimized separately
- developed for use in the CERN LHC Central Trackers
- Medipix 3/TimePix This technology is an extension of designs originally
 - Integrate a TDC

<u>TU Prague - J. Jakubec</u> <u>NSS-MIC 2013 Seoul J4-3</u>

Medipix-CT setup for detector investigations & material analysis

Example -> USB flash drive

TPX 110μm + CdTe 2mm 8x2 tiles / mag. 1.5x 65kV / 200μΑ

27-mars-15 OOHID -2015 109

Example

PORTAL IMAGING

PORTAL IMAGING: VERY HIGH RATE GAMMA RAYS DETECTION
ROYAL INSTITUTE OF TECHNOLOGY AND KAROLINSKA HOAPITAL (STOKHOLM)

IACOBAEUS et al.: PORTAL IMAGING DEVICE FOR ADVANCED RADIATION THERAPY Real Time Imaging and Dosimetry Quadrupoles Beams Eye View Video Read Out Retracted Double Focused GEPID Fig. 1. Radiation treatment setup. A portal imaging device is placed under the patient GEM-BASED PIXEL DETECTOR

C. lacobaeus et al, IEEE Trans. Nucl. Sci. NS-48 (2001)1496

Summary & Conclusions (1)

- HEP has considerable acquired knowledge, expertise and resources that can, when transferred properly, significantly impact the practice of medical imaging and therapy
- A lot of exciting ideas and developments!
 - Should attrack young 'experimentalists'
- Activity that need to be 'promoted' actively outside our community for the benefit of us...in these hard time!
 - HEP is not only hunting the Higgs!

27-mars-15

Summary & Conclusions (2)

- It take sometime between the discovery and initial ideas.
- But when the technology is mature, it can make a gigantic breakthrough in the development of a technical device or system
- Collaboration between various scientists and expert is fundamental and the key factor for success.
- Building a community (network) about a specific subjects is the way to integrate students and experts

27-mars-15

Thanks to

- D.Townsend (U. Singuapor)
- W. Enghardt (Dresden)
- H. Frisch (U. Chicago)
- P. Lecoq (CERN)
- R. Lecomte (Sherbrooke)
- W. Moses (LBL)
- J. Karp (U. Penn)
- J. Varela (LIP)
- S. Ritt (PSI)
- S.Majewski (WVU)
- K.Parodi (HIT)
- Pr. J.N. Talbot (Hopital Tenon Paris)
- Pr. J.P. Gerard (Nice)
- ... and many others

Thank you for your attention