

Fast SiPM readout for PET

David Gascon¹, Ricardo Graciani¹, <u>David Sánchez</u>¹, John Barrio², Gabriela Llosá², Josep F. Oliver², Jesús Marín³, José Manuel Perez³, Pedro Rato³, Iciar Sarasola⁴

¹Universitat de Barcelona

²IFIC/IFIMED (CSIC-UVEG)

³CIEMAT

⁴CERN

Outline

Siub

- The FlexToT ASIC
 - FlexToT jitter
- Results with 1 channel MPPC
 - Energy Resolution
 - FlexToT measurements at CERN
 - DOI
- First results with monolithic and MPPC matrix
 - Energy Resolution
 - CRT
- MPPC characterization
- Future steps

- Joint project with CIEMAT to develop a time-overthreshold ASIC for SiPM based PET
 - ICCUB: electronics and microelectronics design
 - CIEMAT: PET and medical imaging instrumentation
- Optimized for segmented crystals with adjustable dynamic range

Ciemat

UNIVERSITAT DE

BARCELONA

• FlexToT ASIC main features (I)

- linear time-over-threshold (ToT) design
 - output signal width proportional to input current peak value
- 16 input analog channels (current)
- 16 digital ToT output channels (energy)
- 1 fast CML trigger output (time)
- current amplifiers with DC coupling for low input impedance (34 Ω) and 250 MHz bandwidth (> 400 MHz for FlexToT v2)
- bias voltage of each SiPM pixel individually adjustable for correcting temperature and gain variations
- magnetic field (MR) tolerant

- FlexToT ASIC main features (II)
 - low power consumption of ~10 mW/channel
 - sub-nanosecond timing with a trigger jitter better than 30 ps (< 10 ps for FlexToT v2) limited by measuring system
 - simple readout by an FPGA including a time-to-digital conversion (TDC)
 - linearity better than 5% for a dynamic range in current peak values from 0.7 mA to 18 mA (55 pC to 2 nC input charge)
 - internal gain saturation control and pile-up detection
 - fabricated by AMS (Austria) in 0.35 µm HBT BiCMOS technology
 - die size 2.93 mm x 2.54 mm, mounted on a 9 mm x 9 mm QFN64 package

Outline

Si UB

- The FlexToT ASIC
 - FlexToT jitter
- Results with 1 channel MPPC
 - Energy Resolution
 - FlexToT measurements at CERN
 - DOI
- First results with monolithic and MPPC matrix
 - Energy Resolution
 - CRT
- MPPC characterization
- Future steps

FlexToT v2 jitter measurements

- Time difference between calibration input signal and ASIC trigger
 - Measurement setup:
 - Agilent 81110A (330 MHz) pulse generator
 - 4 GHz / 20 GSPs DPO scope
 - Threshold set to detect 1 photon equivalent

Jitter better than 8 ps (rms) for signals larger than 3 photoelectrons
Best result: 7.2 ps (rms) for ~10 photoelectrons signal

Outline

<u>Si u</u>B

- The FlexToT ASIC
 FlexToT jitter
- Results with 1 channel MPPC
 - Energy Resolution
 - FlexToT measurements at CERN
 - DOI
- First results with monolithic and MPPC matrix
 - Energy Resolution
 - CRT
- MPPC characterization
- Future steps

Energy Resolution: pixelated

- Energy resolution using Cs 137 and Na 22 for calibration: < 8 %
 - 20x3x3 mm³ LFS crystals
 - HPKK 3x3 mm² 50 um sensors

- The timing performance of the FlexToT v2 ASIC was measured at CERN and compared with NINO readout electronics
 - STSM of Iciar Sarasola (CIEMAT), COST Action TD1401 "FAST"
- A portable setup with two FlexToT readout cards was carried to CERN during August 2015 to evaluate:
 - Single Photon Timing Resolution (SPTR)
 - Coincidence Time Resolution (CTR)
- Measurements were performed using both NINO and FlexToT readout electronics under similar operational conditions

FlexToT v2 timing measurements at CERN

- Single Photon Time Resolution (SPTR)
 - Pilas picosecond laser at 420 nm, 28 ps (FWHM) pulses at 100 kHz rate
 - LeCroy WaveRunner 104 Xi 1 GHz oscilloscope (10 Gs/s)
 - Laser intensity reduced by neutral density (ND) filters
 - Measurements performed in a light-tight box at 18.5 °C
 - Hamamatsu S13360-3050CS (LCT5) 3x3 mm² MPPC

- Best results (sigma): 64 ps for NINO and 80 ps for FlexToT

FlexToT v2 timing measurements at CERN

12

- Coincidence Time Resolution (CTR)
 - 2x2x5 mm³ LSO:Ce,Ca crystals on Hamamatsu S13360-3050CS (LCT5) 3x3 mm² MPPCs
 - LeCroy DDA 735Zi-A 3.5 GHz Analyzer (40 Gs/s)
 - Measurements performed in a light-tight box at 15 °C
 - Coincidences corresponding to 511 keV photopeak (+/- 3 sigma) in both detectors

DOI in phoswich configuration

The FlexToT allows time discrimination from two type of crystals with different decay times.

- MPPC array S12572, 4x4 with 3x3mm²/ch with 50um

BARCELONA

- Stack configuration: GSO and LYSO, 1.35x1.35mm² with 7mm and 8mm long respectively.

Outline

Si UB

- The FlexToT ASIC
 - FlexToT jitter
- Results with 1 channel MPPC
 - Energy Resolution
 - FlexToT measurements at CERN
 - DOI
- First results with monolithic and MPPC matrix
 - Energy Resolution
 - CRT
- MPPC characterization
- Future steps

Energy Resolution: monolithic

- Energy resolution and linearity with LYSO monolithic scintillator blocks
 - Resolution at 511 keV: 15.4% FWHM
 - Linearity (511-662-1274 keV): R² = 0.99975
 - Raw spectra obtained by summing the ToT outputs of all channels

BEST CTR with large LaBr₃ crystal

- MPPC array S12572, 4x4 with 3x3m/ch with 50um

•MPPC array with monolithic LaBr₃ in coincidence with single channel MPPC.

•CTR < 450ps

Fast SiPM readout for PET

BEST CTR with large LYSO crystal

- MPPC array S12572, 4x4 with 3x3mm²/ch with 50um

•MPPC array with monolithic LYSO in coincidence with single channel MPPC.

•CTR < 650ps

Fast SiPM readout for PET

Outline

Si UB

- The FlexToT ASIC
 - FlexToT jitter
- Results with 1 channel MPPC
 - Energy Resolution
 - FlexToT measurements at CERN
 - DOI
- First results with monolithic and MPPC matrix
 - Energy Resolution
 - CRT
- MPPC characterization
- Future steps

MPPC characterization: DCR

- MPPC LCT2-50um
- Number of pulses on a $10\mu s$ windows

MPPC characterization using PACTA

- MPPC single channel S13360, 6x6mm²/ch with 50um

- Breakdown voltage 51.2V

- Picosecond (50 ps FWHM) laser

Summary and conclusions

- UB and CIEMAT have designed and implemented an ASIC for the readout of SiPMs coupled to scintillators in (TOF)PET applications
 - Good linearity (better than 5%) from 0.7 mA to >18 mA peak input current (FlexToT v2)
 - Jitter better than 8 ps for signals larger than 3 photoelectrons
- Good results in SPTR, CTR and DOI capability:
 - 80 ps σ for single photoelectron timing resolution
 - 128 ps FWHM coincidence time resolution with LSO:Ce,Ca scintillators (FlexToT v2)
 - DOI discrimination with stacked GSO + LYSO crystals
 - <450 ps FWHM coincidence time resolution with LaBr₃ and <650 ps FWHM for LYSO monolithic crystals (FlexToT v2)
- PACTA really works for MPPC characterization

- Detailed PENELOPE simulations.
- New ASIC version for monolithic crystal (180nm CMOS, 3.5 mW/ch)
- DOI corrections and channel equalization.
- Optimization of MR-compatible demonstrator with 64 channel DAQ board.

Acknowledgements

• Fast

- MEDAMI organizers
- Hamamatsu

Mediterranean

Fast SiPM readout for PET

Thanks for your attention!

Fast SiPM readout for PET

FlexToT Time Properties: CTR

SiuB

- Coincidence time resolution measurements for
- Classical photopeak selection
 - Results @ $\pm 2\sigma$
 - 20x3x3 mm³ LFS crystals
 - LCT4 3x3mm 50um

Ciemat

Contro de Inve

UNIVERSITAT DE

BARCELONA

FlexToT Time Properties: CTR

FlexToT Time Properties: SPTR

- Picosecond (50 ps FWHM) laser
- Jitter floor < 10 ps rms
 - For very large signals

•FlexToT ASIC

- Good linearity and uniformity
 - With only comparator threshold offset equalization
- Different operating ranges can be covered

Linearity scan measurement

MPPC characterization photon distribution charge

MPPC characterization gain plot

Fast SiPM readout for PET

MPPC characterization Vb and Cd+Cq

Fast SiPM readout for PET

Siub