

To be of interest, it must:

- ➤ Have an interest for end-users
- > Be produced in enough quantity
- ➤ Be of good quality
- > Have a high reliability



### **Motivations**

#### There is a demand for **radionuclides**

> with different **Half-lives**:

to match with vector distribution time in targeted therapy or imaging

> with different decay radiations:

imaging / therapy

short range High LET vs long range Low LET



### α and β radiations are complementary

### β emitter

- <1 MeV dissipated over 1 to 10 mm</p>
- Energy deposited outside the target cell



• TARGET: macro-clusters



### α emitter

- 5-6 MeV dissipated over 0.1 mm
- Energy deposited within the target cells



TARGET: isolated cells / micro-clusters



#### **Motivations**

#### There is a demand for **radionuclides**

> with different **Half-lives**:

to match with vector distribution time in targeted therapy or imaging

> with different decay radiations:

```
imaging / therapy
short range High LET vs long range Low LET
```

- > with different Chemical properties
- > produced via **generator** (ease the availability)
- To be used for the Theragnostic approach

```
Radionuclide with radiations for both imaging and therapy (117mSn)
```

```
Radionuclides of the same element (64Cu/67Cu, 124I/131I, ...)
```

Radionuclides with comparable properties (99mTc / 188Re)





To be of interest, it must:

- ➤ Have an interest for end-users OK
- ➤ Be produced in enough quantity
  - → High intensity accelerator
- ➤ Be of good quality
  - → Radiochemistry & select the right nuclear reaction
- ➤ Have a high reliability



### **ARRONAX**

an Accelerator for Research in Radiochemistry and Oncology at Nantes Atlantique



3 Fields of investigations:

Radionuclides production for nuclear medicine

Associated research fields
Radiolysis, Radiobiology and
Nuclear Physics

**Training** 





# Its unique characteristics



#### **Main characteristics:**

Multi-particles High energy High intensity

| Beam     | Accelerated particles | Energy<br>range (MeV) | Intensity<br>(eµA) | Dual<br>beam |
|----------|-----------------------|-----------------------|--------------------|--------------|
| Proton   | H-                    | 30- <b>70</b>         | <375               | Yes          |
|          | HH+                   | 17                    | <50                | No           |
| Deuteron | D-                    | 15-35                 | <50                | Yes          |
| Alpha    | He++                  | 68                    | <70                | No           |





To be of interest, it must:

- ➤ Have an interest for end-users OK
- ➤ Be produced in enough quantity **OK** 
  - → High intensity accelerator
- ➤ Be of good quality **OK** 
  - → Radiochemistry & select the right nuclear reaction
- ➤ Have a high reliability



### ARRONAX: the facility



4 Vaults devoted to isotope production and connected to *hot cells* through a **pneumatic system** 

Vault **P1** devoted to a neutron activator system (*collaboration with AAA company*)

Vault **AX** devoted to physics, radiolysis and radiobiology experiments











## Radionuclides production: our priority list

– Radionuclide targeted therapy:

```
<sup>211</sup>At (α emitter)
<sup>67</sup>Cu, <sup>47</sup>Sc (β- emitters)
```

– Dosimetry prior therapy :

Radionulide pairs  $\beta^+/\beta^-$ : 64/67 Cu, 44/47 Sc

- Imaging :

Cardiology: 82Sr/82Rb

Oncology: 68Ge/68Ga

Hypoxia:  $^{64}Cu + ATSM$ 

Immuno–PET (64Cu, 44Sc, ...)

-Neutron production for particle activation: 166Ho





# Rubidium-82 (82Rb): PET imaging in cardiology





D. Le Guludec et al, Eur J Nucl Med Mol Imaging 2008; 35: 1709-24

In use in North America

### Several advantages:

Better corrections
Quantification
Shorter duration of the exam
Lower dose to patient
Available through a generator









# Sr-82 production facility in the World

- •LANL, USA 100 MeV, 200μA
- •BNL, USA 200 MeV, 100μA
- •INR, Russia 160 MeV, 120µA



BLIP

- •iThemba, South Africa 66 MeV, 250µA
- •TRIUMF, Canada 110 MeV, 70 μA
- •ARRONAX, France 70 MeV, 2\*100μA







## Copper-64

#### Why Copper-64?

PET isotope with low energy positron ( $T_{1/2}=12.7$  h).

Theragnostic pair with <sup>67</sup>Cu

Easily produced on biomedical cyclotron @ affordable price

### Potential Applications:

Hypoxia, imuno-PET, ...

Projects for funding clinical studies
(submitted)



#### **Routine irradiation conditions:**

Deuteron beam with 16 MeV and I=90  $\mu$ Ae on target around 3h One run every month

In 2015/2016, collaborations with 10 labs in France (none in 2013)



### Astatine-211

#### Why Astatine?

Alpha targeted therapy

Only alpha emitter easily produced using on-shell accelerator.

→ Capacity can be increased easily by adding an accelerator

#### Potential Applications:

Prostate cancer, Multiple myeloma, ...



#### **Routine irradiation conditions:**

Alpha beam with 67.4 MeV and I=15  $\mu$ Ae on target around 3h One run every two weeks





# Scandium-44(44Sc)

#### Why Scandium-44?

TEP isotope with  $T_{1/2}$ =4h

Theragnostic pair with <sup>47</sup>Sc

DOTA can be used as chelator

Co-production of  $^{44\text{m}}\text{Sc} \rightarrow \text{in-vivo generator}$ 

Decay through positron + gamma emission (1157 keV -99%)



**Potential Applications:** imuno-PET, 3y imaging ...

#### **Routine irradiation conditions:**

Max intensity on target: <1 μAe deuteron beam Run on demand









To be of interest, it must:

- ➤ Have an interest for end-users OK
- ➤ Be produced in enough quantity **OK** 
  - → High intensity accelerator
- ➤ Be of good quality **OK** 
  - → Radiochemistry & select the right nuclear reaction
- ➤ Have a high reliability underway

**Set-up network: GDR MI2B in France** 

collaborations in Europe





### Conclusions

ARRONAX is fully **operational since** February 2011.

ARRONAX priority list covers both **isotopes for therapy** (<sup>211</sup>At, <sup>67</sup>Cu, <sup>47</sup>Sc) and **imaging** (<sup>82</sup>Sr, <sup>68</sup>Ge, <sup>64</sup>Cu, <sup>44</sup>Sc)

- •82Sr is produced routinely as a radiochemical to be used in generator for clinical use.
- •64Cu is produced as radiochemical product. Clinical trials will start soon.
- <sup>211</sup>At is produced as radiochemical product. Preclinical trials have started
- •44Sc is produced as radiochemical. Radiolabeling studies is done.

  Next step is preclinical studies
- •166**Ho:** The neutron activator is validated at  $350 \mu A$  proton on target. Preclinical studies will start soon.



# Remaining Challenges

- ☐ Alternative production route for well established radionuclides: 99mTc
- ☐ Use of high LET particles: alpha emitters or Augers emitters
- □ New isotopes for new concepts 3  $\gamma$  imaging in close connexion to <sup>44</sup>Sc production
- ☐ High purity radioisotopes : Mass separation

On-line: ISOLDE @ CERN

Off-line: MEDICIS@CERN,

☐ Neutron production without reactor for some applications:

secondary neutrons from accelerator

☐ New developments in accelerator:

**Linac**: boost intensity

Compact cyclotrons to ease dissemination





### Credit

- C. Alliot<sup>2,3</sup>, N. Audouin<sup>2</sup>, J. Barbet<sup>2,3</sup>, O. Batrak<sup>1</sup>, A.C. Bonraisin<sup>2</sup>, Y. Bortoli<sup>1</sup>,
- C. Bourdeau<sup>2</sup>, M. Bourgeois<sup>2,3</sup>, G. Bouvet<sup>1</sup>, J.M. Buhour<sup>1</sup>, A. Cadiou<sup>1</sup>, C.Coban, J.B. Etienne, S. Fresneau<sup>1</sup>, S. Girault<sup>2</sup>, M. Guillamet<sup>1</sup>, F. Gomez<sup>2</sup>, X. Goiziou<sup>2</sup>, F. Haddad<sup>1,2</sup>, A. Herbert, S.
- Huclier-Markai<sup>1</sup>, C. Huet<sup>2</sup>, J. Laizé<sup>2</sup>, L. Lamouric<sup>2</sup>, E. Macé<sup>2,3</sup>, G. Mechin<sup>2</sup>, N. Michel<sup>1,2</sup>, T.
- Milleto<sup>1</sup>, M. Mokili<sup>1,2</sup>, M. Pageau<sup>2</sup>, S. Pauper, L. Perrigaud<sup>2</sup>, F. Poirier<sup>1,2</sup>, D. Poyac<sup>2</sup>, C. Roustan<sup>2</sup>, H. Trichet<sup>2</sup>, A. Vidal, N. Varmenot<sup>2</sup>.
- <sup>1</sup> SUBATECH (CNRS/IN2P3 Ecole des mines Université de Nantes)
- <sup>2</sup> GIP ARRONAX
- <sup>3</sup> Inserm U892,Nantes, France





## Thank you for your attention

The **ARRONAX** project is supported by:

the Regional Council of Pays de la Loire

the Université de Nantes

the French government (CNRS, INSERM)

the European Union.

This work has been, in part, supported by a grant from the French National Agency for Research called "Investissements d'Avenir", Equipex Arronax-Plus noANR-11-EQPX-0004 and Labex IRON noANR-11-LABX-18-01



