

Quantification of CaLIPSO PET scanner potential for personalized medicine in oncology and neurology

Olga Kochebina^{1,2}, Sébastien Jan²,Simon Stute² Viatcheslav Sharyy¹, Claude Comtat² Patrice Verrecchia¹, Xavier Mancardi¹, Dominique Yvon¹

¹CEA-IRFU, Gif-sur-Yvette, France ²CEA-IMIV, Orsay, France

> MEDAMI 2016 – IV Mediterranean Thematic Workshop in Advanced Molecular Imaging 03.05.2016, Ajaccio, France

Outline

Simulation of CaLIPSO PET scanner with GATE

- Quantification results
 - Noise Equivalent Count Rate
 - Image resolution

Image reconstruction

Perspectives and conclusions

CaLIPSO PET scanner

Calorimètre Liquide Ionisation Position Scintillation Organométallique

Efficient PET scanner designed for **brain studies**, neurodegenerative diseases, neuro-oncology

- \rightarrow diagnosis
- \rightarrow monitoring of the functional changes over the treatment

Innovative liquid as detection medium TMBi: TriMethyl Bismuth Bi(CH₃)₃

- \rightarrow Dielectric, stable, limpid
- \rightarrow Highest (bismuth) photoelectric conversion efficiency ~ 47 %
- \rightarrow Density = 2.3 g/cm³

Motivation: <u>high image resolution</u> and <u>detection efficiency</u>

CaLIPSO	PET HRRT by Siemens
Photoelectron conversion eff. ~ 47%	Photoelectron conversion eff. ~ 30%
Energy resolution < 10 % (FWHM)	Energy resolution ~ 20-30 %
Spatial resolution 1 mm³	Spatial resolution 2.3-3.2 mm ³
TOF	No TOF
Time res. CRT ~ 150 ps (FWHM)	State of the art: Time res. CRT ~ 350 ps

Bataille et al. IEEE-NSS 4 (2004) 2570-2574

Simulations with GATE platform

Simulations of Preclinical and Clinical Scans in Emission Tomography, Transmission Tomography and Radiation Therapy

- Based on Geant4 (C++)
- Open source
- Easy to learn and use
- Possible to configurate simple or highly sophisticated experimental settings

Elementary detection block

- Block 5.3 × 5.3 × 5.0 cm³ filled with TMBi
- Size defined by MCP-PMT size, PLANACON[™], Photonis
- Ceramic light guides divide volume in 4 cells
- Optical properties based on prototype measurements Charge detection properties based on the simplest model

Semianalytic models

Take too long to perform detailed simulations in GATE

Parametric approach for optical and ionization detection

- Use simplified models from detailed MC simulations: apply detector response functions
 - \rightarrow for the efficiency and resolution in time of the optical signal
 - \rightarrow for the energy and spatial resolution of the ionization

511 keV photon conversion in TMBi:

- \rightarrow Photoelectric (47%)
- \rightarrow Compton

Number of Cherenkov photons

Detection efficiency

Geometry definition of head-size CaLIPSO scanner

- → Diameter: 30.7 cm
- \rightarrow Axial : 31.2 cm

 \rightarrow 4 sectors: 5×6 blocks

Cube geometry

- \rightarrow possible thanks to accurate 3D positioning of photons interactions
- \rightarrow simplify the manufacturing
- Coincidence window = 3 ns
- no dead-time yet (expected ~5 µs, max. occupancy ~ 20kHz/cell) TOF information not yet used for reconstruction (CRT~150 ps \rightarrow 3 cm)

Noise Equivalent Count Rate (NECR)

- Estimation of an image contrast
- Ratio between true, scatter and random coincidences

 $\blacksquare Higher NECR \rightarrow better image contrast$

Results: Noise Equivalent Count Rate

Simulation with:

Cylindrical phantom NEMA-1994, Ø = 20 cm, L = 20 cm
Filled with water, uniformly distributed activity T = True

 $NECR = \frac{-}{T + S + 2R}$

CaLIPSO NECR is larger than for HRRT scanner

 \rightarrow better image contrast

* de Jong et al, Phys. Med. Biol. 52 (2007) 1505

S = Scatter

R = Random

y 🔺

x

Image resolution is less than 1 mm (FWHM)

Image reconstruction

Issues

- Foressen CaLIPSO will have a high spatial resolution of 1 mm³: "detection elements": 1.6·10⁷, LORs: 1.3·10¹⁴
- HRRT:

"detection elements": 1.2.10⁵, LORs: 7.2.10⁹

- Problems for such amount of data
 - Impossible to use sinograms (one plane with TOF → 302 Gb)
- Calculation of sensitivity and normalization maps require 1.3 •10¹⁴ LORs
- Preliminary results to prove the concept
 - \rightarrow 2D simulations of one plane of the scanner:
 - "detection elements": 5.2.10⁴, LORs: 1.4.10⁹
 - \rightarrow without attenuation medium
- Use platform CASToR (Customizable and Advanced Software for Tomographic Reconstruction)
 - \rightarrow Open source
 - \rightarrow Under development
 - \rightarrow http://www.castor-project.org/

Image reconstruction: ¹¹C-PE2I

CASToR platform for reconstruction
Iterative algorithm, OSEM: 10 iterations, 16 subsets

Positron range for ¹¹C is ~ 1 mm (FWHM), i.e. slightly larger than expected machine resolution

Generated

Reconstructed

Image reconstruction: ¹⁸F-FDG

CASToR platform for reconstruction
Iterative algorithm, OSEM: 10 iterations, 16 subsets

Positron range for 18 F is ~ 0.6 mm (FWHM)

Generated

Reconstructed

The high potential of CaLIPSO PET scanner

Pixel size : 0.25 mm Gaussian smoothing, σ : 0.5 mm

HRRT

Real data

Conclusions and perspectives

The work on CaLIPSO simulations for full scale scanner is advanced

CaLIPSO detector performances are very promising

- Image resolution less than ~ 1 mm (FWHM)
- Enhanced NECR compared to reference high resolution brain scanner

Confirmation of the potential of CaLIPSO project for high resolution brain PET-scan

High resolution = sensitivity problem !

- Small size of voxels \rightarrow possible lack of statistics in each voxel
- · High sensitivity is needed

Time Of Flight potential

Improving spatial resolution to 1mm³ means lower statistics in each voxel

 \rightarrow Need to improve signal to background ratio

Use Time Of Flight (TOF) to enhance image contrast CaLIPSO: time resolution δt = 70-150* ps

$$G = \frac{S/N_{TOF}}{S/N_{noTOF}} = \alpha \sqrt{\frac{2D}{c\delta t}}$$

* see presentation of D. Yvon

with $\delta t = 150 \text{ ps} \rightarrow \text{ G} \sim 2.4$ for image contrast with $\delta t = 70 \text{ ps} \rightarrow \text{ G} \sim 3.5$ for image contrast

Thank you for your attention

Gamma detection

Industrially produced scanners: scintillator crystals

PE conversion efficiency ~ 10-20% Spatial resolution 2.5 mm³ Time resolution, σ ~ 350 ps

 CaLIPSO: new detection principle, double detection of light and ionization signals PE efficiency ~ 50% Spatial resolution 1 mm³ Time resolution, σ ~ 150 ps

Gamma detection

Properties Detector	Atten Length (cm)	Coinc . PhotElecE Eff.(%)	Timing Resolution (ps, FWHM)	Energy Resolution (% FWHM)	G Interac. Postion. (mm)	End user friendly
LSO/LYSO	1.23	12	300 - 500	10	2 to 10	YES
LaBr ₃	2.3	1.9	100 - 300	3	4 to 10	YES
CdTe/CZT	2.0	2.2	slow	1-3	0.1	YES
CaLIPSO	2.9	22	?150? - 380	10	0.15	Will be !

LSO/LYSO : The reference detector.

LaBr3 : Excellent timing, poor PE Efficiency, fair positionning.

Only relevant for full body, Time of Flight PET config.

CdTe/CZT : Excellent position reconstruction, poor PE Efficiency.

Only relevant for single mouse PET imaging

CaLIPSO : Best PE efficiency, Excellent positioning, very good timing.

Take the best of all technologies – Needed for high-res efficient Brain PET