

EndoTOFPET-US: A multi-modal endoscope for Ultrasound and Time-of-Flight PET

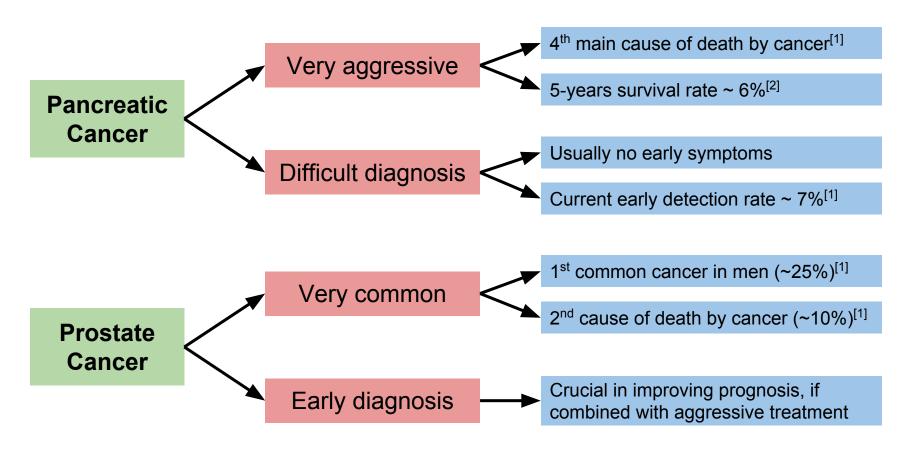
Marco Pizzichemi

On behalf of the EndoTOFPET-US collaboration

IV Mediterranean Thematic Workshop in Advanced Imaging (MEDAMI)
Ajaccio, Corsica, May 1-5 2016

The EndoTOFPET-US project

Endoscopic Probe


- US detector
- PET head

External PET Plate

- → An imaging tool for early diagnosis of **pancreas** and **prostate** cancer
- → Combine a **high resolution PET scanner** with an endoscopic US probe
 - Early stage detection of cancer
 - Development of new biomarkers for tumoral processes
- → International collaboration in the frame of the European FP7 program
 - > 7 academic partners: CERN, DESY, LIP, TU-Delft, TUM, Heidelberg Uni, Milano-Bicocca Uni
 - > 3 industrial partners: KLOE, Fibercryst, Surgiceye
 - > 3 clinical partners: Aix-Marseille Uni, Klinikum Recht der Isar -TU Munich, Lausanne Uni

Pancreas and prostate cancers

- → Standard imaging nowadays performed with US, CT and MRI
- → Limited effectiveness of standard WB-PET/CT scanners (small organs, background)
- → Need to develop an early detection method
 - High spatial resolution (in the order of 1mm)
 - ➤ High Signal-to-Noise Ratio (SNR)

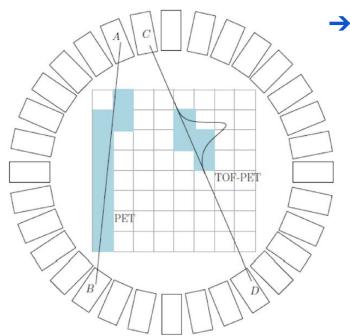
^[1] Jemal A, Siegel R, Ward E et al. (2008). "Cancer statistics, 2008". CA Cancer J Clin 58 (2): 71–96. [2] American Cancer Society (2010). "Cancer Facts and Figures 2010"

Spatial resolution

→ EndoTOFPET-US project goal: ∆x_{FWHM} = 1 mm

$$\Delta x_{FWHM} \sim a\sqrt{\left(\frac{d}{2}\right)^2 + (0.0022D)^2 + r^2 + b^2}$$

W.W. Moses, S.E. Derenzo, J. Nucl. Med. 34 (1993) 101P


a roothed dodlor dogradation	> a	= reconstruction degradation	1.25
------------------------------	-----	------------------------------	------

- r = effective source size ~0.5 mm
- ▶ b = accuracy of positioning system
 0.5 mm
 → High precision tracking
- → d = crystal transversal size

 0.75 mm

 → High granularity
- ► D = detector heads distance
 < 100 mm</p>
 → Endoscopic approach
- → High system **miniaturization**
- → Challenging system integration
- → Dedicated image reconstruction

Signal-to-Noise Ratio - Time of Flight (TOF)

S. Surti, J.S. Karp - Physica Medica 32 (2016) 12-22

Compute the difference in time of arrival of gammas:

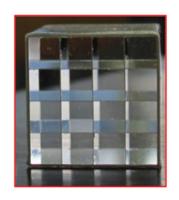
Improve event localization along LORs, reject events from nearby organs (liver, heart, bladder)

$$\Delta x = c \frac{\Delta t}{2}$$

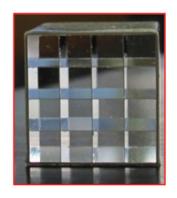
Decrease noise correlation in overlapping LORs, improve Signal-to-Noise Ratio (SNR)

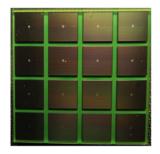
$$SNR_{TOF} \sim \sqrt{\frac{D}{\Delta x}} \cdot SNR_{CONV}$$

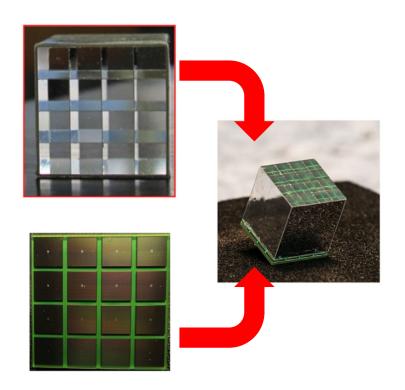
D = effective object diameter


Time resolution (ns)	Δx (cm)	TOF NEC gain	TOF SNR gain
0.1	1.5	26.7	5.2
0.3	4.5	8.9	3.0
0.6	9.0	4.4	2.1
1.2	18.0	2.2	1.5
2.7	40.0	1.0	1.0

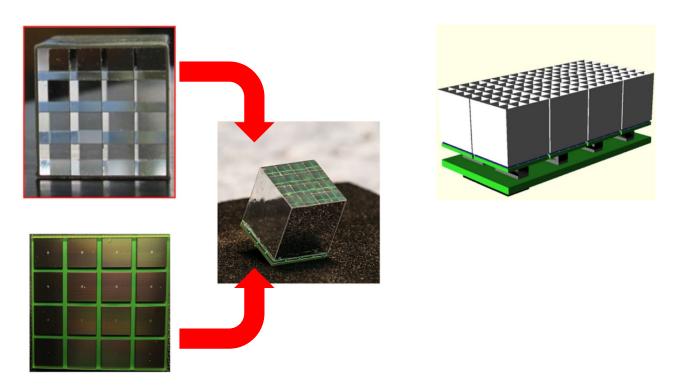
M. Conti - Eur J Nucl Med Mol Imaging (2011) 38:1147-1157

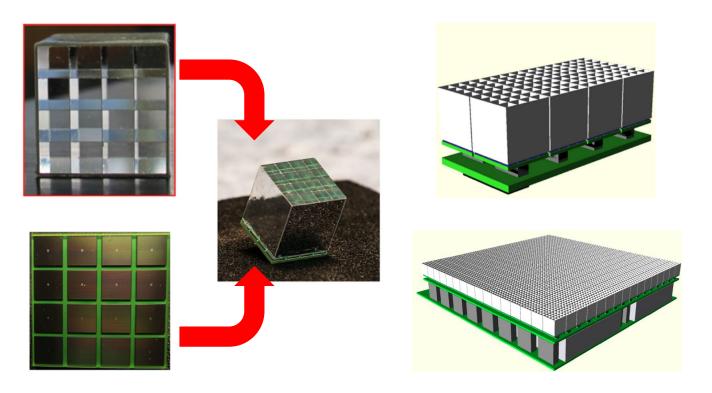

\rightarrow	Project goal	$\Delta t_{\text{EWHM}} = 200$) ps
	J 5		

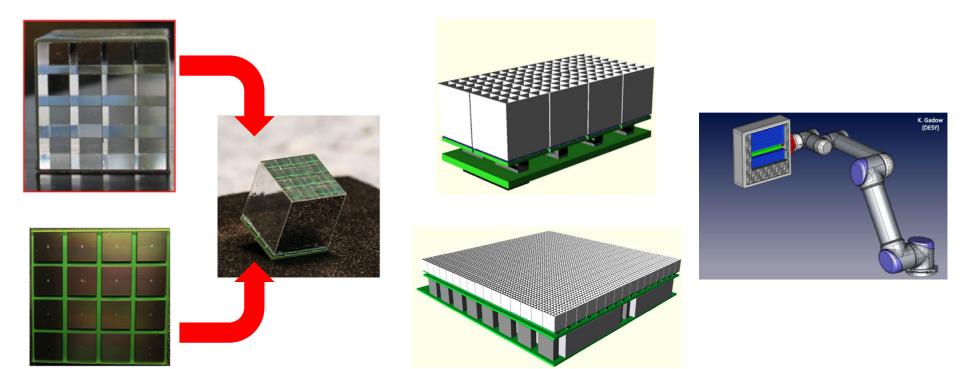

- > Fast scintillating crystals
- > High light yield
- Ultra fast photo-detection
- Digital approach for internal SiPM
- Low jitter readout electronics

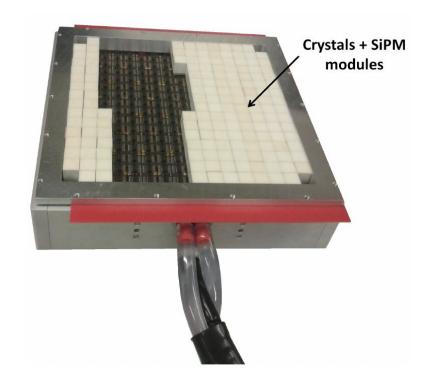


- → Two plates produced (one for prostate detector, one for pancreas detector)
- → 256 arrays of 4x4 LYSO:Ce scintillators for each plate
 - ➤ Individual crystal size: 3.5x3.5x15 mm² for prostate, 3.1x3.1x15 mm² for pancreas
 - > Crystal pitch: **3.6 mm** for prostate, **3.2 mm** for pancreas
 - Coating material: ESR by 3M

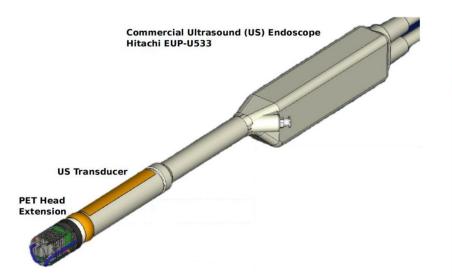


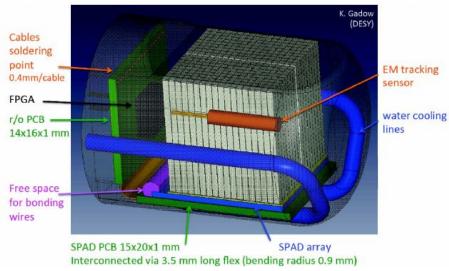

- → Two plates produced (one for prostate detector, one for pancreas detector)
- → 256 arrays of 4x4 LYSO:Ce scintillators for each plate
 - ➤ Individual crystal size: 3.5x3.5x15 mm² for prostate, 3.1x3.1x15 mm² for pancreas
 - Crystal pitch: 3.6 mm for prostate, 3.2 mm for pancreas
 - Coating material: ESR by 3M
- → Discrete Silicon-through-via (TSV) **MPPCs** by Hamamatsu, RTV 3145 glue


- → Two plates produced (one for prostate detector, one for pancreas detector)
- → 256 arrays of 4x4 LYSO:Ce scintillators for each plate
 - Individual crystal size: 3.5x3.5x15 mm² for prostate, 3.1x3.1x15 mm² for pancreas
 - Crystal pitch: 3.6 mm for prostate, 3.2 mm for pancreas
 - Coating material: ESR by 3M
- → Discrete Silicon-through-via (TSV) **MPPCs** by Hamamatsu, RTV 3145 glue

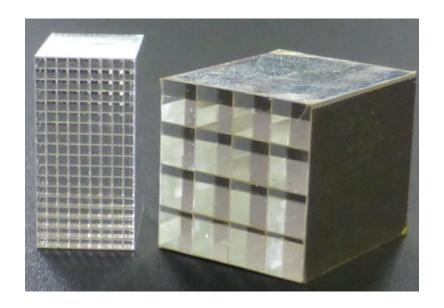

- → Two plates produced (one for prostate detector, one for pancreas detector)
- → 256 arrays of 4x4 LYSO:Ce scintillators for each plate
 - Individual crystal size: 3.5x3.5x15 mm² for prostate, 3.1x3.1x15 mm² for pancreas
 - Crystal pitch: 3.6 mm for prostate, 3.2 mm for pancreas
 - Coating material: ESR by 3M
- → Discrete Silicon-through-via (TSV) **MPPCs** by Hamamatsu, RTV 3145 glue
- → FEB/A with 8 modules and 2x64ch readout ASICs, 4 FEB/D with 8 FEB/A each

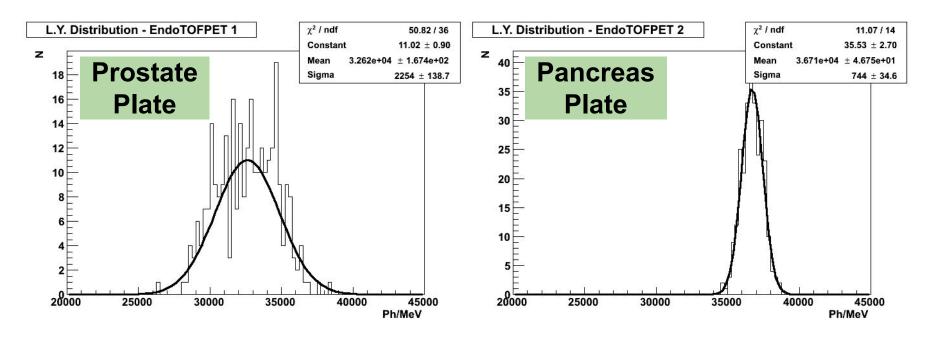
- → Two plates produced (one for prostate detector, one for pancreas detector)
- → 256 arrays of 4x4 LYSO:Ce scintillators for each plate
 - Individual crystal size: 3.5x3.5x15 mm² for prostate, 3.1x3.1x15 mm² for pancreas
 - Crystal pitch: 3.6 mm for prostate, 3.2 mm for pancreas
 - Coating material: ESR by 3M
- → Discrete Silicon-through-via (TSV) MPPCs by Hamamatsu, RTV 3145 glue
- → FEB/A with 8 modules and 2x64ch readout ASICs, 4 FEB/D with 8 FEB/A each



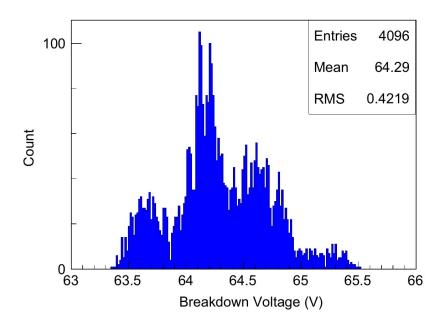

- → Two plates produced (one for prostate detector, one for pancreas detector)
- → 256 arrays of 4x4 LYSO:Ce scintillators for each plate
 - Individual crystal size: 3.5x3.5x15 mm² for prostate, 3.1x3.1x15 mm² for pancreas
 - > Crystal pitch: **3.6 mm** for prostate, **3.2 mm** for pancreas
 - Coating material: ESR by 3M
- → Discrete Silicon-through-via (TSV) MPPCs by Hamamatsu, RTV 3145 glue
- → FEB/A with 8 modules and 2x64ch readout ASICs, 4 FEB/D with 8 FEB/A each
- → Cooling system, mechanical arm

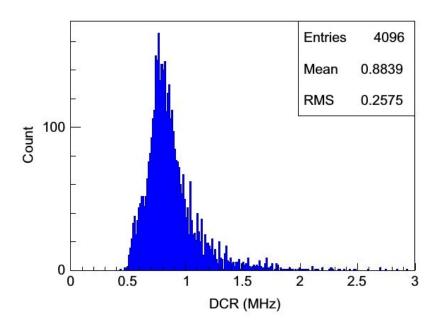
- → Two plates produced (one for prostate detector, one for pancreas detector)
- → 256 arrays of 4x4 LYSO:Ce scintillators for each plate
 - ➤ Individual crystal size: 3.5x3.5x15 mm² for prostate, 3.1x3.1x15 mm² for pancreas
 - Crystal pitch: 3.6 mm for prostate, 3.2 mm for pancreas
 - Coating material: ESR by 3M
- → Discrete Silicon-through-via (TSV) **MPPCs** by Hamamatsu, RTV 3145 glue
- → FEB/A with 8 modules and 2x64ch readout ASICs, 4 FEB/D with 8 FEB/A each
- → Cooling system, mechanical arm


PET detector design: endoscopic probe


- → Two different versions under development:
 - > Pancreas probe, diameter **15 mm**
 - Clamped on Fujinon EG-530UR2
 - Prostate probe, diameter 23 mm
 - Clamped on Hitachi EUP-U533
- → Scintillators: 1 (pancreas) or 2 (prostate) arrays of 9x18 LYSO:Ce
 - ➤ Individual crystal size **0.71x0.71x15**(or 10) **mm**³
 - Crystal pitch 800 μm
 - Coating material: ESR by 3M
- → Photo-detector: custom MD-SiPM developed within the collaboration
- → Provisional probe with analog MPPCs for testing
- → EM, and optical tracking, water cooling

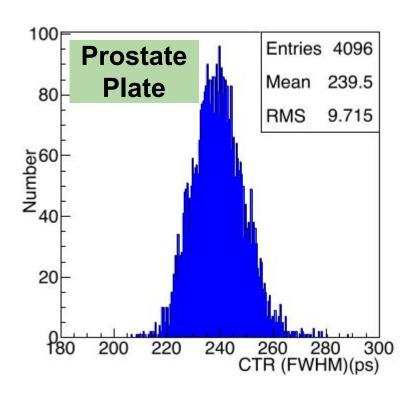
PET detector performance: scintillators

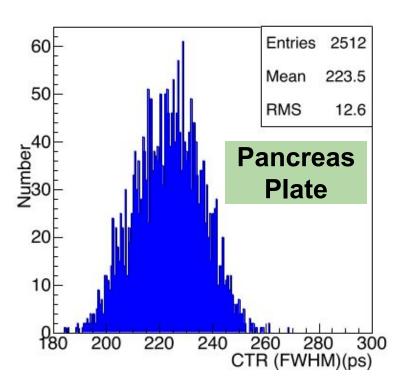

- → LYSO:Ce polished scintillators, coating with ESR
- → Required light output to reach 200ps = 20000-25000 Ph/MeV
- → 9x18 arrays of internal probes tested on standard PMTs (optical grease coupling)
 - > Narrow sum photopeak ensure uniform light output within individual arrays
 - > Average light output = 28000 +/- 1000 Ph/MeV


PET detector performance: scintillators

- → LYSO:Ce polished scintillators, coating with ESR
- → Required light output to reach 200ps = 20000-25000 Ph/MeV
- → 9x18 arrays of internal probes tested on standard PMTs (optical grease coupling)
 - Narrow sum photopeak ensure uniform light output within individual arrays
 - Average light output = 28000 +/- 1000 Ph/MeV
- → Characterization of 276(x2) arrays produced for external plates with MiniACCOS
 - 25 arrays per teflon plate
 - Motorized X-Y movements
 - Average light output (Prostate) = 32000 +/- 2000 Ph/MeV
 - Average light output (Pancreas) = 37000 +/- 3000 Ph/MeV

PET detector performance: MPPCs


→ Characterization of breakdown voltage (V_{bd}) with I-V curves


- ➤ Measured with Keithley 2410 for each channel of the 256 MPPCs, at 19 °C
- > Excellent homogeneity within 16 channels of each array
- \succ MPPCs sorted on the bases of V_{bd} distribution (common bias for 4 MPPCs)
- Operational voltage set to V_{bd} + 2.5 V

→ Average Dark Count Rate (DCR) and Cross Talk

- > DCR measured as a function of the NINO amplifier/discriminator threshold
- > Average **DCR** at 19 °C = **0.88 MHz**
- Cross Talk between SPADs measured as the ratio of DCR at 1.5 to 0.5 photoelectrons
- > Average **SPAD cross talk** at 19 °C = **41.4%**

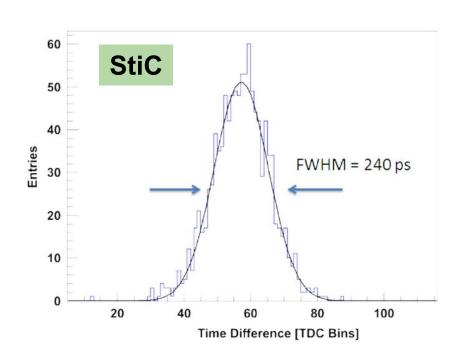
PET detector performance: modules

→ Light Output of all modules determined as number of pixels fired

- ➤ Module excited with ²²Na source
- Current output integrated by QDC over 100 ns gate
- ➤ Mean Light Output = 1876 +/- 100 pixels fired
- ➤ Mean Energy Resolution FWHM = 12.8%

→ Coincidence Time Resolution (CTR)

- Measured with NINO and HPTDC for each module against a reference module
- > Average prostate plate CTR_{FWHM} = 239.5 ps
- > Average pancreas plate CTR_{FWHM} = 223.5 ps

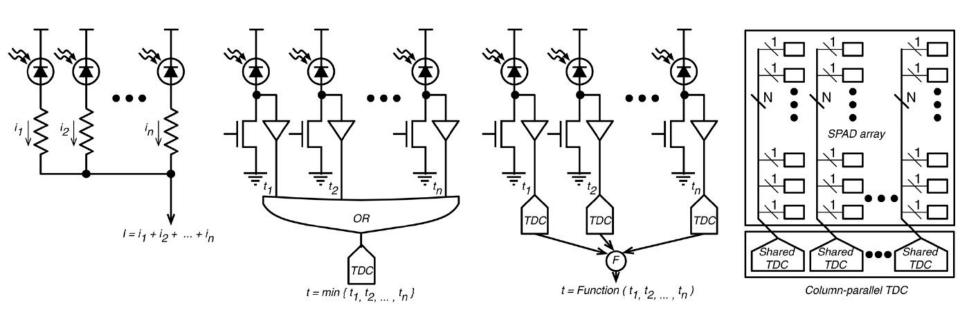

PET detector performance: ASICs

	STiC	TOFPET-ASIC
Jitter (at >5pC)	< 30 ps	< 25 ps
Input bias lin. range	0.7 V	$0.5 \mathrm{~V}$
TDC time bin width	50 ps	50 ps
Power consumption	19 mW/ch.	8 mW/ch
Output rate	$160~\mathrm{MBit/s}$	$160~\mathrm{MBit/s}$

→ Two dedicated fast 64 channel ASICs developed: **StiC** and **TOFPET**

- Leading edge technique to get timing information
- ➤ Linearized Time-Over-Threshold method to provide energy information
- ➤ Low noise, low timing-jitter, low power consumption

PET detector performance: ASICs



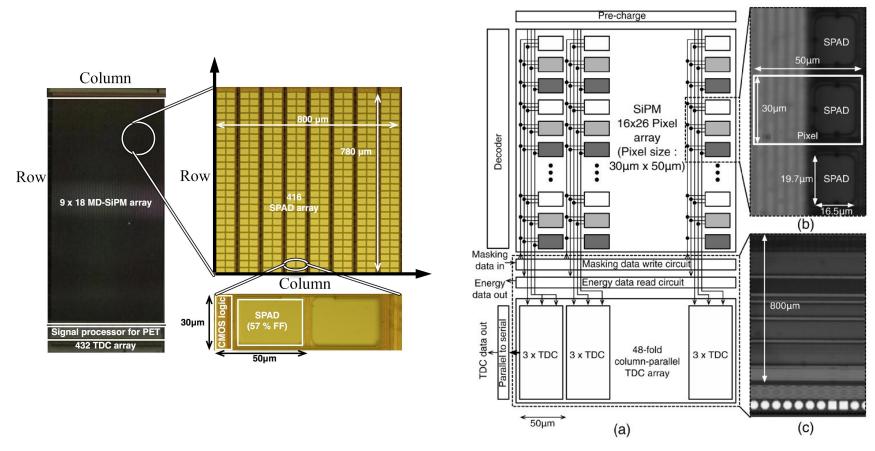
→ Two dedicated fast 64 channel ASICs developed: StiC and TOFPET

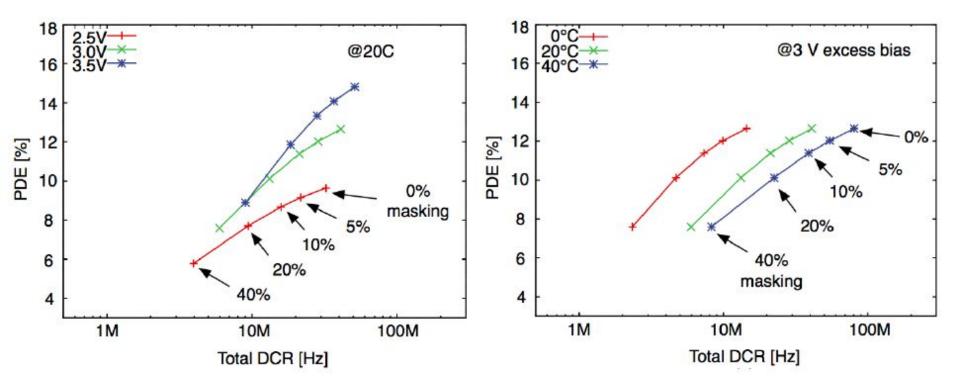
- Leading edge technique to get timing information
- Linearized Time-Over-Threshold method to provide energy information
- ➤ Low noise, low timing-jitter, low power consumption

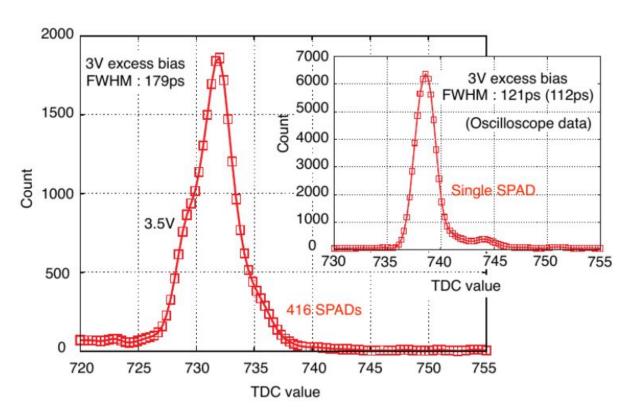
→ CTR measured for both ASICs

- ➤ Single 3.1x3.1x15 mm³ crystals coupled to 2 Hamamatsu MPPCs
- → ²²Na source
- StiC average CTR_{FWHM} = 240 ps
- ightharpoonup TOFPET average CTR_{FWHM} = 270 ps

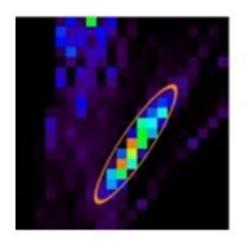
Analog SiPM

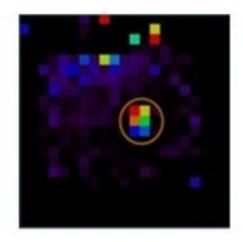

Conventional Digital SiPM

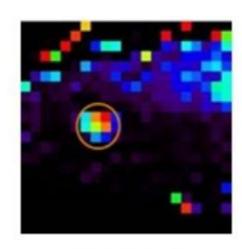

Fully digital SiPM


Multi Digital SiPM

- → Individual SPADs size 30x50 μm, 57% fill factor
 - > 1-bit counter per SPAD provides digital count of pixels fired
- → 416 SPADs per MD-SiPM (16x26 array), size **780x800μm**
 - > Pixel masking
- → Array of **9x18 MD-SiPMs** matching the scintillator matrix
 - > 432 column-parallel TDCs (48 per column)
 - Combining information of first 48 photons reaching lower bound of theoretically achievable CTR

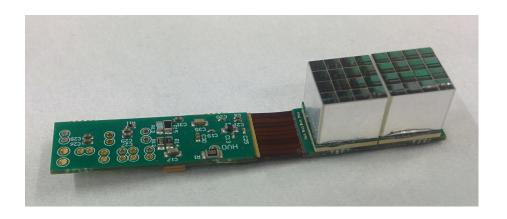



- → DCR measured for different temperatures and bias voltages
 - DCR 41 MHz at 20 °C and 3 V excess bias
 - Can be reduced to 23 MHz with 10% masking
 - ➤ PDE after masking about 12%



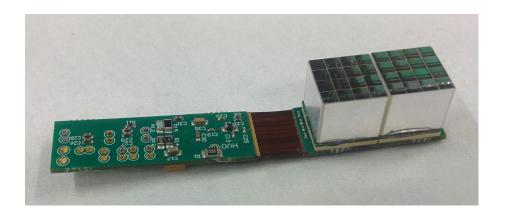
- → DCR measured for different temperatures and bias voltages
 - DCR 41 MHz at 20 °C and 3 V excess bias
 - Can be reduced to 23 MHz with 10% masking
 - ➤ PDE after masking about 12%
- → Single Photon Timing Resolution (SPTR) evaluated
 - Pulsed laser (250 mW, 405 nm, 40ps pulse width)
 - ➤ Internal TDCs (45 ps LSB)
 - > SPTR_{FWHM} measured in **121 ps** for single SPAD and **179 ps** for entire 16x26 array

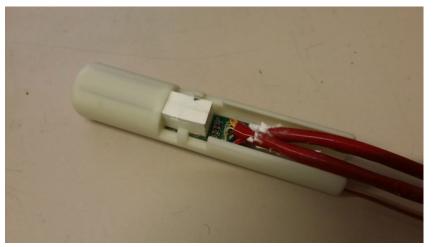
Reconstruction Algorithm - Simulations


Transverse

Coronal

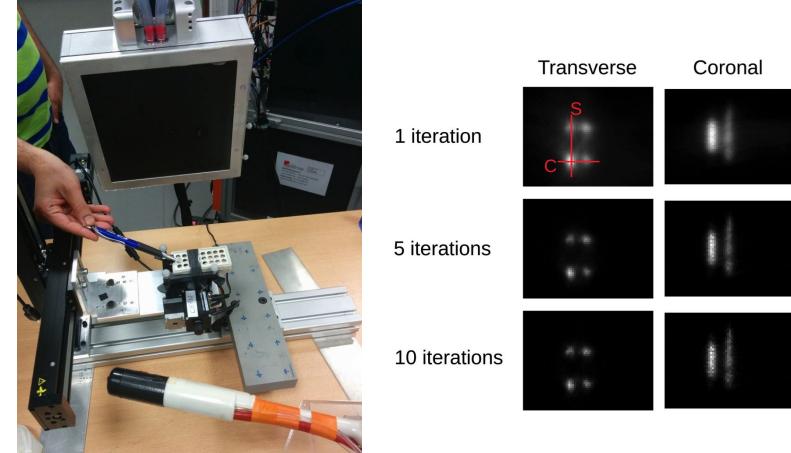
Sagittal


- → Dedicated reconstruction algorithm developed within the collaboration
 - Iterative histogram based ML-EM reconstruction
 - Incorporates TOF information
 - Copes with detector asymmetry
 - Takes into account the limited rotation capabilities
 - Massive parallelization by GPU programming
- → Expected performance tested on **simulated datasets**
 - Based on GAMOS toolkit
 - > 1 mm resolution within reach with 10 minutes scan time


Commissioning and testing of first prototype

→ Provisional probe with 2 MPPCs and 2 4x4 LYSO:Ce arrays (3.1x3.1x15 mm³)

Commissioning and testing of first prototype



- → **Provisional probe** with 2 MPPCs and 2 4x4 LYSO:Ce arrays (3.1x3.1x15 mm³)
- Clamping on prostate US endoscope

Commissioning and testing of first prototype

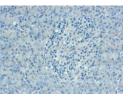
- → Provisional probe with 2 MPPCs and 2 4x4 LYSO:Ce arrays (3.1x3.1x15 mm³)
- → Clamping on prostate US endoscope
- → Preliminary images obtained at CERIMED-Marseille on cylinders filled with FDG

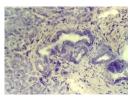
Sagittal

Development of new biomarkers

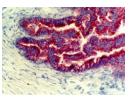
P A N C R E A S

Formalin-fixed, paraffin-embedded tissues Non tumoral tissues Tumoral tissues

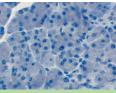

→ Pancreas cancer: mAb16D10

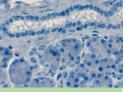

- > Recognizes human pancreatic tumor cells
- > **Does not recognize** non-tumoral pancreatic tissue, other cancers or normal tissue
- > Therapeutic properties: decreases tumor growth and mobility

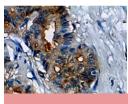
Development of new biomarkers

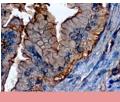

P A N C R E A S

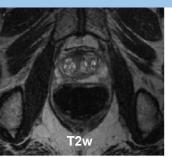
Frozen tissue



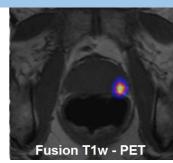








Non tumoral tissues


Tumoral tissues

PROSTATE

68Ga-PSMA PET/MR in patient with negative prostate biopsy

Pancreas cancer: mAb16D10

- > Recognizes human pancreatic tumor cells
- Does not recognize non-tumoral pancreatic tissue, other cancers or normal tissue
- > Therapeutic properties: decreases tumor growth and mobility

→ Prostate cancer: ⁶⁸Ga-PSMA

- > Enzyme expressed by prostate epithelial cells
- ➤ More specific as compared to standard ¹⁸F and ¹¹C tracers

Conclusions

→ The **EndoTOFPET-US** collaboration is developing a multi-modal PET-US scanner for early detection of prostate and pancreas cancer

Conclusions

→ The **EndoTOFPET-US** collaboration is developing a multi-modal PET-US scanner for early detection of prostate and pancreas cancer

- → The PET scanner design aims to 1 mm spatial resolution and 200 ps FWHM CTR
 - > Early diagnosis, via spatial resolution and SNR and NEC improvement from TOF
 - Tool for development of new biomarkers
 - Research to develop this scanner will be instrumental in the **effort towards the "10 ps PET"** (e.g. MD-SiPM, fast ASICs, scintillators, etc.)

Conclusions

→ The **EndoTOFPET-US** collaboration is developing a multi-modal PET-US scanner for early detection of prostate and pancreas cancer

- → The PET scanner design aims to 1 mm spatial resolution and 200 ps FWHM CTR
 - > Early diagnosis, via spatial resolution and SNR and NEC improvement from TOF
 - Tool for development of new biomarkers
 - Research to develop this scanner will be instrumental in the effort towards the "10 ps PET" (e.g. MD-SiPM, fast ASICs, scintillators, etc.)

- → Performance of single components evaluated, design targets within reach
- → Two external detectors assembled, **first tests** with provisional internal probe
- → Assembly of final version for the endoscopic PET probe ongoing

Thank you for your attention!

Thanks to all the collaborators of EndoTOFPET-US and PicoSEC-MCNet

This project have been partially funded by from the European Union 7th Framework Program (FP7/ 2007-2013) under Grant Agreement No. 256984 (EndoTOFPET-US) and is supported by a Marie Curie Early Initial Training Network Fellowship of the European Community's Seventh Framework Programme under contract number (PITN-GA-2011-289355-PicoSEC-MCNet)

