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Before 1950, the world of hadrons was simple:
nucleons & m-mesons

— one species of massive Fermionic matter particle (p,n)
— one species of massive Bosonic force particle 7w+

In the next 30 years, explosion in abundance of species:
— excited states of nucleons & mesons (“resonances”),

of integer & half-integer spin values, ever increasing masses
— flavor species: strangeness, charm, beauty, top

By 1980, hundreds of “elementary” hadron species; 777
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Two theoretical lines of thought:

e classical reductionism: the many species must have infra-
structure of fewer simpler species — quark model, QCD

e novel question: is the number of different species unbounded?
if so, what effect on thermodynamics of hadronic matter?
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Hagedorn (1965): unlimited number of hadron species;
assume their composition & decay of species to be self-similar:

a fireball consists of fireballs which consist of fireballs...
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mathematical partition problem: how many ways to partition
an integer into integers?
Euler (1753), Schroder (1870), Hardy & Ramanujan (1918):

simple version: count all orders

1=1 p(l) =1 = 2n1
2=2 ,1—|—1 p(z) — 2 = 2n—1
3=3, 2+1, 14+2, 1+1+1 p(3) — 4 — on—1
4=4, 3+1, 143, 2+2, 24+1+1, 1+24+1, 1+1+2, 1+14+1+1 p(4) =8 = 2n—1
and so on: p(n) =271 = = enln2
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number of partitions of n grows exponentially with n

Hagedorn: partition hadrons into more hadrons into still more
hadrons. Not only masses, but also kinetic energies.

Result: The Statistical Bootstrap Equation
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Hagedorn had in mind

the legendary Baron von Miunchhausen;

but he pulled himself and his horse out of

a swamp by his hair, not by his bootstraps.
The bootstraps came into the picture only a

hundred years later in American versions.

The point remains the same:
the mechanism is self-induced.

partition problem:

“large integers consist of smaller integers which consist of still
smaller integers, and so on...” — formulate that as an equation!



The number of partitions p(n) of integer n is determined by

n 1 k
p(n) =d6(n—1)+ > —— Il p(n;) 6(Zin;—n).
k=2 k! i=1
Convolution of many “similar” partitions of smaller n; result
p(n) ~ exp{nlog2}; number at large n is fixed by that for
smaller n: self-similarity.

Hagedorn’s problem was more complex: the heavy resonance
is not just sum of the lighter ones, but lighter ones in motion;
total energy must add up to the mass of the heavy one. Result:
the statistical bootstrap equation

1 ‘/0 N-1 N ; .
plm. Vo) = (m=mo) +5 o [0 [ T s p(m) d*p] 8 (S —p)

my: lightest hadron (“pion”) Vj = 4w R;/3: fireball volume
basic hadronic scale Ry ~ 1/my
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Solution [W. Nahm, 1972]
p(m,Vy) = const. m > exp{m/Ty}.
with

VoT},

27‘-2 (mo/TH)ZKQ(mo/TH) = 21n2 — 1,

Hagedorn:
basic hadronic scale Ry ~ 1/m, gives Ty ~ 150 MeV

Chiral limit my — 0 with Ry ~ 1 fm gives Ty ~ 200 MeV

crucial: hadronic range, not lowest hadron mass

e What is the thermodynamics of an ideal gas of resonances
whose degeneracy is determined by the bootstrap p(m, V;)?
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*x Ideal gas of identical particles, grand canonical partition
function

1 [V ; N
2TV =% i gy /P el o+ m; /Y
gives
VT m? my

In Z(T,V) = 0 Ko(—).

n ( 9 ) 27_‘_2 2( T )
and hence

e(T):—l Oln Z(T,V) 3 p_ n(T)zaan(T’V)f:iT?’,

v o0@1/T)  =«? oV 7r2

for energy density and particle density.
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Therefore average energy per particle: w ~ 3 T.

Increasing energy of an ideal gas of identical particles leads to

e a higher temperature,
e more constituents, and
® more energetic constituents.
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Therefore average energy per particle: w ~ 3 T.

Increasing energy of an ideal gas of identical particles leads to

e a higher temperature,
e more constituents, and
® more energetic constituents.

Interacting gas with resonance formation as dominant inter-
action: equivalent to an ideal gas of all possible resonances
[Beth & Uhlenbeck 1937; Dashen, Ma & Bernstein 1969]

* Ideal resonance gas with bootstrap spectrum

VTm} m; VT o m;
InZ(T,V) = 2@: o2 p(m;) Ks( T ) = 2—71-2/dm m”p(m;) Kz( T )

leads to a singular form
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[ dm m~3/? exp{—m {1 — 1]}-

T 3/2
] T Ty

nZ(T,V)~V {
27

diverging for T > Ty

Tys is the ultimate temperature of (hadronic) matter.

Further energy input does not increase temperature, instead
more and more massive resonance species are formed.

A new, non-kinetic use of energy: increase number and mass
of different hadron species, not their momenta.

Compare pion gas and resonance gas:

pion gas resonance gas
3/4
1/4

~ €

N, ~ €
Wyx ~ €

n'res

Wres ™~ Myeg
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General solution of bootstrap type equation

p(m,Vy) ~ m~%exp{m/Tg},

NB: also result of dual resonance model  [Huang & Weinberg 1970]

Nahm’s solution of Hagedorn eq’n: a = 3; for T' — Ty,
partition function exists, energy density diverges.

Hagedorn (1965): T is highest temperature of matter
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General solution of bootstrap type equation

p(m,Vy) ~m %exp{m/Tyg},

NB: also result of dual resonance model  [Huang & Weinberg 1970]

Nahm’s solution of Hagedorn eq’n: a = 3; for T' — Ty,
partition function exists, energy density diverges.

Hagedorn (1965): T is highest temperature of matter

For 4 > a > 3, T' — Ty leads to finite energy density,
divergent specific heat

Cabbibo & Parisi (1975): Ty is critical temperature
signalling transition to a new state of matter:
deconfinement — Quark-(Gzluon Plasma;
the end of the world we know.
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What happens at the transition point?

resonance degeneracy form of
Hagedorn’s bootstrap, dual resonance model:

singularity in higher derivatives of partition function,
continuous critical behavior, critical exponents

so far, pointlike hadrons; intrinsic hadron size?
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continuous critical behavior, critical exponents

so far, pointlike hadrons; intrinsic hadron size?

Pomeranchuk (1951): hadron size limits hadron density

<> = (T“)K< /1) =7
n m c) = —
5 ~ An R} my 20 2

ideal gas of pions has temperature limit T' < T, = 190 MeV
what happens after that?

increasing density of spatial objects — cluster formation,
percolation transition
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percolation: transition from isolated objects to connected medium

isolated disks clusters per colation

once I connected medium, quarks can move around freely:
onset of color conductivity = deconfinement

two transition points:

— hadrons percolate, vacuum also still connected
— hadrons percolate, vacuum no longer connected
first order transition?

percolation transition = geometric critical phenomenon
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critical expt’s of percolation etc.,

can but need not lead to singular partition function
example: 2-d Ising model, H = 0,

percolation transition = magnetization transition

Tc
@
ot
H # 0: n(|) |
. . o, e ‘ ercolation
no magnetization transition P
percolation transition remains \
deconfinement = hadron percolation? Kertesz Line
. Tp(H)
percolation
0 T
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Hadron thermodynamics defines its own limits

dynamics:

temperature limit because hadronic resonance spectrum leads
to resonances of increasing degeneracy

geometry:

temperature limit because hadronic size leads to percolation
transition, onset of color connectivity

Rolf Hagedorn:
the temperature of our world
has an upper limit
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