

Final Presentation 1/22

R Peterson-Hall, 10/13/19

Introduction

First Task - Fit $H
ightarrow\gamma\gamma$ signal

Second Task - Data/MC Analysis of Vertex Reconstruction Accuracy

onclusion

Programming Skills Analysis Techniques and Statistics Experimental Physics

Life Experience

Final Presentation UM CERN Research Semester

Rebecca Peterson-Hall

University of Michigan, Ann Arbor

December 10, 2015

R Peterson-Hall, 10/13/1

Introduction

First Task - Fit $H o\gamma\gamma$ signal

Second Task - Data/MO Analysis of Vertex Reconstruction Accurac

Reconstruction Accura

Programming Skills Analysis Techniques at Statistics

Experimental Physics Research Experience -Software

Life Experienc

1 Introduction

- 2 First Task Fit $H o \gamma \gamma$ signal
- 3 Second Task Data/MC Analysis of Vertex Reconstruction Accuracy
- 4 Conclusions
 - Programming Skills
 - Analysis Techniques and Statistics
 - Experimental Physics Research Experience Software
 - Life Experience

Outline

Final Presentation 3/22

R Peterson-Hall, 10/13/1

Introductio

First Task - Fit $H \to \gamma \gamma$ signal

Second Task - Data/MC Analysis of Vertex Reconstruction Accuracy

Conclusion

Programming Skills
Analysis Techniques at

Experimental Physics Research Experience -

Life Experienc

1 Introduction

- 2 First Task Fit $H \to \gamma \gamma$ signal
- 3 Second Task Data/MC Analysis of Vertex Reconstruction Accuracy
- 4 Conclusions
 - Programming Skills
 - Analysis Techniques and Statistics
 - Experimental Physics Research Experience Software
 - Life Experience

Fitting $H \to \gamma \gamma$ signal in MC

Final Presentation 4/22

R Peterson-Hall, 10/13/15

Introduction

First Task - Fit $H \to \gamma \gamma$ signal

Second Task - Data/MC Analysis of Vertex Reconstruction Accuracy

Conclusio

Programming Skills Analysis Techniques and Statistics Experimental Physics

Software

Life Experienc

■ Data fit with Double Sided Crystal Ball

- Function has six fit parameters: σ , μ , α_{low} , n_{low} , α_{high} , n_{high}
- If $(m_{\gamma\gamma} \overline{m_{\gamma\gamma}})/\sigma < -\alpha_{low}$, use low CB parameters
- If $(m_{\gamma\gamma} \overline{m_{\gamma\gamma}})/\sigma > \alpha_{\textit{high}}$, use high CB parameters
- Data fit with Crystal Ball Gaussian
 - Function has seven parameters: σ_{CB} , μ_{CB} , α_{CB} , n_{CB} , σ_{GA} , μ_{GA} , fraction_{CB}
 - Sum of Crystal Ball and Gaussian is weighted according to parameter fraction_{CB}
- Conclusion
 - For every production mode, resolution of the Double Crystal Ball is better than resolution of Crystal Ball in CBGA
 - \blacksquare In addition, the χ^2 statistics are also better for DCB in each production mode
- SigParam Class Tool used for fitting
 - Uses RooFit to fit Double CB, CBGA, 3 x GA, Voigt, CBVoigt, etc.

ggF Signal Fit

Final Presentation 5/22

R Peterson-Hall, 10/13/15

Introduction

First Task - Fit $H o \gamma \gamma$ signal

Second Task - Data/MC Analysis of Vertex Reconstruction Accuracy

onclusion

Programming Skills Analysis Techniques and Statistics

Experimental Physics Research Experience

Life Evperien

Double CB:

CB + Gaus:

VBF Signal Fit

Final Presentation 6/22

R Peterson-Hall, 10/13/1

Introduction

First Task - Fit $H
ightarrow \gamma \gamma$ signal

Analysis of Vertex Reconstruction Accuracy

onclusion

Programming Skills Analysis Techniques and Statistics

Experimental Physics Research Experience -Software

Life Experien

Double CB:

CB + Gaus:

Resolution Table Across Production Modes

Final Presentation 7/22

R Peterson-Hall, 10/13/15

Introduction

First Task - Fit $H \to \gamma \gamma$ signal

Analysis of Vertex

Conclusion

Programming Skills Analysis Techniques an Statistics

Experimental Physics Research Experience -Software

Life Experienc

Resolution			
Production	$\sigma_{DoubleCB}$	$\sigma_{CB,CBGA}$	$\sigma_{Gaus,CBGA}$
Mode			
ggF	1.79	1.80	4.27
VBF	1.76	1.86	79.80
ZH	1.79	1.85	69.99
WH	1.85	1.94	30.10
ttH	1.81	1.85	78.97

Outline

Final Presentation 8/22

R Peterson-Hall, 10/13/15

Introductio

First Task - Fit $H o \gamma \gamma$ signal

Second Task - Data/MC Analysis of Vertex Reconstruction Accuracy

Reconstruction Accurac

Conclusion

Programming Skills Analysis Techniques and Statistics

Experimental Physics Research Experience -Software

Life Experienc

1 Introduction

2 First Task - Fit $H o \gamma \gamma$ signal

3 Second Task - Data/MC Analysis of Vertex Reconstruction Accuracy

- 4 Conclusions
 - Programming Skills
 - Analysis Techniques and Statistics
 - Experimental Physics Research Experience Software
 - Life Experience

Examining Accuracy of Vertex Reconstructed from Calorimeter

Final Presentation 9/22

R Peterson-Hall, 10/13/15

Introduction

First Task - Fit $H o \gamma^{\gamma}$ signal

Second Task - Data/MC Analysis of Vertex Reconstruction Accuracy

Conclusio

Analysis Techniques and Statistics Experimental Physics Research Experience -

Life Experienc

Selections Used

- lacksquare Tight Photon ID, standard cuts on η , $p_T > 150 \, GeV$
- With MxAODs produced by Chiara (big thank you!) only one photon is saved, so by default are using the highest p_T photon
- \blacksquare We want the $\Delta\phi$ distribution between this photon and the vertex (i.e. the tracks attached to the vertex) to peak at π
- Photon Vertex Helpers and Photon Pointing Tool Tools Used
 - PV Helpers selects the "hardest" vertex from the container of vertices in the event, which is the vertex with tracks attached that have the highest sum p_T
 - PPT gives the z coordinate of the vertex location that the calorimeter "points" to, it does this for converted and unconverted photons separately

Methods Used

- z_{vertex} is the z coordinate of the hardest vertex
- Z_{pointing} is the z coordinate reconstructed from data in the calorimeter,
 Z_{pointingError} is the error associated with this value
- Same for z_{conv} except that this z coordinate is only reconstructed for photons with Si hits, meaning it converts before the calorimeter

Example: Unbinned Data Results

Final Presentation 10/22

R Peterson-Hall, 10/13/15

Introduction

signal

Second Task - Data/MC Analysis of Vertex Reconstruction Accuracy

Conclusion

Programming Skills
Analysis Techniques and
Statistics

Experimental Physics Research Experience -

Life Experien

$z_{pointing} - z_{vertex}$ compared to $z_{conv} - z_{vertex}$ in Data

- Pointing distribution is Gaussian as expected
- Converted photon pointing distribution isn't Gaussian, aim was to see its shape

Example: Binned Data Results

Final Presentation 11/22

R Peterson-Hall, 10/13/15

Introduction

First Task - Fit $H o\gamma\gamma$ signal

Second Task - Data/MC Analysis of Vertex Reconstruction Accuracy

onclusion

Programming Skills Analysis Techniques and Statistics

Experimental Physics Research Experience -Software

Life Experienc

$z_{pointing} - z_{vertex}$ compared to $z_{conv} - z_{vertex}$ binned by p_T in Data

Example: Binned Data Results with Error Correction

Final Presentation 12/22

R Peterson-Hall, 10/13/15

Introductio

First Task - Fit $H \to \gamma \gamma$ signal

Second Task - Data/MC Analysis of Vertex Reconstruction Accuracy

onclusion

Programming Skills
Analysis Techniques and

Experimental Physics Research Experience -

Life Experience

 $z_{pointing} - z_{vertex}/z_{pointingError}$ compared to $z_{conv} - z_{vertex}/z_{convError}$ binned by p_T in Data

Example: Binned Data Results

Final Presentation 13/22

R Peterson-Hall, 10/13/1

Introduction

First Task - Fit $H
ightarrow \gamma^r$ signal

Second Task - Data/MC Analysis of Vertex Reconstruction Accuracy

C---I....

Programming Skills
Analysis Techniques an

Experimental Physics Research Experience -

Life Evperienc

Example: Binned Comparison of Sherpa and Pythia MC with Data Results

Final Presentation

Second Task - Data/MC Analysis of Vertex

Reconstruction Accuracy

MC Comparison of $z_{pointing} - z_{vertex}/z_{pointingError}$ and $z_{conv} - z_{vertex}/z_{convError}$ binned by η

Example: Binned Pythia Results

Final Presentation 15/22

R Peterson-Hall, 10/13/15

Introduction

First Task - Fit $H o \gamma \gamma$ signal

Second Task - Data/MC Analysis of Vertex

Reconstruction Accuracy

Conclusion

Programming Skills Analysis Techniques and Statistics

Experimental Physics Research Experience -Software

Life Experience

Pythia MC Results for $z_{pointing} - z_{vertex}$ and $z_{conv} - z_{vertex}$ binned by p_T

Example: Binned Sherpa Results

Final Presentation 16/22

R Peterson-Hall, 10/13/15

Introduction

First Task - Fit $H o \gamma \gamma$ signal

Second Task - Data/MC Analysis of Vertex Reconstruction Accuracy

Conclusions

Programming Skills Analysis Techniques and Statistics

Experimental Physics Research Experience -Software

Life Experienc

Sherpa MC Results for $z_{pointing} - z_{vertex}$ and $z_{conv} - z_{vertex}$ binned by p_T

Outline

Final Presentation 17/22

R Peterson-Hall, 10/13/1

Introductio

First Task - Fit $H
ightarrow \gamma \gamma$ signal

Analysis of Vertex
Reconstruction Accuracy

Conclusions

Programming Skills Analysis Techniques ar Statistics

Experimental Physics Research Experience -Software

Life Experienc

1 Introduction

- 2 First Task Fit $H o \gamma \gamma$ signal
- 3 Second Task Data/MC Analysis of Vertex Reconstruction Accuracy
- 4 Conclusions
 - Programming Skills
 - Analysis Techniques and Statistics
 - Experimental Physics Research Experience Software
 - Life Experience

Programming Skills Acquired and Honed

Final Presentation 18/22

R Peterson-Hall, 10/13/1

Introduction

First Task - Fit $H o \gamma \gamma$ signal

Second Task - Data/MC Analysis of Vertex

Conclusion

Programming Skills

Analysis Techniques and Statistics

Research Experience
Software

Life Experien

- Learned a lot about C++, like new data structures, use of pointers, interface with ROOT
- Learned ROOT, especially worked on aesthetic/statistical manipulation of histograms
- Much more comfortable with Terminal commands and bash

Final Presentation 19/22

R Peterson-Hall, 10/13/15

Introduction

First Task - Fit $H o \gamma \gamma$ signal

Analysis of Vertex
Reconstruction Accuracy

Conclusio

Programming Skills Analysis Techniques and

Statistics Experimental Physics

Life Experienc

Improvements in Analysis Techniques and Statistical Methods

- lacksquare How to asses goodness of fit use of p-values and χ^2 statistics
- Learned about different fitting functions for example the crystal ball
- How to use the parameters of a fit to evaluate quality, what specific parameters mean when doing a comparison of fits
- How to make a summary plot with mean and RMS

Expanded Perspective on the world of Experimental Physics Research

Final Presentation 20/22

R Peterson-Hall, 10/13/15

Introductio

First Task - Fit $H
ightarrow \gamma \gamma$ signal

econd Task - Data/MC nalysis of Vertex

Conclusion

Programming Skills
Analysis Techniques an

Experimental Physics Research Experience -Software

Life Experier

- Explored option for post graduation, physics grad school and especially experimental physics analysis
- Saw what software analysis would be like, potentially what I could do as a PhD student
- Worked with PhD students, professors and postdocs

Gains in Life Experience

Final Presentation 21/22

R Peterson-Hall, 10/13/15

Introductio

First Task - Fit $H
ightarrow \gamma \gamma$ signal

Second Task - Data/MO Analysis of Vertex Reconstruction Accuracy

onclusio

Programming Skills Analysis Techniques an Statistics

Experimental Physics Research Experience -Software Life Experience

- Took on more responsibility working a job, instead of doing 10-15 hours of research a week on top of classes
- Worked as part of a team, worked with deadlines
- Lived in a country which doesn't speak English, worked with people of varied cultural backgrounds

Final Presentation 22/22

R Peterson-Hall, 10/13/19

Introduction

First Task - Fit $extit{H}
ightarrow \gamma \gamma$ signal

Second Task - Data/MC Analysis of Vertex Reconstruction Accuracy

Programming Skills
Analysis Techniques and
Statistics
Experimental Physics

Life Experience

Thanks for a great semester!