STABILITY STUDIES OF THE PSB-TO-PS TRANSFER

W. Bartmann, J. Abelleira

With many inputs from: O. Berrig, J. Borburgh, S. Gilardoni, GP di Giovanni, B. Goddard, JM. Lacroix, B. Mikulec, A. Newborough, R. Ostojic, S. Pittet, L. Sermeus, G. Sterbini, F.M. Velotti

PSB Ejection Lines Review, 24th September 2015, CERN

2

Scope of review

- Basis is the design as presented in Oct-13 (<u>http://indico.cern.ch/event/274495/</u>)
- Revisit the ejection line design after iterations on integration, magnet design and accordingly optics

Two presentations:

- Geometry, optics, integration
 - TL geometry, PS injection geometry
 - BT.BHZ10 center of deflection, position of upstream quadrupoles
 - Optics
 - Rematched optics to the PS
 - Dispersion at PSB extraction
 - Upgraded BTM optics versions to improve beam size in BTM.BHZ10
 - Updated list of quadrupole gradients and GFR
 - Overall status of integration
 - Instrumentation/special elements

Stability studies:

- Error sources
- Stability calculations from dynamic errors
- Emittance growth from different sources and losses

Error sources for delivery precision

- Correctable errors
 - Magnet misalignment
 - Magnet systematic (different laminations, steel,...) and random errors (different transfer function within a series)
 - Long term drifts due to temperature, humidity,...
 - All these errors lead to trajectory variations that can be corrected
 - Since the transfer function is considered correctable $\rightarrow \Delta I/I = \Delta B/B$
- Uncorrectable (dynamic) errors
 - Random errors:
 - Shot-to-shot stability, in particular in view of ppm operation between 1.4 and 2.0 GeV
 - Systematic errors:
 Power converter ripple, kicker waveforms

Stability calculation

- Assign correctable errors and verify correction feasibility
 - Only limited by BPM readings and correction strategy ightarrow checked in Oct-13, OK
- Assume machine free of correctable errors and assign separately dynamic errors to identify the main contributors to delivery imprecision
- Calculate delivery precision of position and angle at PS injection
 - Check aperture in the lines (losses, radiation)
 - Check foreseen margins for CO and betabeat in GFR
 - Calculate emittance growth from steering error
- Calculate unavoidable emittance growth from optics and dispersion mismatch
- Sum all error sources into overall emittance growth and potential particle loss for LHC and HI beams

- 1	
~	

Error source	Tolerance ∆I/I	x rms (mm)	px rms (μrad)	R _x ²/ε ₀ [1e-3]	y rms (mm)	py rms (μrad)	R _y ²/ε ₀ [1e-3]
Random effects							
PSB orbit ± 0.15/0.10 mm (h/v)		0.04	4	0.4	0.04	2	0.2
BVT10	1e-4				0.08	1	0.3
SMV10	1e-4				0.13	1	1
QNO10	5e-4				0.11	1	1
QNO20	5e-4				0.03	1	0.06
KFA10	3e-4				0.02	1	0.06
SMV20	1e-4				0.01	4	1
KFA20	3e-4				0.01	0	0.02
BVT20	1e-4				0.05	3	1
BT.BHZ10	1e-4	0.07	0.02	4			
All random effects		0.08	17	5.1	0.21	6	4.0
Systematic effects							
KFA10	5e-3				0.39	15	17
KFA20	5e-3				0.22	8	5

Trajectories for all dynamic errors applied

- Contributions for trajectory variation in aperture OK
- Betabeating from uncorrectable quadrupole errors is in the regime of a few percent (20% assumed in the aperture calculation) and therefore negligible compared to the systematic optics differences between the four lines

Distribution of trajectories for all dynamic errors applied

Emittance growth

- From steering error at PS injection due to power converter ripple and kicker waveforms
 - R_x^2/ϵ_0 (random errors) gives 0.005 and 0.004
 - R_x^2/ϵ_0 (systematic offset) gives 0 and 0.025 (extraction kicker waveform not included)
- From optics mismatch between different lines
- Energy error, geometrical mismatch and coupling negligible
- All error sources considered independent

Error	Emittance growth [%] Present situation (LHC)		Emittance growth [%] LHC beam		Emittance growth [%] HI beam	
	Hor	Vert	Hor	Vert	Hor	Vert
Steering error	0.25	1.45	0.25	1.45	0.05	0.48
Betatron mismatch	4.55	6.81	2.31	0.02	2.0	0
Dispersion mismatch	4.40	8.77	0.09	5.36	0.03	5.25
Total	6.33	11.20	2.53	5.45	2.00	5.27

Particle loss due to emittance growth

- Relevant for HI beams
- Aperture bottleneck at PS injection when bump is fully on:
- 33 mm radial aperture
 - Subtract 2 mm for alignment errors and 1.5 mm for the orbit on the physically available radius
 - Fit 4.2 sigma of HI beam in horizontal plane
- Increase due to steering error negligible \rightarrow imminent effect on required aperture
- Beam size changes by 0.8% due to optics mismatch after filamentation has taken place
 - Bump is collapsed within 500 turns
- No additional losses expected due to emittance growth

Conclusions for both presentations

- Since last review in Oct-13
 - · Iterations on magnet design, integration and update of the optics model
- Resulting changes
 - BT.BHZ10 can be kept at its centre of deflection \rightarrow TL geometry can be kept
 - Previously moved quadrupoles to make space can be kept at the present location
 - Two locations of integration interferences (QNO20 with wall, QN040 with steerer) to be addressed
 - Locations for extra BLMs identified
 - Position for wideband pick-up in upgraded BTP to be checked
 - Envelope for (new) BPMs required to be included in the integration
- Optics rematched accordingly
 - One quadrupole (BTP.QNO20) due to difference in 4 lines increased GFR, but 25% lower gradient than max → within our margin
 - Specifications for quadrupole gradients, field homogeneity and good field regions as from Oct-13 confirmed
- Specifications for power converter ripple as of beginning 2015 systematically checked and confirmed
 - Random errors for both planes balanced
- Comparison of different sources of emittance growth show:
 - Difference in optics between the four lines is the main cause of emittance growth, in particular the dispersion mismatch
 - Emittance growth from steering errors due to power converter ripple is a minor contributor and can in principle be damped
 - Assuming similar systematic contributions from PSB extraction and PS injection kicker in the horizontal plane as for the recombination kickers gives as maximum expected oscillations to be damped: +/- 1.5 mm in both planes
 - The present mismatch situation is improved, but further optimisation required to balance the contributions from betatron and dispersion mismatch and thus reduce the overall emittance growth
- No additional particle loss due to emittance growth of HI beams