

24 September 2015

PSB ejection lines review

J.L. Abelleira, W. Bartmannwith many inputs from:O. Berrig, G.P. De Giovanni, J.M. Lacroix,B. Mikulec, A. Newborough, J. Speed

- Basis is the design as presented in Oct-13 (<u>http://indico.cern.ch/event/274495/</u>)
- Revisit the ejection line design after iterations on integration, magnet design and accordingly optics
- Two presentations:
 - Geometry, optics, integration
 - TL geometry, PS injection geometry
 - BT.BHZ10 center of deflection, position of upstream quadrupoles
 - Optics
 - Rematched optics to the PS
 - Dispersion at PSB extraction
 - Upgraded BTM optics versions to improve beam size in BTM.BHZ10
 - Updated list of quadrupole gradients and GFR
 - Overall status of integration
 - Instrumentation/special elements
 - Stability studies:
 - Error sources
 - Stability calculations from dynamic errors
 - Emittance growth from different sources and losses

Contents of the first presentaition

- 1. New geometry for BT lines
- 2. New optics for BT-BTM
- 3. PSB-PS optics
- 4. BT/BTP quadrupole gradients and GFR
- 5. Integration studies
- 6. Beam instrumentation

ERI

1. New geometry for BT lines

- Geometry of the line changed for the longer septa
- Same geometry after BT. SMV20.

Ref: LIU-PSB Working Group Meeting. 6/11/2014

1. New geometry for BT lines

2. New optics for BT-BTM

- The reason: last review 2013 showed BTM.BHZ10 as the bottleneck of the line. Need to reduce beam size to reduce aperture.
- New set of optics:
 - Dump optics
 - Horizontal measurement optics (large DX)
 - Horizontal measurement optics (small DX)
 - Vertical measurement optics

Ref: LIU-PSB Working Group Meeting. 8/05/2014

- Optics settings successfully tried in the control room with beam.
- Analysing the reduction in losses for the new dump optics

2. New optics for BT-BTM

ERN

2. New optics for BT-BTM

- Two main changes with respect to 2013 review:
 - Quadrupoles BT.QNO40 & BT.QNO50 moved to present location.
 Deflection center of BT.BHZ10 kept
 - Dedicated model of the BT lines included
 4 different optics for the BT line
- We have kept 3 sets of BTP optics:
 - Fixed target (matched to the PS with the magnet insertions)
 - LHC (matched to the PS)
 - LHC (mismatched as today): same values at PS injection as we have today.

Difference in the horizontal betatron function as a consequence of different weak focusing of the vertical dipoles

Fixed target (matched)

LHC (mismatched as today)

ER

• Vertical dispersion is very different at PS injection

ER!

• Good field region radius (GFR) computed as

$$\begin{array}{rcl} A_{x,y} = & n_{sig} \cdot \sqrt{k_{\beta} \cdot \beta_{x,y} \cdot \frac{\epsilon_{N;x,y}}{\gamma_{r}\beta_{r}}} + 2 \left| D_{x,y} \cdot \sigma_{\delta} \right| + CO \cdot \sqrt{\frac{\beta_{x,y}}{\beta_{MAX;x,y}}} \\ n_{sig} = 3 \\ k_{\beta} = 1.2 \\ CO = 3 \text{ mm} \\ E_{k} = 1.4 \text{ GeV} \end{array}$$

• Fixed target (matched)

$$\epsilon_{N;x}$$
 = 10 µm
 $\epsilon_{N;y}$ = 5 µm
 σ_{δ} = 1.35x10⁻³

• LHC (matched)

$$\epsilon_{N;x}$$
 = 2 µm
 $\epsilon_{N;y}$ = 2 µm
 σ_{δ} = 1.07x10⁻³

• LHC (mismatched as today)

$$\epsilon_{N;x}$$
 = 10 µm
 $\epsilon_{N;y}$ = 5 µm
 σ_{δ} = 1.35x10⁻³

4. BT/BTP quadrupole gradients and GFR

	element	L [mm]	K1 [1/m²]	Gradient @ 2 GeV	Max Gradient	GFR radius H/V [mm]
				[['/''']	(X1.2)[1/11]	
Fixed target matched	BT.QNO10	466.1	0.66749	6.20	7.44	40 / 26
	BT.QNO20	466.1	0.63160	5.87	7.04	63 / 16
	BT.QNO30	466.1	0.28709	2.67	3.20	21/21
	BT.QNO40	466.1	0.44604	3.19	4.97	38 / 18
	BT.QNO50	388.0	-0.51933	-3.71	-5.79	33 / 23
	BTP.QNO20	465.0	0.89556	6.40	9.98	66 / 27
	BTP.QNO30	465.0	-0.91271	-6.52	-10.17	9 / 48
	BTP.Q35	466.0	0.99760	7.13	11.12	52 / 19
	BTP.QNO50	465.0	0.52838	3.77	5.89	34 / 20
	BTP.Q55	466.0	-0.65410	-4.67	-7.29	7 / 33
	BTP.QNO60	465.0	0.76173	5.44	8.49	47 /18
			-			
LHC matched	BT.QNO10	466.1	0.66749	6.20	7.44	20/18
	BT.QNO20	466.1	0.63160	5.87	7.04	31/11
	BT.QNO30	466.1	0.28709	2.67	3.20	20/13
	BT.QNO40	466.1	0.73043	5.22	8.14	20 / 13
	BT.QNO50	388.0	-0.91415	-6.53	-10.19	14 / 18
	BTP.QNO20	465.0	0.90472	6.46	10.08	25 / 12
	BTP.QNO30	465.0	-0.98691	-7.05	-11.00	4 / 24
	BTP.Q35	466.0	1.07388	7.67	11.97	19/9
	BTP.QNO50	465.0	0.51312	3.66	5.72	10 / 12
	BTP.Q55	466.0	-0.67356	-4.81	-7.51	7 / 22
	BTP.QNO60	465.0	0.63564	4.54	7.08	26 / 13
			_			
LHC pres. mismatched	BT.QNO10	466.1	0.66749	6.20	7.44	40 / 27
	BT.QNO20	466.1	0.63160	5.87	7.04	21 / 21
	BT.QNO30	466.1	0.28709	2.67	3.20	21 / 21
	BT.QNO40	466.1	0.67177	6.24	7.49	37 / 19
	BT.QNO50	388.0	-0.71038	-6.60	-7.92	27 / 26
	BTP.QNO20	465.0	0.980264	9.10	10.92	40 / 23
	BTP.QNO30	465.0	-1.094192	-10.16	-12.19	5 / 42
	BTP.Q35	466.0	1.091352	10.14	12.16	44 / 5
	BTP.QNO50	465.0	-0.46441	-4.31	-5.18	16 / 30
	BTP.Q55	466.0	-0.41218	-3.83	-4.59	18 / 35
	BTP.ONO60	465.0	0.52735	4 90	5 88	39/21

 Matched within the max. spec. gradients @ 2013 review

٠

Some numbers have changed due to different betatron for the lines and position of the BT.QNO40, BT.QNO50.

 Increased GFR from 59/23 but gradient below overall max.

Input for integration:

- New quadrupole:
 - For slots BT.QNO40, BT.QNO50, BTP.QNO20, BTP.QNO30, BTP.Q35, BTP.QNO50, BTP.Q55, BTP.QNO60
 - 3D model provided for integration
 - Engineering spec draft
- Bending magnets BT.BHZ10 & BTM.BHZ10
 - 3D model provided for integration
 - Engineering spec draft

Present BT.BHZ10

LIU BT.BHZ10

BT.BHZ10 Deflexion center unchanged

Final 3D model for the new quad.

Future BTM.BHZ10

BT.QNO40, BT.QNO50 at the same position. Some small integration issues

- Vacuum chamber QNO50 must be replaced as present diameter is excessive (Ø199)
- Collision problem between QNO40 and DVT60
- Collision problem between QNO40 and BPM40 support

BTP.QNO20

Collision with the 'blindage' of the wall

Need removal/redesign of the blocks?

6. Beam Instrumentation

CERN

- Electrostatic Pick-Up in the BTP Line: EDMS: 1514958
- BPMs positions to be frozen integration studies provides available space (integration model of BPMs needed)
- New BLMS proposed
- BTV moved. EDMS: 1494823

