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Places highly nontrivial bounds on EFT: 

•      

• Proof of the a-theorem 

•  coefficients of          gravity 

These constraints seem to rely inherently on Lorentzian 
signature. 

R2

�(@�)4 ) � > 0

Causality

[Adams, Arkani-Hamed, Dubovsky,  
Nicolas, Rattazzi ’06]

[Komargodski, Schwimmer ’11]

[Brigante et al ’07; Hofman ’09; 
Camanho et al ’14]



On the other hand: 

Theorem (60’s, 70’s)
(Schwinger, Wightman, Osterwalder & Schrader, etc.) 

Good Lorentzian QFTs: 
• Unitary 
• Poincare covariant 
• Causal 

Are in one-to-one correspondence with a class of “good” 
Euclidean QFTs: 

• Reflection-positive 
• SO(d) covariant 
• Permutation symmetric (ie, crossing invariant)



Places highly nontrivial constraints on CFT. 

These constraints are mostly either: 

• Euclidean signature (eg: numerical bootstrap) 

• Lorentzian signature, but at spacelike separation            
(eg: lightcone bootstrap) 

[Rattazzi, Rychkov, Tonni and Vichi;  
and refs thereof.]

[Komargodski, Zhiboedov;  
Fitzpatrick et al; Alday et al; etc]

Conformal Bootstrap



This talk: 

Bootstrap at timelike separation <-> Causality constraints in CFT 

This can be viewed as: 

• A statement entirely about conformal theories 

• A statement about non-conformal theories in AdS, with or 
without gravity 

• A statement about non-conformal theories in flat space 
[Penedones; Mack; etc]



Hidden agenda: 

• Derive gravity from CFT ???  

• For example, 

• Causality seems likely to play a central role

a ⇡ c+
1

�#
gap

[Camanho, Edelstein, Maldacena, Zhiboedov ’14]

[eg: Heemskerk, Penedones, Polchinski, Sully]



Outline

Causality in quantum field theory 

OPE at timelike separation 

Shockwaves in CFT —> main theorem (causality sum rule) 

Application: holographic derivation of             constraint (@�)4
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Causality Review

Point of view in this talk:  

QFT is defined by a set of Euclidean n-point correlators. 

How is causality encoded in these correlators? 

Refs: Haag; Streater and Wightman.



Euclidean correlators 

are: 

• Permutation invariant 

• With singularities only at coincident points 

• and no branch cuts (ie, single-valued). 

Ex: conformal scalar 

G(x1, x2, . . . ) ⌘ hO(x1)O(x2) . . . i

G(x1, x2, . . . ) = G(x2, x1, . . . )

hO(0, 0)O(⌧2, y2)i = (⌧22 + y22)
�2�



But if we analytically continue to complex time: 

then there is an intricate structure of singularities and branch 
cuts. 

Ex: conformal scalar 2pt function

⌧i 2 C

G = (⌧22 + y22)
�2�

⌧22 = �y22



Therefore the analytic continuation to Lorentzian signature is 
ambiguous. 

This ambiguity is why operators do not commute in Lorentzian 
QFT. 
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Therefore the analytic continuation to Lorentzian signature is 
ambiguous. 

This ambiguity is why operators do not commute in Lorentzian 
QFT. 

hO1O2i

hO2O1iSo: Commutator                     =  discontinuity across the cut. 

The branch point is exactly at the Minkowski lightcone, so the 2pt 
function is trivially causal.

h[O1, O2]i
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4-point functions

For now, we’ll move just one operator O(x2) to finite 
Lorentzian time: 

O(x3)



In this setup, causality requires 

and 

Claim:  

• the first is obvious, like in the 2pt function.  

• the second is highly nontrivial 

h[O,O]  i = 0

h [O,O] i = 0

 

O

O
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h OO i

complex ⌧2

 O O



...

...

hOO  i
h OO i

complex 
[O,O] becomes non-zero 
when we hit this singularity. 
1st sheet: usual lightcone 
2nd sheet: highly nontrivial

⌧2

 O O



CFT

This was for a general QFT. 

In CFT, we can rephrase all the same statements in terms of 
cross-ratios: 

With Euclidean insertions, 

zz̄ =
x

2
12x

2
34

x

2
13x

2
24

, (1� z)(1� z̄) =
x

2
14x

2
23

x

2
13x

2
24

z̄ = z⇤

[Luscher, Mack ’74]
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Continuing to complex times means continuing to independent 
complex 

On 1st sheet there are obvious branch points at 

z, z̄

z

h OO i

hOO  i

z = 0, 1,1, z̄ = 0, 1,1

But on other sheets of this multivalued correlation function, location 
of singularities is not at all obvious.



Upshot so far:
Causality in a CFT 4-pt function is a question of how singularities 
on the complex           planes move around as we pass through 
branch cuts. 

If a singularity moves to later t, then the theory has a time-delay. 

If a singularity moves to earlier t, then the theory is acausal. 

z, z̄



Aside: All of this can be rephrased in terms of a position-space      
prescription. 

(As in standard textbooks — Haag, Streater & Wightman) 

The two approaches are completely equivalent.

i✏
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Consider 

Throughout the talk, think of      as “background” and O as 
“probe” — we will always be interested in causality of [O,O]. 

Conformally map to

G(z, z̄) = h (0)O(z, z̄)O(1) (1)i

Euclidean: z̄ = z⇤.

Now expand using the          or          OPEO 

 

OO

G = h (x1)O(x2)O(x3) (x4)i



G(z, z̄) ⇠
X

p

|c Op|2g
� O,��O 

�p,`p
(z, z̄)

s-channel conformal block expansion: 

[Mack ’77] 
[Pappadopulo et al ’12] 

|z| < 1This converges for Euclidean               .



G(z, z̄) ⇠
X

p

|c Op|2g
� O,��O 

�p,`p
(z, z̄)

s-channel conformal block expansion: 

[Mack ’77] 
[Pappadopulo et al ’12] 

|z| < 1

G ⇠
X

p

c  pcOOpg�p,`p(1� z, 1� z̄)

t channel:

This converges for Euclidean               .



Positive coefficients in the s-channel

Every coefficient in the s-channel expansion                        is 
positive: 

This can be derived from reflection positivity (or unitarity). 

In d=4: easily checked via Dolan-Osborn conformal blocks.

G ⇠
X

�,s

a�,sz
1
2 (��s)z̄

1
2 (�+s)

a�,s � 0

( O)( O)



Positive coefficients in the s-channel

Every coefficient in the s-channel expansion                        is 
positive: 

This can be derived from reflection positivity (or unitarity). 

In d=4: easily checked via Dolan-Osborn conformal blocks.

G ⇠
X

�,s

a�,sz
1
2 (��s)z̄

1
2 (�+s)

a�,s � 0

( O)( O)

[Fitzpatrick, Kaplan, Poland, Simmons-Duffin] 
[TH, Jain, Kundu] 



Positive coefficients are very powerful. 

Implies convergence in Lorentzian regime 

And: will allow us to bound the magnitude of Lorentzian 
correlators — with independent complex cross-ratios — by 
Euclidean correlators: 

X
ah,h̄z

hz̄h̄ 
X

ah,h̄|z|h|z̄|h̄

�1 < z, z̄ < 1



Positive coefficients are very powerful. 

Implies convergence in Lorentzian regime 

And: will allow us to bound the magnitude of Lorentzian 
correlators — with independent complex cross-ratios — by 
Euclidean correlators: 

X
ah,h̄z

hz̄h̄ 
X

ah,h̄|z|h|z̄|h̄

For the experts: There also positive coefficients in the rho-
expansion [Hogervorst,Rychkov], after stripping off the 
correct prefactor. This is an independent statement.

�1 < z, z̄ < 1
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So far we mostly considered Euclidean: 

Now consider the simplest Minkowski configuration:

z̄ = z⇤

 (0)

O(z, z̄)

 (1)

z̄

z

O(1)

As a warm-up, we’re going to prove [O,O] = 0 in this correlator.



We can reach timelike separation by sending 

The s channel still converges: 

And, its magnitude decreases. 

(Careful: The t-channel diverges! We’ll come back to this.) 

z ! �z

G ⇠
X

�,s

a�,sz
1
2 (��s)z̄

1
2 (�+s)(�1)

1
2 (��s)



Since the magnitude decreases, there cannot be any new, 
unexpected singularities for negative z. 

Therefore, in this configuration: 

 O

The correlator is causal: 

O

h [O,O] i = 0

 



Since the magnitude decreases, there cannot be any new, 
unexpected singularities for negative z. 

Therefore, in this configuration: 

 O

The correlator is causal: 

This was just warm-up; it does not produce any interesting 
constraints. 

We will find interesting constraints only be considering two 
timelike separations.

O

h [O,O] i = 0
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Define the “shockwave state”: 

For small       this creates a stress tensor with support on an 
expanding null shell:

| i ⌘  (t = i�, ~x = 0)|0i

�

  

h |Tµ⌫(x)| i

cf: previous work on shocks in AdS/CFT, esp. Cornalba et al 



h |[O(x2), O(x3)]| i

= disc. h (�i�)O(x2)O(x3) (i�)i

We will study the commutator

This commutator becomes non-zero when we reach a particular 
singularity on a particular sheet of G(z, z̄)



h |[O(x2), O(x3)]| i

= disc. h (�i�)O(x2)O(x3) (i�)i

We will study the commutator

This commutator becomes non-zero when we reach a particular 
singularity on a particular sheet of G(z, z̄)

Follow the procedure described in the review: 

• Draw contours on the complex-time planes 

• “Go right” for time ordering, “Go left” for anti-time-ordering 

• Then draw these same contours on      and      planesz z̄



Leads to: 

 Causality in the situation

  

O

O

is translated into the following statement about the analytically-
continued Euclidean correlator:



z

After taking z around zero,

The Causality Requirement:



z

After taking z around zero,

The lightcone singularity as O —> O must not appear in the 
purple region. 

ie, it appears exactly at the red dot (=the Minkowski lightcone) 
or below it (=time delay), but not above it (=time advance)

The Causality Requirement:



Then 

vanishes at spacelike separation if and only if 

is analytic for

Recap

Suppose we are given the Euclidean correlator

h |[O(x2), O(x3)]| i

G(ze�2⇡i, z̄)

G(z, z̄) = h (0)O(z, z̄)O(1) (1)i

z ⇠ 1 + i✏, z̄ ⇠ 1 + i✏̄



Claim:

Reflection positivity ==> Causality criterion is satisfied. 

Proof is just like the “warm-up” argument a few slides back, 
but in “  -variable” conformal frame of [Pappadopulo et al] 
and [Hoogervorst, Rychkov]. 

⇢

TH, Jain & Kundu



Claim:

Reflection positivity ==> Causality criterion is satisfied. 

Proof is just like the “warm-up” argument a few slides back, 
but in “  -variable” conformal frame of [Pappadopulo et al] 
and [Hoogervorst, Rychkov]. 

⇢

TH, Jain & Kundu

ie: reflection positivity 

=> positive coefficients in the rho-expansion  

=> bound magnitude of the correlator on the 2nd sheet by 
correlator on the 1st sheet 

=> No new (causality-violating) singularities on 2nd sheet.



So far, most of what I’ve said was probably known in the 70’s 
in some form or another (via reconstruction theorems). 

We invoked only the s-channel. 

Next, we’ll show that this constrains the couplings of light 
operators in the t-channel. 

This is closely related to the recent bound on chaos of 
[Maldacena, Shenker, Stanford]. 

The regime of the correlator is different — and the constraints 
do not (I believe) follow from the chaos bound, except at 
large N — but derivation is similar.



Goal of the rest of the talk is to show that

Crossing + Analyticity on the purple region: 

restrict the allowed couplings among light operators, if one 
of the operators has spin > 1.
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Expand in the t channel O -> O

• The conformal block expansion diverges! 

• However, it is a reliable asymptotic series in the lightcone 
limit

  

O

O

[TH, Jain, Kundu]

z̄ ! 1 (z fixed)



In the lightcone limit, the t-channel double-sum 

is re-organized as an expansion in twist: 

where f is the lightcone (or colinear) conformal block. 

Let’s evaluate the leading term in the shockwave kinematics:

X

h

ah(1� z̄)hfh(z)

[Komargodski, Zhiboedov;  
Fitzpatrick et al; Alday et al; etc]

X

�,`

c�,` g�,`(1� z, 1� z̄)

h =
1

2
(�� `)



Set d=4 and assume T is the 
minimal-twist operator. 

The stress-tensor lightcone block 
is

  

O

O

g̃T (1� z) = �15(3� 3z2 + (1 + 4z + z2) log z)

2(1� z)2
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Set d=4 and assume T is the 
minimal-twist operator. 

The stress-tensor lightcone block 
is

  

O

O

g̃T (1� z) = �15(3� 3z2 + (1 + 4z + z2) log z)

2(1� z)2

Expand on 1st sheet:

hO O i ⇠ 1 + aT (1� z̄)(1� z)3 + · · ·

1� z̄ ⌧ 1� z ⌧ 1

Expand on 2nd sheet:

h OO i ⇠ 1� 2⇡iaT
1� z̄

(1� z)2
+ · · ·

1� z̄ ⌧ 1� z ⌧ 1
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Logs —> Potentially large corrections on 2nd sheet! 

h OO i ⇠ 1� 2⇡iaT
1� z̄

(1� z)2
+ · · ·

The limit of a high-energy shockwave is 

(“Regge limit”). 

The correction looks singular in this limit 

However, it can’t be trusted, since we assumed the lightcone 
limit 

� ! 0, z, z̄ ! 1

z̄ ! 1 (z fixed)

⇠ ��(s�1)

negative overall power (for s>1)!



Intuition: 

Negative powers are a “perturbative hint” of causality 
violation if the coefficient has the wrong sign. For example if 
a lightcone shifts: 

we might expect perturbatively something like

  

O

O

(1 + �t� z̄)��O ⇡ (1� z̄)��O


1� �t

�O

1� z̄
+O(�t)2

�



Intuition: 

Negative powers are a “perturbative hint” of causality 
violation if the coefficient has the wrong sign. For example if 
a lightcone shifts: 

we might expect perturbatively something like

  

O

O

(1 + �t� z̄)��O ⇡ (1� z̄)��O


1� �t

�O

1� z̄
+O(�t)2

�

negative power!



This is just for intuition. 

Causality is a statement about singularities, and cannot be 
diagnosed from small perturbative terms alone. 

So now, we need to argue that a small term like this with the 
wrong sign always re-sums into a full-blown, causality-violating 
singularity. 



Aside: 

These same logs played a starring role in the lightcone 
bootstrap 

Log coefficients fix the anomalous dimensions of certain high 
spin double-trace operators in the dual channel. 

We will prove the log coefficients are positive; so this also 
proves those anomalous dimensions are negative.

[Komargodski and Zhiboedov] 
[Fitzpatrick, Kaplan, Poland, Simmons-Duffin] 
etc
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1
Regimes:

z
z

z, z̄ ⇠ 1• Regge (strong shockwave)

-we know almost nothing about the correlator — no OPE! 
-exceptions: Chaos bound [Maldacena, Stanford, Shenker] 
-and large N [esp. Cornalba, Costa, Penedones, Schiappa]
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1
Regimes:

z

z, z̄ ⇠ 1• Regge (strong shockwave)

z̄ ⇠ 1, z ⇠ edge• Lightcone
calculate correlator by asymptotic expansion in t-channel

• Real-line —                 — positive coefficients implyz, z̄ real

|G2ndsheet|  |G1stsheet|
Re h OO i  Re hO O i

Bound also applies 
in real-Regge limit:

z



Theorem

A function with these properties, and the lightcone 
expansion 

either  has 

or has a causality-violating singularity in the purple region.

h OO i ⇠ 1� 2⇡iaT
1� z̄

(1� z)2
+ · · ·

aT � 0
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Proof

Integrate                              over the boundary of the purple 
region:  

Re

I
G(z, z̄)

This produces a “Sum rule” relating lightcone limit to Regge limit:

1� z̄ = ⌘(1� z) ⌘ ⌧ 1
This is the z-contour, with the z-bar contour defined by                            

fixed( )

Lightcone regime

Real-Regge regime



The sum rule is 

Plugging in known lightcone G and massaging gives:

aT =

Z

Real�Regge
Re (hO O i � h OO i)

> 0

0 = Re

I
G

= Re

Z

lightcone

G+Re

Z

Real�Regge

G



The sum rule is 

Plugging in known lightcone G and massaging gives:

aT =

Z

Real�Regge
Re (hO O i � h OO i)

> 0

 “position space optical theorem”   
analogous theorem holds in non-conformal QFT

0 = Re

I
G

= Re

Z

lightcone

G+Re

Z

Real�Regge

G



Conversely, 

implies the correlation function has a causality-violating 
singularity (somewhere in the purple region), or violates crossing 
symmetry. 

aT < 0



Conversely, 

implies the correlation function has a causality-violating 
singularity (somewhere in the purple region), or violates crossing 
symmetry. 

aT < 0

What actually went into this argument? 

• Lightcone blocks in the t-channel 

• Positive coefficients in the s and u channels
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By now somebody has probably objected that the conformal 
Ward identity fixes the coupling of scalars to the stress tensor: 

so it is completely obvious that 

aT = (positive)⇥ �O

c

aT > 0

You’re right: We’ve just proved this obvious fact from the other 
channel.

However, an identical argument produces nontrivial bounds. Three 
examples: 

• Spin > 2 currents: both signs ruled out! 
• Leading term is some other spin-2 operator 
• External operators with spin

[Maldacena, Zhiboedov]
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Causality in quantum field theory 
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Shockwaves in CFT —> main theorem (causality sum rule) 
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A scalar EFT in flat space with Lagrangian 

is causal if and only if 

Now we’ll derive this in AdS, from the dual CFT. 

(@�)2 + �(@�)4 + · · ·

� > 0

Gravity is decoupled in this EFT; thus the stress tensor in the 
dual CFT is decoupled.



Following [Heemskerk, Penedones, Polchinski, Sully], 

this bulk interaction translates into an anomalous dimension for 
the double-trace operators in the CFT: 

O⇤n@`
µO
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Following [Heemskerk, Penedones, Polchinski, Sully], 

this bulk interaction translates into an anomalous dimension for 
the double-trace operators in the CFT: 

O⇤n@`
µO

� = 2�O + 2n+ `+ �n,`

�n,` < 0 ) �bulk > 0

This anomalous dimension appears in front of a log in 
the conformal block expansion. 

And its sign is fixed by our argument:



We also find nontrivial bounds on spinning correlators, eg 

cf:  
Hofman & Maldacena;  
Camanho, Edelstein, Maldacena, Zhiboedov;  
etc. 

h Tµ⌫T�⇢  i

[TH, Jain, and Kundu, in progress]



We also find nontrivial bounds on spinning correlators, eg 

cf:  
Hofman & Maldacena;  
Camanho, Edelstein, Maldacena, Zhiboedov;  
etc. 

h Tµ⌫T�⇢  i

[TH, Jain, and Kundu, in progress]

Thank you.


