

Castor status and plans

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

Sebastien Ponce, Hepix, October 22nd 2008

Outline

ERN**IT** Department

- Overview of CASTOR
- Current status
 - And latest improvements
- Use CASTOR for analysis
 - XROOT-CASTOR integration
- Future plans
 - Ongoing and planned developments

CASTOR overview

- a mass storage solution targeting the CERN Tier 0 and Tier 1s
- Handling 2 layers of storage
 - Tape archive
 - Disk cache
- Providing a unique namespace
- Able to handle large amounts of data
 - 100s PBs on tape
 - 10s PBs on disk
 - 10s GB/s of throughput

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

CERN

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

while ((nic

// on a SIGIN

I now loop way

if(busy,TPool

idle n

veturn: 🕅

Sebastien Ponce, Hepix, October 22nd 2008

CERN**IT** Department

- Database centric
 - All components communicate through ORACLE databases
- Robust
 - Redundancy at all levels
 - DB & all daemons
- Scalable
 - In data sizes : 18PB handled today
 - In throughput : 6GB/s av on a year

5

Successful

- CERN**T** Department
- Handles the CERN Tier 0 activity
 - > 6GB/s average
 - > 10GB/s peak
 - 6 PB disk cache

- Met and exceeded expectations during data challenges
- Also installed in 3 Tier 1s
 - ASGC in Taiwan
 - RAL in UK
 - CNAF in Italy Sebastien Ponce, Hepix, October 22nd 2008

Continuously improving

- Security
 - All components have been secured (authentication)
 - Nameserver, disk cache
 - Protocols
 - Support for globus and kerberos 5
 - 1300 authentications/s with krb5 and no cache replay
- Accounting
 - Per user and per pool
- End to end checksumming
 - Possibility of presetting the checksum of a file
- Support for SLC5

Analysis : a new use case

- CASTOR has been mainly foccussed on the Tier 0 • activity until now
 - Data taking, export, reconstruction
 - Large files, heavy streams
 - Opening time was not an issue
- CERN is considering having an analysis facility
 - Mostly disk only
- New requirements have thus appeared
 - Support for small files
 - Low latency for file opening
 - Support for many parallel light weight streams

Handle the analysis

- An architecture task force took place before the summer to analyze the needed architecture changes
- We need a protocol able to handle many streams concurrently per diskserver with limited overhead and low latency
- Conclusions are
 - The centralized (LSF) scheduling has too high latency
 - We focus on a single protocol and moved the scheduling within it
 - The protocol of choice is XROOT with CASTOR specific extensions

CH-1211 Genève 23 Switzerland www.cern.ch/it

CERN IT Department

XROOT overview

Client connects to a redirector node

- This redirector finds out where the file is
 - It handles a cache of recent files for efficiency
- Client then connects directly to the node holding the data

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

CER

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

XROOT in CASTOR

CER

- Client connects to a redirector node
- The redirector asks CASTOR where the file is
- Client then connects directly to the node holding the data
- CASTOR handles tapes in the back

The gains

- Benefits from low latency of XROOT
 - 80ms per file opening (1-2s for CASTOR)
- Many connections per second (small files)
 - >700 connections per second
- And native xroot for bandwidth optimization
 - Can serve concurrently 100s of streams per node
 - Note :
 - New schema only used for analysis for now
 - Still using plain CASTOR-LSF based scheduling for Tier 0 related pools

Sebastien Ponce, Hepix, October 22nd 2008

CH-1211 Genève 23

www.cern.ch/it

Switzerland

Practically

- New XROOT plugin in CASTOR
 - Tighter integration, aware of CASTOR concepts
 - e.g. service class, disabled disk server
- Extensions of XROOT
 - Security (Globus, kerberos)
 - Stream scheduling on a disk server
 - Ability to dynamically lower throughput dedicated to users when a tape stream starts
 - Configurable redirector
 - Can use its cache or CASTOR (or both)
 - Can use its scheduling or CASTOR's (or both)

Future plans

ERN**IT** Department

- More improvements on xroot
 - Apply to writes what was done for reads
 - Study the move the file catalog to the xroot redirector to have fully native xroot access
- Tests of mountable CASTOR
 - Take advantage of XROOT via FUSE
 - Find out usage patterns and possible concerns
- Quotas
- Support of small files at the tape level
 - See Steven's talk

14 CERN

Summary

CERN**IT** Department

- A robust and efficient Mass storage system
 - Used successfully in production for Tier 0, Tier 1s
- Evolving to answer new needs
 - accounting/quotas
 - Security
 - Small files
- Adapting to new technologies to tackle new use cases
 - Analysis scenario
 - Mountable mass storage

Sebastien Ponce, Hepix, October 22nd 2008