

Increasing Tape Efficiency

HEPiX Fall 2008 Taipei

Nicola Bessone, German Cancio, Steven Murray, Giulia Taurelli

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

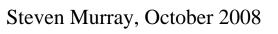
now loop wa

Steven Murray, October 2008

Contents

- Tape efficiency project
- Problem areas
- What has been done
- What is under development
- Roadmap
- Summary

CERN IT Department CH-1211 Genève 23 Switzerland WWW.cern.ch/it



low loop wa

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Tape Efficiency Project

- All functionality dealing directly with storage on and management of tapes
 - Volume database
 - Migrations/recalls
 - Tape drive scheduling
 - Low-level tape positioning and read/write
- Team is from IT/DM
- Contributions from IT/FIO

CERN

Problem Areas

Write more data per tape mount

Use a more efficient tape format

 The current tape format does not deal efficiently with small files

Improve read efficiency

- Require modifications from disk to tape

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Steven Murray, October 2008

What has been done

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Steven Murray, October 2008

Switzerland

www.cern.ch/it

Read/write More Per Mount

- Recall/migration policies
 - Freight train approach

CERN

Department

- Hold back requests based on the amount of data and elapsed time
- Production managers rule
 - Production managers plan relatively large workloads for CASTOR
 - Access control lists give production managers a relatively larger percentage of resources
 - User and group based priorities encourage users to work with their production managers

Repack

• Repacks the data from one set of tapes onto another set of tapes

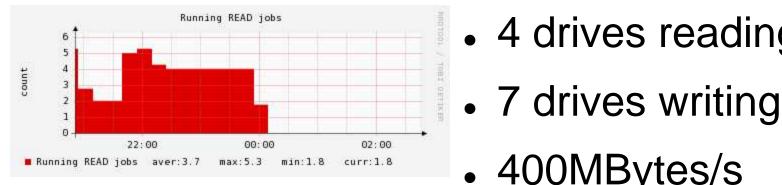
Repack is used for media migration

Repack is used to defragment tapes

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Efficiency and Repack

- Reading the current ANSI AUL format is approximately twice as fast as writing
- Repack uses Castor as a cache
- Repack uses the cache to support asymmetric read/write drive allocation
- Repack is equivalent to one LHC experiment and as such is a good test run for Castor


low loon we

CERN

Repack Measurements

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Steven Murray, October 2008

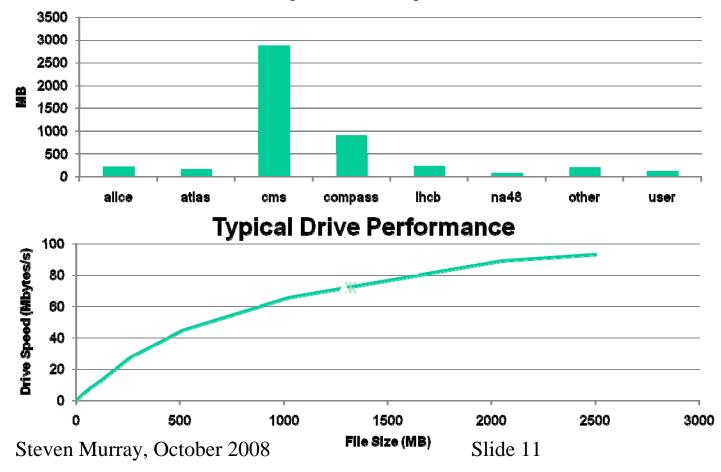
CERN

4 drives reading

400MBytes/s

What is under development

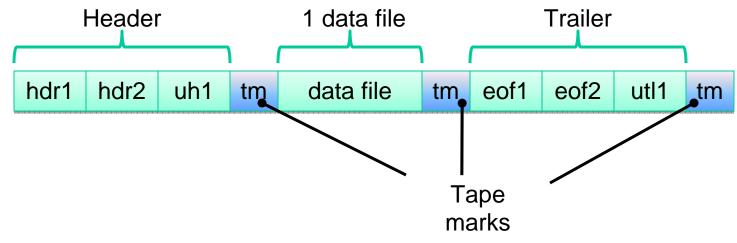
CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it


Steven Murray, October 2008

Writing Small Files is Slow

- Users were encouraged to store large files in Castor
- Unfortunately Castor contains many small files

Average Filesize per VO


CERN

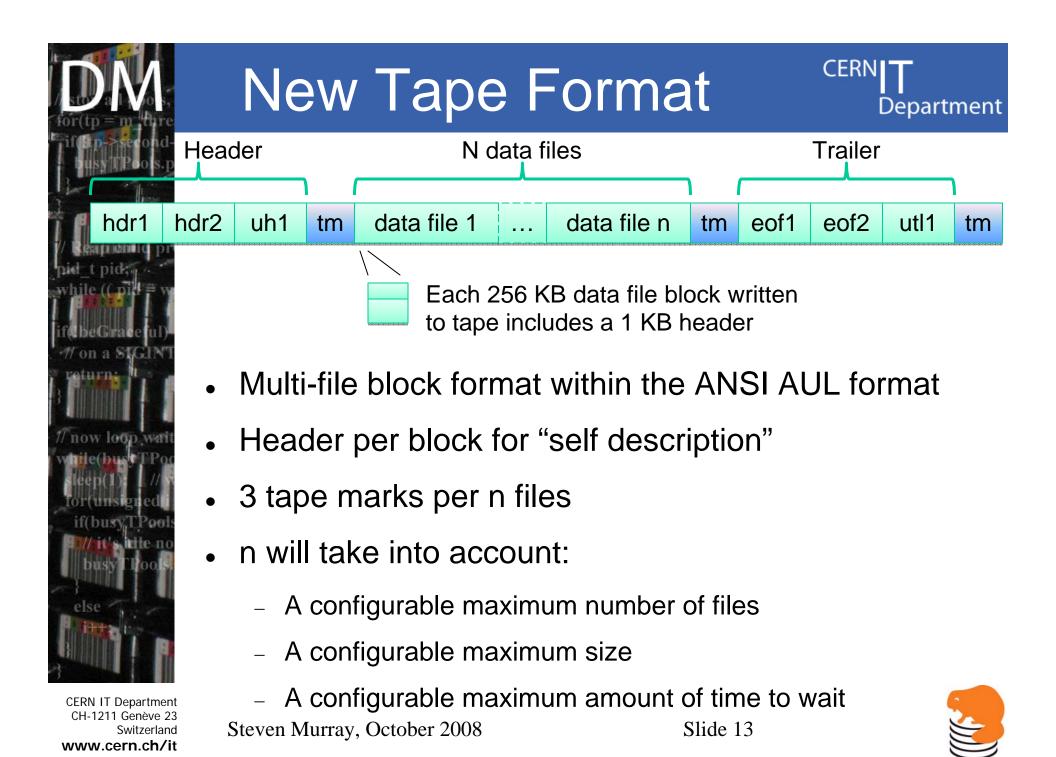
Department

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Why Small Files are Slow CERN

- ANSI AUL format
- 3 tape marks per file
- 2 to 3 second per tape mark
- 9 seconds per data file independent of its size

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it


turn:

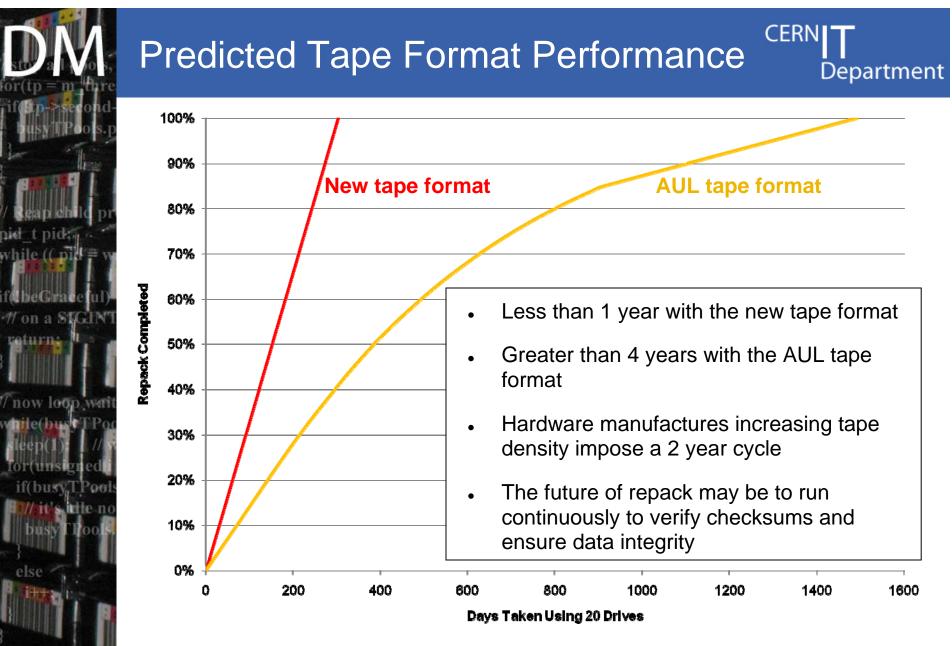
if(bus

else

now loop way

Block Header Format

CERN Department


#	Meta-data name	Explanation	Examples fo	Bytes or Data
	VERSION_NUMBER	The version of the block format	09.13	5
<u>2</u>	HEADER_SIZE	Header size in bytes	01024	5
	CHECKSUM_ALGORITH			40
	M	Name of the checksum algorithm	Adier-32	10
4	HEADER_CHECKSUM	Adler-32 checksum	4146884724	10
	······		000000000000000012	
5	TAPE_MARK_COUNT	Sequential number addressing the migration-files on the tape	345	20
6	BLOCK_SIZE	Block size in bytes inclusive of header	0000262144	10
2		Block offset from the beginning of the tape. Tape marks and labels		
	BLOCK_COUNT	are included in the count	345	20
		Time since the Epoch (00:00:00 UTC, January 1, 1970), measured	100000010	40
	BLOCK_TIME_STAMP STAGER VERSION	in seconds	1222332810	10 15
	STAGER_VERSION	The version of the stager software		10
10	STAGER_HOST	The DNS name of the stager host including the domain	c2cms2stager.cern.c	30
	DRIVE_NAME	Will be provided by a local configuration file	0003592028	10
		······································	0000000456000001	
12	DRIVE_SERIAL	Will be provided by a local configuration file		20
13	DRIVE_FIRMWARE	Will be provided by a local configuration file	D3I0_C90	10
14	DRIVE_HOST	The DNS name of the host including the domain	tpsrv250.cern.ch	30
	VOL_DENSITY	The storage capacity of the tape	700.00GB	10
	VOL_ID	Site specific numbering system (the sticker on a tape)	T02694	20
	VOL_SERIAL	Volume Serial Number	T02694	20
18	DEVICE GROUP NAME	The device group name that linked the tape to the drive	3592B1	10
		······································	00000001099511627	
19	FILE_SIZE	The size of the data file in bytes		20
	FILE_CHECKSUM	Adler-32 checksum	1926860616	10
	FILE_NS_HOST	The DNS name of the host including the domain		30
22	FILE_NS_ID	The name server ID of the data file	226994274	20
~		Adler-32. Progressive checksum of all the blocks written to tape so	4004507000	
23	ECKSUM	far for the current data file		10
2/	FILE BLOCK COUNT	Block offset from the beginning of the data file	00000000000000000000000000000000000000	20
24			ize before file name :	375
		Last "x" bytes of the filename from the name server. This field acts a	······	575
25	FILE_NAME	nearest KiB.		649
			Header size :	1024

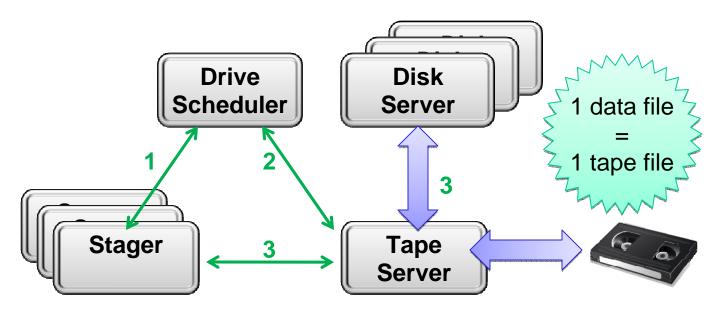
www.cern.ch/it

Slide 14 Switzerland Steven Murray, October 2008

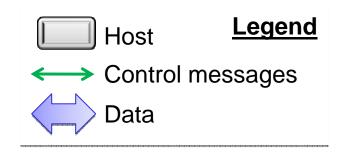
VERSION NUMBER HEADER SIZE CHECKSUM ALGORITHM HEADER CHECKSUM TAPE MARK COUNT **BLOCK SIZE** 10 **BLOCK COUNT** 10[:] **BLOCK TIME STAMP** 20 **STAGER VERSION** STAGER HOST 10 DRIVE_NAME 15 DRIVE_SERIAL 30 DRIVE FIRMWARE 10 **DRIVE HOST** 20 10 **VOL DENSITY** 30 10 VOL ID 20 20 **VOL SERIAL** 10 DEVICE_GROUP_NAME 20 FILE SIZE 10 30 FILE CHECKSUM FILE NS HOST FILE NS ID FILE PROGESSIVE CHECKSUM FILE_BLOCK_COUNT FILE NAME

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

Steven Murray, October 2008


- The new tape format is only half of the story
- An aggregator needs to be inserted into the disk ↔ tape data streams
- Anything old that is replaced is an opportunity for code re-use and increased maintainability via the Castor framework

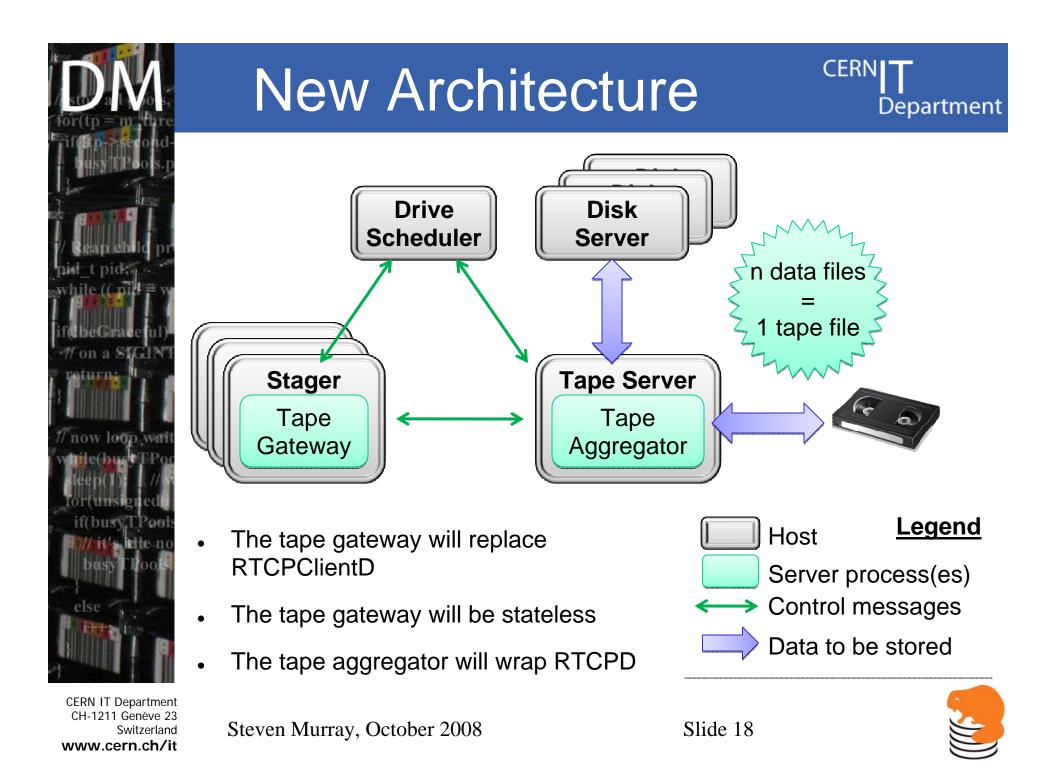
CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it CERN



aturn: now loop wai nile(hust) if(bus n

Current Architecture

- 1. Stager requests a drive
- 2. Drive is allocated
- Data is transferred to/from disk/tape based on file list given by stager



CERN

Department

CERN IT Department CH-1211 Genève 23 Switzerland WWW.cern.ch/it

DM Roadmap	CERN Department
Date Actions	
Beginning Q4 2008 Put repack into full pr Expecting 700 MB/s.	oduction will at least 20 drives.
Conclude new tape for	ormat architecture.
End Q1 2009 Release first function format.	al prototype of new tape
End Q2 2009 Write new tape formation Read new tape formation	
Read new tape formationEnd Q3 2009Read and write every	•
busyfloof	
Beginning Q1 2010 Replace RTCPD with	tape aggregator

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Steven Murray, October 2008

Summary

- We have improved the efficiency of tape by increasing the amount of data we write per mount
- Repack uses Castor as cache to support asymmetric drive read/write allocation
- We are currently developing a new tape format to increase write performance
- The future of repack may be to run continuously to constantly verify data integrity in addition to media migration and tape defragmentation
- We will continue to identify the greatest efficiency improvements that require the least effort

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

