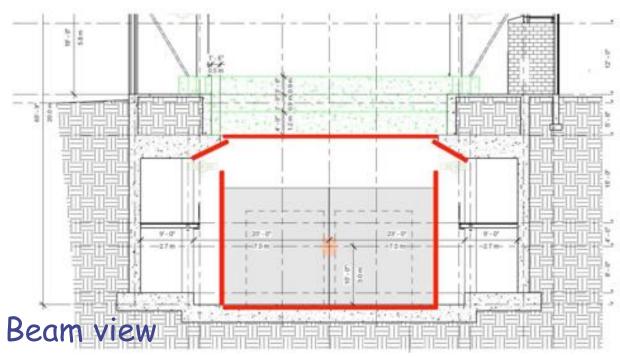
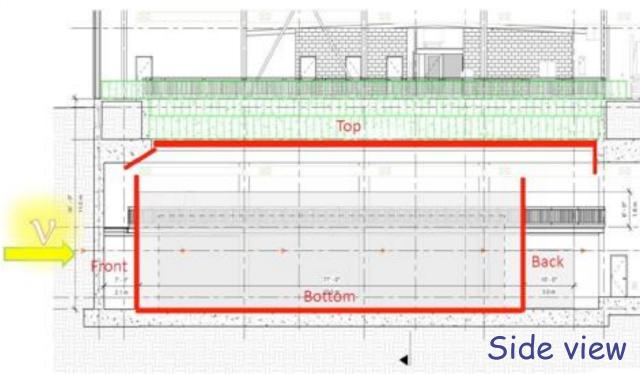
Cosmic Ray Tagger:, new geometry, timing

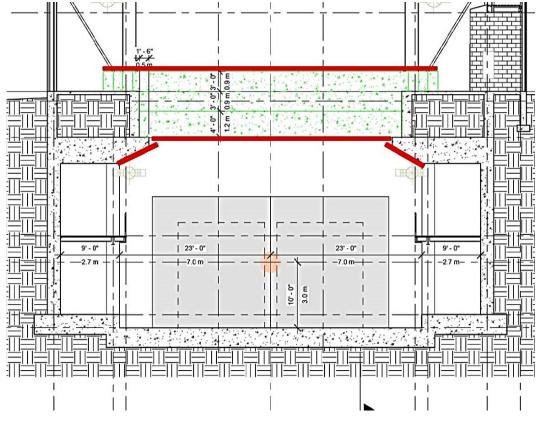

Update to

https://edms.cern.ch/document/1512005/1

Summary of previous work

- CRT == cosmic ray tagger, for SBN at FNAL
- Aim : mitigate background from cosmics, in particular high energy γ mimicking a v_e CC interaction.
- Note that software tools and internal PMT system can also be used to discriminate the background (see SBN proposal arXiv:1503.01520)
- Basic layout: scintillator layers surrounding the detectors
- Possible drawback: auto-veto of non contained neutrino events

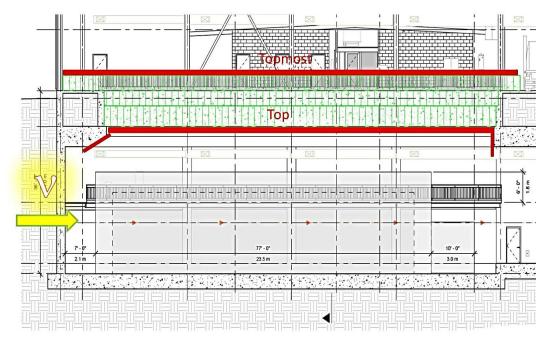

A possible full coverage CRT (4π CRT)


Total surface: ~1000 m²
Option: with or without bottom unit

Geometrical efficiency: 99.9%

Possible configuration: Scintillator units (in red) Each units composed by two layers Each layer composed by stripes, oriented at 90° between layers

A possible Telescope CRT



Beam view

Total surface: ~800 m²

Geometrical efficiency: 80%

Possible configuration:
Scintillator units (in red) above and below the concrete ceiling
Each unit composed by two layers
Each layer composed by stripes,
oriented at 90° between layers

Side view

Residual backgrounds/fakes status may 2015

0		· ·							
	Background in 211 sec				auto-veto %				
	Before cuts			After cuts			ν_{μ} CC	ν_e CC	
	Timing A	Timing B	Total	Timing A	Timing B	Total			
no CRT	32600	225000	258000	21	179	200	0	0	
4π CRT									
Signal in at least one unit	33	225	258	0	0.2	0.2	32	12	1000 m²
Vector	7200	49500	56700	5	39	44	3	1	
Vector if no bot- tom unit	28000	191000	219000	18	152	170	1.8	0.6	
CRT Telescope									400
Signal in at least one unit	6200	43700	49000	4	34	38	8	3.5	m ²
Vector	10000	69000	79000	6	55	61	0	0	

Intrinsic v_e CC from beam

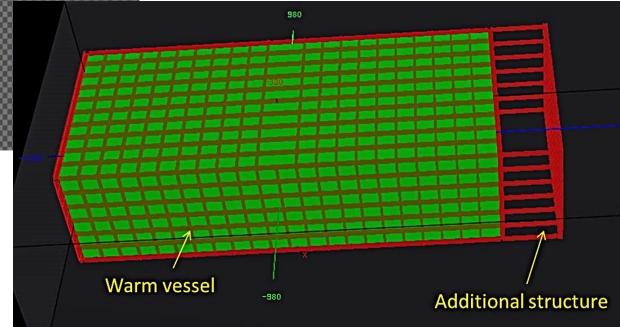
1500

Way to go

- Staged approach (top first, bottom last)
- Consider timing as a discriminant between cosmic and internal events (ns resolution needed)
- Consider using single-layer scintillators bars, reading at both ends gives timing and position..

Today's update:

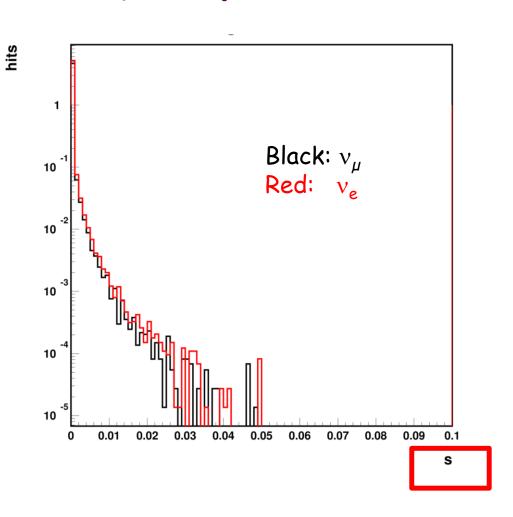
- Improved geometry description
- Timing of beam events
- Auto-veto with timing, and with single layer

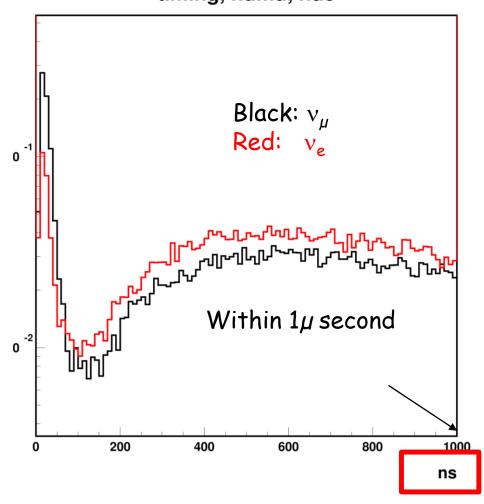

New geometry

 Thanks to Umut, we have a full and detailed description of

- Inner structure, field cage
- Cold Cryostat
- Warm vessel
- Building

Option on "back" panel: before or after additional structure



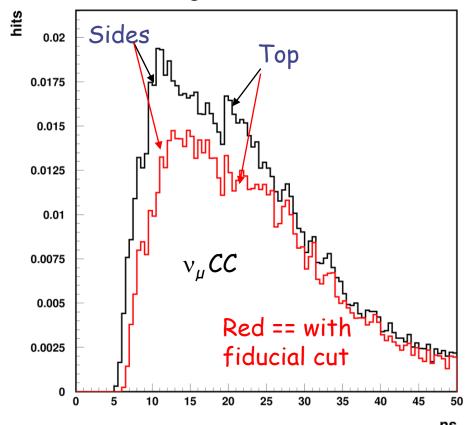

New runs

- For cosmics: no change wrt previous numbers.
- For Internal Neutrino events:
 - added dump of time of arrival and
 - added quenching of light in the scintillator (to be checked with real one)

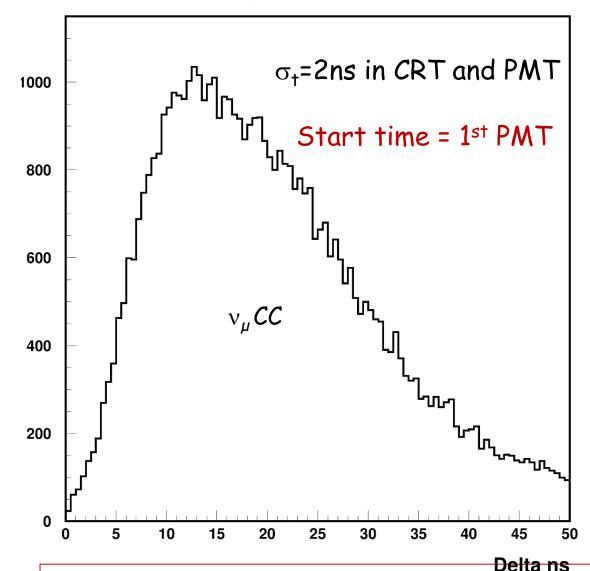
Time of arrival 4π CRT

timing, numu, nue

Time distribution for every energy deposition in the CRT scintillators.

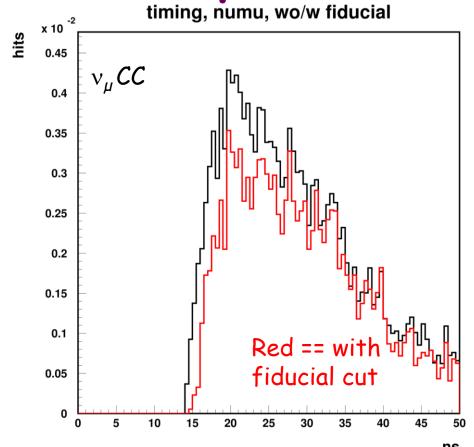

Start time is given by neutrino interaction

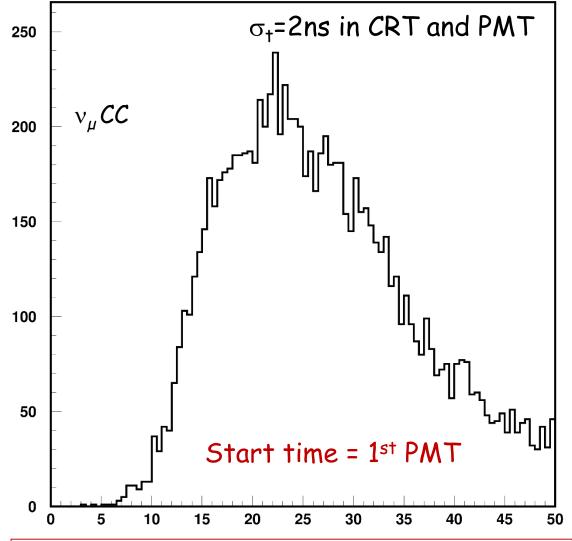
Only events in fiducial volume


Only events with at least a signal above 0.5MeV in one scintillator layer

Time of arrival- 4π CRT zoom

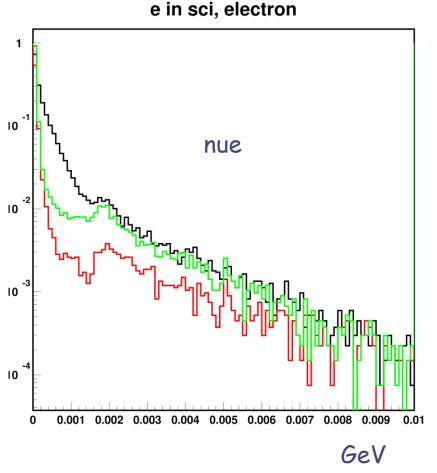
timing, numu, wo/w fiducial


- Perfect time resolution assumed
- Only events with CRT signal
- · T depends on CRT module.
- Minimum approx. 5ns


Here, "zero time" is minimum arrival time on internal PMT system. (Rough estimate from vertex position).

Time resolution added (2⊕2 ns)

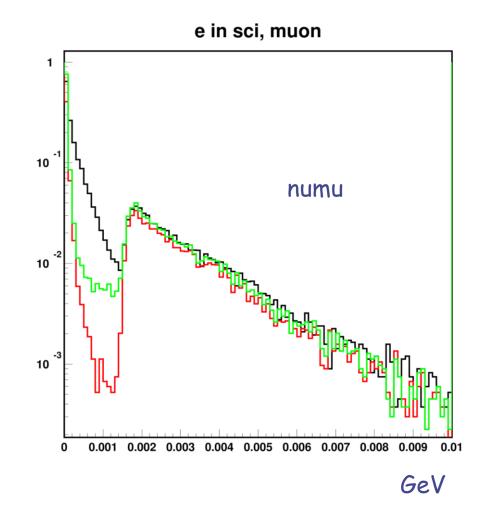
Time of arrival-Telescope


- Perfect time resolution assumed
- · Only events with CRT signal
- Only TOP
- Min 15nsec

Here, "zero time" is minimum arrival time on ne internal PMT system. (Rough estimate from vertex position).

Time resolution added (2⊕2 ns)

Time-gated auto-veto



Energy deposited in one CRT layer (1 cm scint)

Black=all hits

Red = time cut at 1μ s

Green: signal quenching (Birks)

Muon component clearly visible. Time cutoff affect strongly the auto-veto rate, especially for nue. Signal quenching in scintillator can also affect.

Note: all auto-veto calculations consider a CRT signal only if Edep > 0.5 MeV

Auto-veto from non contained neutrino events

4 π	ve CC bckg	ν _μ CC	v _e CC osc	v NC	
single unit, 1 layer	34 / <mark>24</mark>	45 /36	27 /19	32 / <mark>22</mark>	
single unit, double layer	9/6	26/24	6 / 4	6 /3	
vector	1 / 0.4	2/1.2	0.5 / 0.2	0.4 /0.1	

eff.

C.R.

99.9%

Threshold: 0.5 MeV in one layer Red: time -cut at 1μ sec

Telescope	ve CC bckg	ν _μ <i>CC</i>	v _e CC osc	v NC	C
single unit, 1 layer	14 / 9	15 / 11	11 / 7	32 / 8	E
single unit, double layer	4/2	7/6	2/2	2/1	8
vector	0/0	0/0	0 / 0	0/0	

C.R. eff.

30%

Conclusion and next

- Geometry updated to latest vessel design → more material, less autoveto
- First look at timing for neutrino events
- Time cut-off also reduces auto-veto
- Still non-negligible, especially for v_{μ} and for single-layer CRT modules
- PMT-CRT time difference few ns
- All figures are "better" for the TOP CRT module, suggesting again a staged approach (my personal view)
- "Dirt" events being processed
- Update of the EDMS note ongoing
- More analysis will be done by our ICAR-US colleagues will send data asap