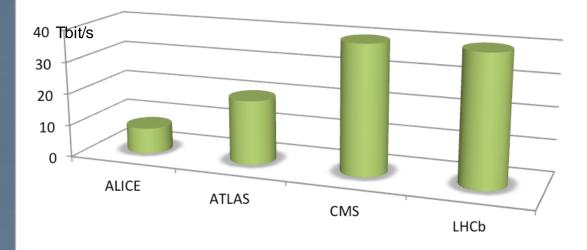


The Intel way to future Online processing: the High Throughput Computing collaboration

Niko Neufeld, CERN/PH-Department niko.neufeld@cern.ch

Oct. 5th 2015


HTCC in a nutshell

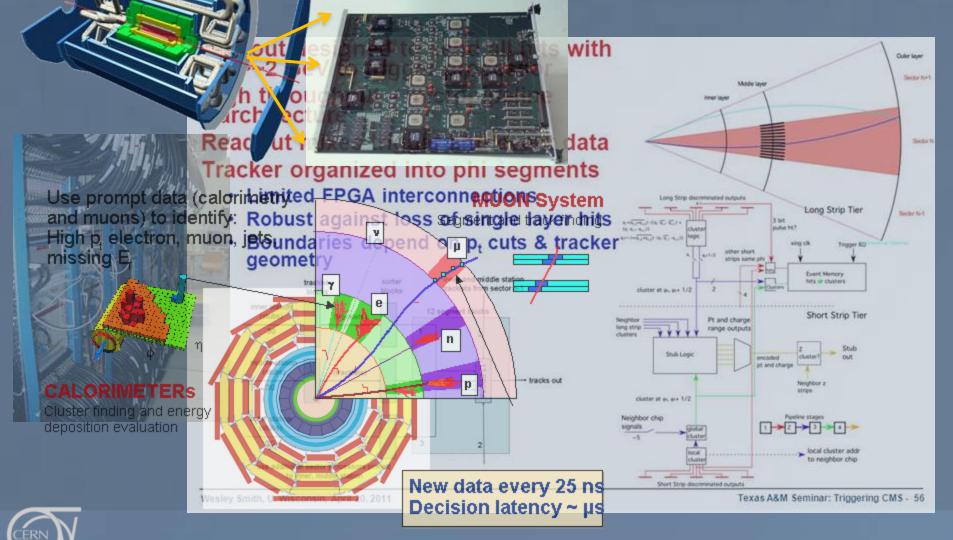
- Apply upcoming Intel technologies in an Online context
- L1-trigger, data acquisition and event-building, accelerator-assisted processing for high-level trigger

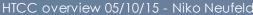
Online computing challenges

- More and more data
- Limited money
- Limited manpower
- Limited power

HTCC overview 05/10/15 - Niko Neufeld

First level selection




Challenges for Level-1 trigger

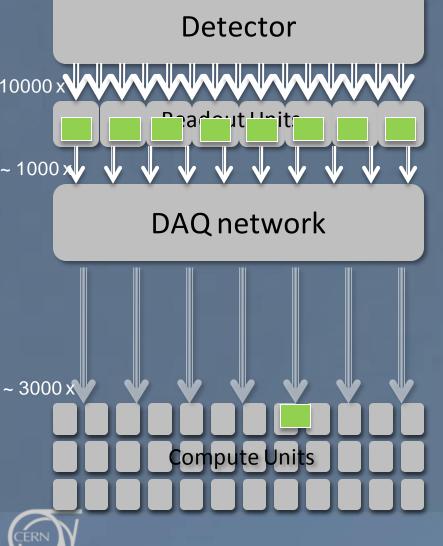
- Keep high efficiency in the face of many overlapping collisions information
- Remain flexible, robust and easy to reproduce

Level 1 – a domain of custom hardware

New (and old) L1 challenges

- A combination of (radiation hard) ASICs and FPGAs
- Sophisticated algorithms need more time, bigger FPGAs, more data
- Long-term maintenance issues with custom hardware and low-level firmware
 - Upgrades usually mean replacing all the hardware
- Exact reproducibility of results without the custom hardware challenging and/or computationally intensive

Intel / CERN HTC Collaboration


- Intel has announced plans for the first Xeon with coherent FPGA providing new capabilities
- We want to explore this to:
 - Move from firmware to software
 - Custom hardware \rightarrow commodity
- Need real-time characteristics for L1:
 - algorithms must decide in O(10) microseconds or force default decisions
- FPGA can provide hard-realtime, cache-coherent access to memory and can collaborate with CPU(s) (probably need to take CPU cores out of scheduler for this)
- We use existing FPGA versions of common algorithms (e.g. Hough transform, muon trigger)
- Later will compare with OpenCl or other higher-level synthesis (TBD)

Working with full collision data

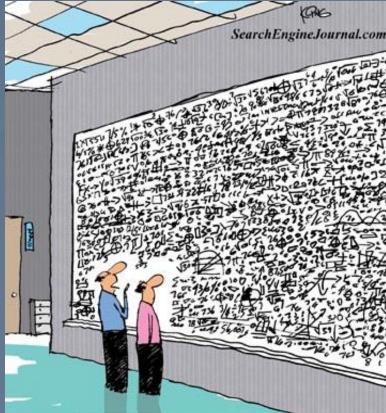
- Pieces of collision data spread out over 10000 links
- All pieces must be brought together into one of thousands compute units
- Compute units running complex filter algorithms (today dual-socket Xeon servers)

custom radiation- hard link from the detector 3.2 Gbit/s

DAQ ("event-building") links – some LAN (10/40/100 Gbit/s)

DAQ challenge

- Transport multiple Terabit/s reliably and costeffectively
- Integrate the network closely and efficiently with compute resources (be they classical CPU or "many-core")
- Multiple network technologies should seamlessly co-exist in the same integrated fabric ("the right link for the right task")

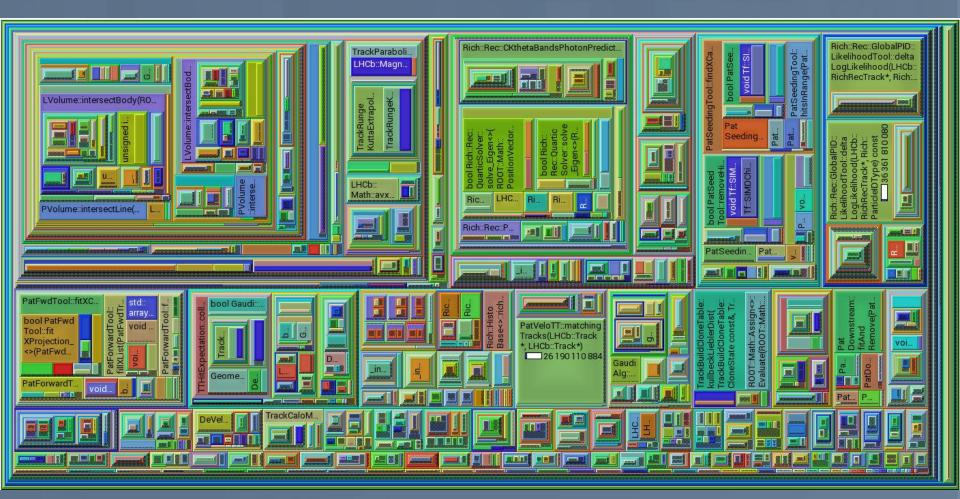


Intel / CERN HTC Collaboration

- Explore Intel's new fabric OmniPath to build a DAQ network
 - Have ported LHCb event-builder exerciser to libfabric and run tests on Intel Truescale (the omnipath predecessor) on an HPC site
- Use OmniPath to integrate Xeon, XeonPhi and Xeon/FPGA concept in optimal proportions as compute units
 - E.g. move the accelerator "out of the box" \rightarrow see KNL

High Level Trigger

"And this, in simple terms, is how we find the Higgs Boson"



High Level Trigger

The challenges here share a lot with "offline" workloads, in particular reconstruction

Where is the CPU-time spent?

Example from the LHCb HLT

HTCC overview 05/10/15 - Niko Neufeld

HTCC and KNL

How can KNL speed up typical big consumers
Pattern reco & Tracking
Particle Identification (done on LHCb money ⁽²⁾)
KNL as event-builder / event-sorter
Currently running on KNC, porting to KNL

KNL and Xeon/FPGA as accelerators

Use existing "kernels" for important work-loads
Compare performance on KNL and Xeon/FPGA

- Xeon/FPGA should have an advantage over PCIe based accelerators (both FPGA and GPGPU) because of the cache-coherent, low-latency access to main-memory and CPU (no PCIe bottle-neck)
- We have demonstrated first offload in simulation, will test on real hardware soon

Who is HTCC

- Omar Awile
- 🧕 Christian Färber
- Karel Ha (student)
- Sebastien Valat
- Rainer Schwemmer
- Paolo Durante
- Olof Barring
- Pawel Szostek
- 🔍 Niko Neufeld
- Jon Machen (Intel Corp) 50%

100%

10 - 25%

Summary

- The LHC experiments need to reduce 100 TB/s to ~ 25 PB/ year
- Today this is achieved with massive use of custom ASICs and in-house built FPGA-boards and x86 computing power
- Finding new physics requires massive increase of processing power, much more flexible algorithms in software and much faster interconnects
- The CERN/Intel HTC Collaboration will explore Intel's Xeon/FPGA concept, Xeonphi and OmniPath technologies to build the LHC trigger of the future

