Quench Detection System

R. Denz TE-MPE-EP

on behalf of the QPS team

Outline

- Upgrade of the LHC quench detection system (QDS) during LS1
 - Yellow racks & R2E
- QDS system dependability during LHC operation in 2015
 - Overall system performance
 - Upgrades performed in 2015
 - Experience during the ion run
- Preparation for 2016 operation
 - Firmware upgrade for nQPS DAQ systems
 - Deployment of radiation tolerant QDS for 600 A circuits
 - Includes RU.L4 and RU.R4
- Expected system performance in 2016

QDS upgrade during LS1

- QPS system dependability
 - Overhaul of MB protection systems ("Yellow racks")
 - Revision of safety critical firmware
 - Automatic system configuration and verification
 - R2E framework:
 - Relocation of equipment (Inner Triplet protection)
 - Deployment of radiation tolerant electronics (IPQ, IPD)
- Enhancement of supervision & diagnostic capabilities
 - Enhanced quench heater circuit supervision
 - Earth voltage feelers
 - QPS fieldbus upgrade
 - CSCM for all sectors (objective added in 2014)

Enl for

About quench heater circuit usage ... Statistics for LHC main dipoles, 2014-2015

Improved availability & maintainability

- Remote control options
- MPE stand-by service statistics for QDS+DAQ interventions
 - In 2015 14% of all interventions were requiring access to the LHC compared to 41% in 2012!
 - 11 interventions requiring access in 2012, fully transparent in 2015
- Update of QPS supervision
 - FESA2 → FESA3
 - Configuration management
 - QPS field-bus upgrade → higher data transmission rates
 - Revision of LOGGING data retrieval
 - Analog data recorded without dead-bands
 - Installation of earth voltage feelers for the main circuits

System immunity to ionizing radiation (R2E)

- ✓ Relocation of QPS equipment previously installed in UJ14, UJ16, UJ56
 - Inner triplet protection
- Deployment of radiation tolerant electronics for quench detection systems for IPQ and IPD protection
- ☑ Ghosts from the past ...
- Deployment of radiation tolerant electronics for quench detection systems for 600 A protection
 - Upgrade started to be completed during YETS

QDS system dependability in 2015

- Challenging year after major system upgrades during LS1
 - Significant (not foreseen) effort to overcome post LS1 teething problems affecting overall system availability (96.79%)

- Very (=100%) reliable operation and effective protection of superconducting circuits
 - Detection of 40 main dipole quenches during proton run 2015

DQQBS back-grade during TS#2

- Necessary due to problems with the radiation tolerance of the hybrid circuit boards installed for the CSCM test in 2014
 - Exchange of 1248 QPS circuits boards (6.1 % of total installed quantity)
 - Test of 2496 hardwired interlocks (18.5 % of all QPS interlocks)

Many thanks for all the essential support provided by internal and external teams!

Very challenging, demanding and <u>hopefully exceptional</u> exercise

QDS system dependability after TS#2

Significant improvement of system availability

No faults in main magnet protection units!

	QTY	SEP	ОСТ	NOV	DEC	TOTAL
QDS600	114	1	3	0	0	4
QDSIPQDT	76	0	1	1	0	2
nQPS	436	11	4	4	2	21
QDSRB	1232	0	0	0	0	0
QDSRQ	392	0	0	0	0	0
QDSRBQ	16	0	0	0	1	1
Σ	2250	12	8	5	3	28
DUMPS		1	3	1	1	5 (3 x SEU)

QDS main failure modes

R2E related problems

Example for a hardware fault:

- 1. Broken multilayer ceramic chip capacitor causes faulty input signal on a symmetric quench detection board type DQQDS.
- 2. Detection algorithm triggers correctly causing heater firing and beam dump.
- 3. Faulty board is replaced by standby service.
- 4. Allocated fault time is 7.2 h + penalties for pre-cycle ...
- 5. There are 58 capacitors of the incriminated type (same value and rating) on each of the 1632 DQQDS boards currently installed in LHC.
- 6. 1 out of 94656 caps failing in 2015 $\rightarrow \lambda_{2015} = 1.2 \times 10^{-9} \text{ h}^{-1}$
- Data acquisition & transmission
 - Stalled bus recovery etc. → further mitigation & consolidation currently ongoing (YETS 15/16)

QDS preparation for 2016 operation

- Firmware upgrade for nQPS DAQ systems

 - Sampling Completed last week! reased to 10 Hz nmunication faults; transparent error handling
- Deployment of radiation tolerant QDS for 600 A circuits
 - Mandatory for radiation exposed areas in point 1, 5 and 7

nDQQDG Signal pipeline v7 (r140)

New detection systems are no longer requiring re-calibration cycles (resets) -> we will try hard to upgrade as well RU.L4 and RU.R4 ...

QDS performance in 2016 – an estimate

- Considering a successfully implementation of the ongoing upgrades:
 - The same level of availability as in 2015 after TS#2 (~98%) should be feasible despite the increasing radiation load
 - The required overall (QDS + HDS + EE) availability for smooth LHC operation is: A_{OPS} ≥ 96%
 - The system maintainability is expected to improve, mainly to the better handling of certain error types
- The complexity of the system remains a challenge
 - Almost 14000 possibilities to stop LHC at any time ...

