

LBDS and Injection System

C. Bracco, M.J. Barnes, W. Bartmann, E. Carlier, L. Ducimetiere, M. Fraser, B. Goddard, A. Lechner, N. Magnin, M. Meddahi, A. Perillo Marcone, V. Senaj, J. Uythoven, F.M. Velotti

26/01/16

Acronyms

LBDS: LHC Beam Dump System MSI: injection septum MKI: injection kicker TCDI, TDI, TCDD, TCLIM, TCLIA and TCLIB: injection protection (dumps, collimators and masks) BTV, BPMX: diagnostics (screens and pickups) RCPS 10 x 50 Ω Transmission RCPS: diagnostics on Resonant Power Supply for MKIs Resonant Charging Po Magnet (5 Ω) Supply Lines z Z z TDR: Terminating Dump Resistor for MKI Terminating Terminating Dump PFN Dump Main Z Main Resisto Resistor Switch (5 Ω) Switch SIS: software interlock (MS) (TDR) (DS)10 x 50 Ω Transmission SS: Soft start (form MKI, also called MKISS) Magnet (5 Ω) Lines z z AGK: Abort Gap Keeper Terminating Terminating Dump PFN Main z Z Main Resistor Dump Switch (5 Ω) Switch MKD: extraction kickers Resistor (5 Ω) MSD: extraction septa MKB: dilution kickers TCDQ and TCDS: dump protection TDE: dump block GTO/IGBT: MKD/MKB switches (IGBT for triggering and re-triggering system). IQC: injection quality check (diagnostics) XPOC/IPOC: external and internal diagnostics for LBDS R2E: Radiation to Electronics **BETS: Beam Energy Tracking System** SEB: Single Event Burnout **HEH: High Energy Hadrons** PLC: Programmable Logic Control BCMS: high brightness beams

26/01/16

LHC Performance Workshop - Chamonix 2016

(TMR)

(5 Ω)

Outline

For LHC injection system and LDBS:

- General description
- LS1consolidation works
- LBDS reliability runs
- 2015 performance comparison with Run1
- Forecasts for Run2 \rightarrow Run3 \rightarrow HL-LHC (operation at 7TeV)
- Conclusions

Injection System

The LHC injection system is composed by:

- Horizontal septum MSI (5)
- Quadrupole Q5
- Vertical kicker MKI (4)
- Protection devices (TDI, TCDD, TCLIA and TCLIB)

MKI

Main goals:

- Improve high voltage performance (reduce flashovers of screen conductors)
- Reduce: ferrite MKI yoke heating, pressure rise and e-cloud, number of UFOs at MKI

Main goals:

- Improve high voltage performance (reduce flashovers of screen conductors)
- Reduce: ferrite MKI yoke heating, pressure rise and e-cloud, number of UFOs at MKI

Activities:

26/01/16

Beam screen modifications

Main goals:

- Improve high voltage performance (reduce flashovers of screen conductors)
- Reduce: ferrite MKI yoke heating, pressure rise and e-cloud, number of UFOs at MKI

Activities:

- Beam screen modifications
- Pre-treatment with ion bombardment of vacuum tank to increase emissivity (no real improvement)

Main goals:

- Improve high voltage performance (reduce flashovers of screen conductors)
- Reduce: ferrite MKI yoke heating, pressure rise and e-cloud, number of UFOs at MKI

Activities:

- Beam screen modifications
- Pre-treatment with ion bombardment of vacuum tank to increase emissivity (no real improvement)
- Improved cleaning procedure for ceramic tubes => reduce UFOs

Main goals:

- Improve high voltage performance (reduce flashovers of screen conductors)
- Reduce: ferrite MKI yoke heating, pressure rise and e-cloud, number of UFOs at MKI

Activities:

- Beam screen modifications
- Pre-treatment with ion bombardment of vacuum tank to increase emissivity (no real improvement)
- Improved cleaning procedure for ceramic tubes => reduce UFOs
- NEG coating and cartridges (cold-warm transitions, bellows close to MKIs, MKI interconnects, bypass tubes, BTVs and BPTX).

High Voltage MKI performance (erratics and sparks)

High Voltage MKI performance (erratics and sparks)

High Voltage MKI performance (erratics and sparks)

High Voltage MKI performance (erratics and sparks)

MKI 2015 Faults

- 22 faults (8 Controls, 14 hardware) 4 faults required access (BETS-AGK reconnection, fix oil leakage, replace fuse, replace heater module → 9h 45 min.), 8 faults prevented injection (sparks during MKISS, vacuum spikes, etc. → 6h 38 min).
- Almost all faults correctly detected and understood (BETS and IQC)
- A fault appeared twice (28/10 and 7/12) on MKI2 RCPS monitoring (new diagnostics software on Resonant Power Supply) after Terminating Dump Resistor (TDR) replacement at the end of September 2015. This fault is not fully understood and investigations are on going: real fault or just noise? (TDR replaced, cables checked, etc.).

MKI Heating

Now complete set of conductors. Ferrite Yoke below Curie Temperature → no non-linearity seen

No stop/delay in operation during 2015 (SIS interlock threshold gradually increased following SS after beam dump).

MKI Vacuum and e-cloud

- High pressure in the kicker magnet tank, and near the capacitively coupled end of the beam screen, when pulsing the kickers, increases the probability of an electrical breakdown → SIS interlock on instantaneous and integrated pressure
- Interconnect on Q5 end of MKI8D occasionally limited operation this year, due to high pressure in cold-warm transition:
 - During scrubbing runs (increase SIS limit in steps + extended SS)

26/01/16

When reaching 2244 stored bunches (limited to injections of 36 bunches)

MKI Vacuum and e-cloud

- High pressure in the kicker magnet tank, and near the capacitively coupled end of the beam screen, when pulsing the kickers, increases the probability of an electrical breakdown → SIS interlock on instantaneous and integrated pressure
- Interconnect on Q5 end of MKI8D occasionally limited operation this year, due to high pressure in cold-warm transition:
 - During scrubbing runs (increase SIS limit in steps + extended SS)
 - When reaching 2244 stored bunches (limited to injections of 36 bunches)
- Need to periodically perform sublimation (either during each TS or in shadow of other interventions) – after this YETS, remote sublimation of MKIs possible (VSC)
- Possibility of rotating MKI8D by 180° to expose to Q5 the "less sensitive" grounded end is being studied (during EYETS? need ECR)
 - Better scrubbing at Q5 (improve efficiency of e-cloud solenoids)
- Increase the SIS limits during operation TBD!→ could increase number of breakdowns → increase probability of damage to the magnet.

UFOs Longitudinal Distribution

Improved cleaning procedure for ceramic tubes implemented during LS1: MKIs have now virtually vanished from the UFO statistics at 6.5 TeV.

26/01/16

TDI

TDI – LS1Activities

TDI Performance

- Limited in number of bunches per injection due to BN after coating hBN non-conformities
- Significant pressure rise during injection and spurious spikes during fill with jaws retracted
- Much worse behavior for TDI in point 8 (also from impedance and heating point of view)

Mauro Taborelli.

26/01/16

TDI Inspection

TDI Upgrade for 2016

TDI Upgrade for 2016

LBDS

MKD/MKB

Main aim: increase reliability (reduce rate of spontaneous triggers), safety and resistance to radiation

• HV generator GTO consolidation (MKD and MKB)

- HV generator GTO consolidation (MKD and MKB)
- MKD GTO electronics less sensitive to Single Events Burnout (SEB)

- HV generator GTO consolidation (MKD and MKB)
- MKD GTO electronics less sensitive to Single Events Burnout (SEB)
- Increase voltage of Power Trigger Unit (PTU)

- HV generator GTO consolidation (MKD and MKB)
- MKD GTO electronics less sensitive to Single Events Burnout (SEB)
- Increase voltage of Power Trigger Unit (PTU)
- Shielding of cable ducts to diminish radiations mainly due to TCDQ scattering).

- HV generator GTO consolidation (MKD and MKB)
- MKD GTO electronics less sensitive to Single Events Burnout (SEB)
- Increase voltage of Power Trigger Unit (PTU)
- Shielding of cable ducts to diminish radiations mainly due to TCDQ scattering).
- Improve power distribution architecture

- HV generator GTO consolidation (MKD and MKB)
- MKD GTO electronics less sensitive to Single Events Burnout (SEB)
- Increase voltage of Power Trigger Unit (PTU)
- Shielding of cable ducts to diminish radiations mainly due to TCDQ scattering).
- Improve power distribution architecture
- Upgraded Trigger Synchronization Unit (full redundancy and internal surveillance)

- HV generator GTO consolidation (MKD and MKB)
- MKD GTO electronics less sensitive to Single Events Burnout (SEB)
- Increase voltage of Power Trigger Unit (PTU)
- Shielding of cable ducts to diminish radiations mainly due to TCDQ scattering).
- Improve power distribution architecture
- Upgraded Trigger Synchronization Unit (full redundancy and internal surveillance)
- Direct connection between LBDS retriggering system and the BIS.

- HV generator GTO consolidation (MKD and MKB)
- MKD GTO electronics less sensitive to Single Events Burnout (SEB)
- Increase voltage of Power Trigger Unit (PTU)
- Shielding of cable ducts to diminish radiations mainly due to TCDQ scattering).
- Improve power distribution architecture
- Upgraded Trigger Synchronization Unit (full redundancy and internal surveillance)
- Direct connection between LBDS retriggering system and the BIS.
- Add 2 MKBVs per beam → more dilution on TDE.

- HV generator GTO consolidation (MKD and MKB)
- MKD GTO electronics less sensitive to Single Events Burnout (SEB)
- Increase voltage of Power Trigger Unit (PTU)
- Shielding of cable ducts to diminish radiations mainly due to TCDQ scattering).
- Improve power distribution architecture
- Upgraded Trigger Synchronization Unit (full redundancy and internal surveillance)
- Direct connection between LBDS retriggering system and the BIS.
- Add 2 MKBVs per beam \rightarrow more dilution on TDE.
- SW upgrade (FESA3 migration and for operation at 6.5 TeV)

MKD Reliability Runs

Vital tests!

- Slow control test of correct voltage readings inside generator and correct control functions
- HV test :
 - Dynamic measurements of internal current transformer signals waveforms (at 450 GeV, 1 TeV, 2 Tev, 5 TeV)
 - Static Sparking test: DC test at 7.1 TeV (48h) with recording of sparking activity of GTO seen by retrigger pick-up
 - Ramp test during 5 days: 400 GeV (10 min) -> ramp to 7.1 TeV (10 min) -> plateau 7.1 TeV (90 min) and pulse at the end -> rump down to 400 GeV (10 min) s

MKD Non-Conformities

ım 1	Beam 2			
Erratic Type 2	Erratic Type 1	Erratic Type 2		
	Gen D – 25x	Gen G – 1x		
	Gen B – 3x (6 GTO broken)	Gen N – 1x		
(/Gen/24h	Gen J – 3x (2 GTO broken)	Gen A – 1x		
	Gen N – 2x	$\frac{1}{2}$		
	Gen A – 3x	4 sparks/Gen/24n		
	Erratic Type 1 Erratic Type 2 Erratic Type 2 Erratic Type 1 Normal event	(MKD J) without beam (5/2/2015) (MKD A) without beam (18/1/2015) (MKD C) with beam (4/6/2015)		
	Am 1 Erratic Type 2 k/Gen/24h	Erratic Type 2 Erratic Type 2 Erratic Type 1 Gen D – 25x Gen B – 3x (6 GTO broken) Gen J – 3x (2 GTO broken) Gen N – 2x Gen A – 3x		

MKD Non-Conformities

- Generally, the generators that undergo erratic triggering presented higher sparking activity
- Found correlation between dust presence/quantity inside generators and sparking activity
- Dust penetrates into generator via perforated side panels (for PTU cooling) and when deposited in "sensitive area" contributes to sparking.

MKD Non-Conformities

- Generally, the generators that undergo erratic triggering presented higher sparking activity
- Found correlation between dust presence/quantity inside generators and sparking activity
- Dust penetrates into generator via perforated side panels (for PTU cooling) and when deposited in "sensitive area" contributes to sparking.

Mitigation measurements:

- Endoscopic inspection and cleaning of dust inside generators (repeated during YETS and EYETS)
- Exchanged perforated with non-perforated panels (on going activity)
- Several modifications will be put in place to allow operation at 7 TeV (during LS2)
 26/01/16
 LHC Performance Workshop - Chamonix 2016

■ 4 TeV ■ 5 TeV ■ 7 TeV ■ 3.5 TeV ■ 6.5TeV

Estimated async. beam dumps @ 6.5 TeV: 3 per beam per year

Only one async. dump with beam on 4th June 2015:

- No beam seeing the MKD rising edge.
- MKD switch changed, total intervention time with tests:17 h

One MKD generator exchanged at the end of TS1 (broken current pickup) in the shadow of a cryogenics problem.

Estimates for false dumps (internal triggers): 8 (±2) per year → 24 false dumps foreseen for 3 years of LHC operation (2010-2013). Observed 29 false dumps (continuous improvement over the years)

Estimates for false dumps (internal triggers): 8 (±2) per year → 24 false dumps foreseen for 3 years of LHC operation (2010-2013). Observed 29 false dumps (continuous improvement over the years)

		< 1h	1-4	4-8	8-12	> 12
ncy	1/week					
anb	1/month	VAC TDE				
Fre	1/year	Sx BET	Failu	re	5x MKB – 1x MKD –	Self Trigger
	< 1/year	AnyBus Er	ror		1x MK	D - Failure 🔴

Downtime [h]

Green: mitigated/not expected to re-appear Red: not yet mitigated/no need for mitigation Violet: partially mitigated

• All faults correctly diagnosed (XPOC, IPOC, BETS) and understood. Plans to improve IPOC triggering to capture MKB erratics (LS2).

R2E

	6.5 TeV	7 TeV	7 TeV (without LS1 modifications)
	2.7 kV/GTO (MKD) 2.5 kV/GTO (MKBH)	2.9 kV/GT 2.7 kV/GT	ГО (MKD); ГО (MKBH)
ABB SEBc-s [cm ²] (MKD GTO)	2e-10	8e-9	8e-9
Dynex SEBc-s [cm ²] (MKB GTO)	3e-8	1e-7	1e-7 (5e-7 if used in MKD =2.9kV/GTO)
IXGN100N170 SEBc-s [cm ²] (IGBT)	5e-9	5e-9	1e-7 IXDN75N120
HEH fluence estimation [HEH.cm- ² .y]	5e4	5e4	4e5
		Failure probability	
MKD (GTO) [y ⁻¹]	6e-3	0.2	61 (60 due to Dynex GTO)
MKD (IGBT) [y ⁻¹]	9e-2	9e-2	15
MKBH (GTO) [y ⁻¹]	0.12	0.4	3.2
MKB (IGBT) [y ⁻¹]	3e-2	3e-2	5
Total AD (MKD GTO + IGBT) [y ⁻¹]	0.1	0.3	76
Total SD (MKB GTO + IGBT) [y ⁻¹]	0.15	0.43	8.2

()

R2E

	6.5 TeV	7 TeV	7 TeV (without LS1 modifications)
	2.7 kV/GTO (MKD) 2.5 kV/GTO (MKBH)	2.9 kV/GT 2.7 kV/GT	О (MKD); О (MKBH)
ABB SEBc-s [cm ²] (MKD GTO)	2e-10	8e-9	8e-9
Dynex SEBc-s [cm ²] (MKB GTO)	3e-8	1e-7	1e-7 (5e-7 if used in MKD =2.9kV/GTO)
IXGN100N170 SEBc-s [cm ²] (IGBT)	5e-9	5e-9	1e-7 IXDN75N120
HEH fluence estimation [HEH.cm- ² .y]	5e4	5e4	4e5
		Failure probability	
MKD (GTO) [y ⁻¹]	6e-3	0.2	61 (60 due to Dynex GTO)
MKD (IGBT) [y ⁻¹]	9e-2	9e-2	15
МКВН (GTO) [y ⁻¹] Тагее	et 0.2 v ⁻¹	0.4	3.2
MKB (IGBT) [y ⁻¹]	JC-2	3e-2	5
Total AD (MKD GTO + IGBT) [y ⁻¹]	0.1	0.3	76
Total SD (MKB GTO + IGBT) [y ⁻¹]	0.15	0.43	8.2

R2E

	6.5 TeV	7 TeV	7 TeV (without LS1 modifications)				
	2.7 kV/GTO (MKD) 2.5 kV/GTO (MKBH)	2.9 kV/GT 2.7 kV/GT	ГО (MKD); ГО (MKBH)				
ABB SEBc-s [cm ²] (MKD GTO)	2e-10	8e-9	8e-9				
Dynex SEBc-s [cm ²] (MKB GTO)	3e-8	1e-7	1e-7 (5e-7 if used in MKD =2.9kV/GTO)				
IXGN100N170 SEBc-s [cm ²] (IGBT)	5e-9	5e-9	1e-7 IXDN75N120				
HEH fluence estimation [HEH.cm- ² .y]	5e4	5e4	4e5				
		Failure probability					
MKD (GTO) [y ⁻¹]	6e-3	0.2	61				
MKD (IGBT) [y ⁻¹]	No SEB evNo main lir	 No SEB event in 2015 No main limitations to go to 7 TeV (after 					
МКВН (GTO) [y ⁻¹]	completing shielding installation)						
MKB (IGBT) [y ⁻¹]	More sensitive	More sensitive RAD monitors installed in the					
Total AD (MKD GTO + IGBT) [y ⁻¹]	area for a l	Detter estimate of F	IEH → possible				
Total SD (MKB GTO + IGBT) [y ⁻¹]			0.6				

TCDQ

Hardware

- TCDQ length increased by 50% (added a third tank).
- The graphite absorbers were replaced by: A sandwich of graphite and Carbon Fiber reinforced Carbon (CFC)

TCDQ

Hardware

- TCDQ length increased by 50% (added a third tank).
- The graphite absorbers were replaced by: A sandwich of graphite and Carbon Fiber reinforced Carbon (CFC)

Controls:

- Deployment of the two functions into two separated PLCs:
 - Motor Drive and Control (MDC)
 - Position Readout and Survey (PRS)
 - TCDQ position in BETS

No beam dump induced by TCDQ, no mechanical problems Two Controls faults (load settings) solved by rebooting the FEC. (2011:10 dumps due to TCDQ!)

	Run 2	Run 3	HL-LHC	Comments
MKI	OK	OK	Ceramic chamber treatment to reduce SEY (LS2). New capacitively coupled end design, of beam screen, to further reduce flashovers (LS2).Coating of vacuum tank to increase emissivity (LS2). New ferrite with higher Curie T (LS3).	
MSI	ОК	ОК	ОК	
TDI	ОК	New HW (LS2)	ОК	
TCLIA	ОК	ОК	ОК	Allow more gap when at parking to increase Alice crossing angel (HW modifications or moving → IP)
TCLIB	ОК	ОК	ОК	
TCDD	ОК	ОК	OK*	*Additional mask at D1
TCDI	OK*	New HW (LS2) 2.1 m long jaws in stead of 1.2 m	ОК	*< 144 BCMS bunches before LS2 (transmission problems)

	Run 2 Nom.		Run 3 Nom.	HL-LHC	Comments
MKI	ОК		ОК	Ceramic chamber treatment to reduce SEY (LS2). New capacitively coupled end design, of beam screen, to further reduce flashovers (LS2).Coating of vacuum tank to increase emissivity (LS2). New ferrite with higher Curie T (LS3).	
MSI	ОК				
TDI	ОК	Ne		Tentative	e design of new TDIS
TCLIA	ОК			3 modules	(1.5m active length)
TCLIB	ОК		- Aller		
TCDD	ОК		Picture courte:	sv of L. Gentini	
TCDI	OK*	N€ 2.1 in s			

	Run 2	Run 3	HL-LHC	Comments
MKI	OK	OK	Ceramic chamber treatment to reduce SEY (LS2). New capacitively coupled end design, of beam screen, to further reduce flashovers (LS2).Coating of vacuum tank to increase emissivity (LS2). New ferrite with higher Curie T (LS3).	
MSI	ОК	ОК	ОК	
TDI	ОК	New HW (LS2)	ОК	
TCLIA	ОК	ОК	ОК	Allow more gap when at parking to increase Alice crossing angel (HW modifications or moving → IP)
TCLIB	ОК	ОК	ОК	
TCDD	ОК	ОК	OK*	*Additional mask at D1
TCDI	OK*	New HW (LS2) 2.1 m long jaws in stead of 1.2 m	ОК	*< 144 BCMS bunches before LS2 (transmission problems)

 Cr_2O_3

	Run 2 Nom.	Run 3 Nom.	HL-LH	IC		
МКІ	ОК	ОК	Ceramic chamber trea SEY (LS2). New capaci end design, of beam s reduce flashovers (LS2	atment to reduce tively coupled screen, to further 2).Coating of	S. C. S.	
		Courtesy: H. Da	V Pre-LS1	Post-LS1	HL-LHC,	HL-LHC,
MKI Ma	gnet	,	(W/m)	(W/m)	50ns (W/m)	25ns (W/m)
MKI11-T	13-MC03	(24 screen conds.)	34	52	240	191
MKI12-T	12-MC01	(24 screen conds.)	20	34	151	124
MKI08-T	11-MC09	(24 screen conds.)	26	43	192	157
MKI07-T	08-MC08	(24 screen conds.)	27	45	199	163
MKI06-T(07-HC12	(24 screen conds.)	22	37	168	137
MKI10-T)6-HC13	(24 screen conds.)	25	43	184	149
MKI2A p	re-LS1: 15	5 screen conds.	68 ^a	117	538	432
MKI8D pi	re-LS1: 15	5 (twisted) screen con	nds. 161 ^b	N/A	N/A	N/A

^a: Did not limit LHC operation: maximum measured temperature 53°C.

^b: Occasionally necessary to wait for yoke to cool-down (yoke close to Curie temperature), maximum measured temperature 63°C

	Run 2	Run 3	HL-LHC	Comments
MKI	OK	OK	Ceramic chamber treatment to reduce SEY (LS2). New capacitively coupled end design, of beam screen, to further reduce flashovers (LS2).Coating of vacuum tank to increase emissivity (LS2). New ferrite with higher Curie T (LS3).	
MSI	ОК	ОК	ОК	
TDI	ОК	New HW (LS2)	ОК	
TCLIA	ОК	ОК	ОК	Allow more gap when at parking to increase Alice crossing angel (HW modifications or moving → IP)
TCLIB	ОК	ОК	ОК	
TCDD	ОК	ОК	OK*	*Additional mask at D1
TCDI	OK*	New HW (LS2) 2.1 m long jaws in stead of 1.2 m	ОК	*< 144 BCMS bunches before LS2 (transmission problems)

LBDS: Run3 → HL-LHC

	Run 2 Nom.	Run 3 Nom.	HL-LHC	Comments
МКВ	ОК	MKBH switch modifications (LS2)	ОК	Not possible to go to 7 TeV without switch modification
MKD	ОК	Switch modifications (LS2)	ОК	Not possible to go to 7 TeV without switch modification
TCDQ	ОК	ОК	Ongoing studies, to define optics constraints and if any HW issues also with BCMS beams (June '16)	If need to close TCDQ during squeeze → Integration of β* interlock in BETS (New system, no money and manpower allocated)
TCSP	ОК	ОК	Ongoing studies, to define optics constraints and if any HW issues also with BCMS beams (June '16)	
TCDS	ОК	ОК	Ongoing studies, to define optics constraints and if any HW issues also with BCMS beams (need for 1 additional module?) (June '16)	
TDE	OK*	ОК	Ongoing studies, to define optics constraints and if any HW issues also with BCMS beams (June '16)	* HW interlock on pressure asap! Impact on window, TDE block evaluated. One option could be add dilution (more MKBs)

LBDS: Run3 → HL-LHC

	Run 2 Nom.	Run 3 Nom.	HL-LHC	Comments
МКВ	ОК	MKBH switch modifications (LS2)	ОК	Not possible to go to 7 TeV without switch modification
MKD	ОК	Switch modifications (LS2)	ОК	Not possible to go to 7 TeV without switch modification
Make t (reduct and air	the insta e both n r ionizati	Illation less critica nax electrical field on by 50%)	I pi ti M	
TCSP	ОК	ОК	Ongoi consti also w	
TCDS	ОК	ОК	Ongoi consti also w additi	
TDE	OK*	ОК	Ongoi consti also w	p!
26/01/16		LHC P	erformance Workshop - Chamonix 2016	28

LBDS: Run3 → HL-LHC

	Run 2 Nom.	Run 3 Nom.	HL-LHC	Comments
МКВ	ОК	MKBH switch modifications (LS2)	ОК	Not possible to go to 7 TeV without switch modification
MKD	ОК	Switch modifications (LS2)	ОК	Not possible to go to 7 TeV without switch modification
TCDQ	ОК	ОК	Ongoing studies, to define optics constraints and if any HW issues also with BCMS beams (June '16)	If need to close TCDQ during squeeze → Integration of β* interlock in BETS (New system, no money and manpower allocated)
TCSP	ОК	ОК	Ongoing studies, to define optics constraints and if any HW issues also with BCMS beams (June '16)	
TCDS	ОК	ОК	Ongoing studies, to define optics constraints and if any HW issues also with BCMS beams (need for 1 additional module?) (June '16)	
TDE	OK*	ОК	Ongoing studies, to define optics constraints and if any HW issues also with BCMS beams (June '16)	* HW interlock on pressure asap! Impact on window, TDE block evaluated. One option could be add dilution (more MKBs)

Conclusions

- The most critical failure scenarios for LHC machine protection concern the injection and dump systems → need high reliability and safety → possible impact on machine availability → find optimum trade off
- Several activities were carried out during LS1 to improve reliability, safety and availability of LHC injection and dump systems
- Machine checkout and reliability run are vital for injection and LBDS (find nonconformities and unexpected faults in time to react) → enough time need to be allocated.
- 2015 run proved that some goals were reached (MKI HV performance, heating and UFO rate, TCDQ, etc.) but non conformities were also observed (TDI, MKD switches etc.)
- Further upgrades were/are being put in place for the rest of Run2.
- Studies are ongoing for the final designs for Run3 → HL-LHC and in general operation at 7 TeV and higher intensity.

References

MKI:

https://indico.cern.ch/event/287487/contribution/0/attachments/534936/737578/Barnes_LBO C_21Jan2014.pdf

TDI:<u>http://indico.cern.ch/event/434129/session/4/contribution/18/attachments/1193321/17568</u> 66/2015_12_16_eviantdi.pdf

LBDS

https://indico.cern.ch/event/310353/session/4/contribution/17/attachments/593654/817077/L BDS.pdf

Ihc-mpwg.web.cern.ch/lhc-mpwg/MPP-Meetings/No98-31-10-2014/MPP_31.10.2014_-LBDS.pptx

https://indico.cern.ch/event/405842/contribution/3/attachments/1135740/1625081/MKD_4Au gust.pdf

TDE N2 Leak

- TDE normally runs at 1.2 bar Nitrogen overpressure
- Nitrogen leak on TDE B2. Fixed by tightening the flange after some days
- Manometer on the bottle was found closed, causing initial pressure drop
- The only 'interlock' is presently in the XPOC
- The only gauge is far away from the dump block, on a long line. Gives the correct pressure in stable conditions...
- To consider
 - Separate TDE N2 overpressure more clearly from other signals in XPOC
 - Install a second, hardware interlock on the TDE pressure
 - Consider a second pressure gauge on the TDE for complementary information (LS2)

26/01/16