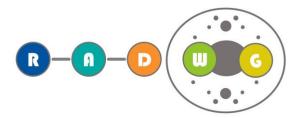
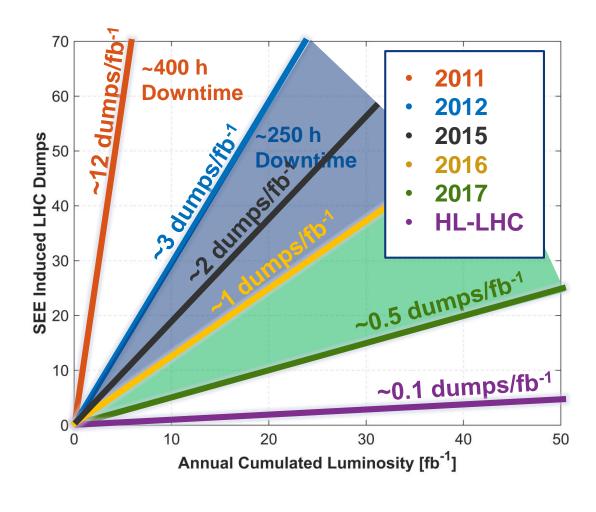
Radiation to electronics – R2E


Salvatore Danzeca (EN/STI) on behalf of the R2E Project and RADWG

Many thanks to everybody but especially M. Brugger, S.Gilardoni, A.Masi



Overview

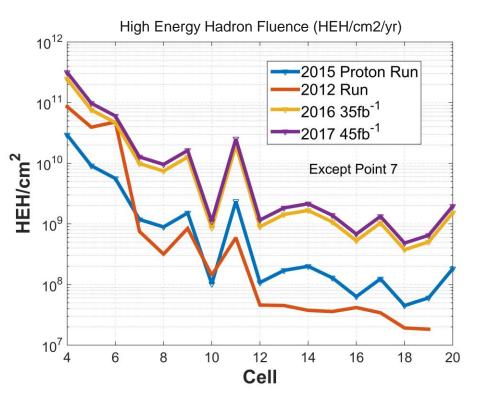
- Summary of the 2015 run
 - 2015 radiation levels and failures in the LHC
 - Forecast for the future
 - TID issue with examples from 2015
- How to reach the nominal performances
 - Failures tracking and Radiation monitoring
 - Needs of tolerant hardware for LS2 and beyond
 - Radiation Hardness Assurance RHA
 - How to approach the RHA: Guidelines Proposal

R2E and the Mitigation Strategy from 2011

Several shielding campaigns prior 2011 + Relocations 'on the fly' + Equipment Upgrades

2011/12 xMasBreak 'Early' Relocation + Additional Shielding + Equipment Upgrades

LS1 (2013/2014) Final relocation and shielding


LS1-LS2 (2015-2018) Tunnel equipment and power converters

LS3-HL-LHC Tunnel Equipment (Injectors + LHC) + RRs

Radiation Levels – Tunnel Areas

- Failure rates are proportional to the radiation levels
- Tunnel areas several equipment installed: QPS, EPC, Cryo

- Analysis based on the RadMon measurements up to end November
- 2012 vs 2015 highlights the predicted impact of the 25ns operation
- 2015 HEH fluence higher than 2012 in cells >8 due to the higher beam-gas interaction
- 2015 low luminosity impacts the cell <8 with less fluence
- expected radiation level for 2016 and 2017 are ~8x and ~10x higher than the 2015 (scaling with the integrated luminosity)

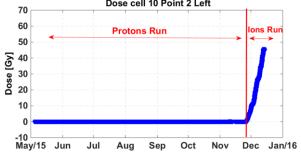
Failures Overview

Equipment	Dumps 2012	Dumps 2015 (After TS2)		Dumps 2016 35fb-1		Dumps 2017 45fb-1
QPS	32	2+1*	QPS strateg	^y 0-5		0-5
Power Converter	15	5+2*		~25	EPC strategy	0-10
Сгуо	4	0	\longrightarrow	0		0
EN/EL	1	0	\rightarrow	0		0
Vacuum	4	0	\rightarrow	0		0
Collimation	1	0	\longrightarrow	0		0
RF	1	4**	\rightarrow	?		?
Others (hidden)	-	_		0-10		0-10
Total	3 /fb ⁻¹	~3.4 /fb ^{-1**} 2.3 /fb ⁻¹		~1-1.5 /fb ⁻¹		~0.5 /fb ⁻¹
EDC strategy: cos V Montohonnet talk						antah annat tall.

* Confirmed after Evian ** To be confirmed

EPC strategy: see V. Montabonnet talk QPS strategy: see R. Denz talk

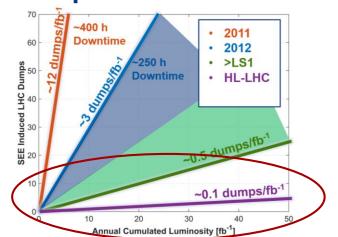
- 2015-2016 going in the right directions approaching ~1 dump/fb⁻¹
- 2016 run will highlight if the RF failures are due to the radiation
- 2016 other new failures can appear due to increase of the radiation levels


The long term total ionizing dose TID problem

LHC Era	Machine Energy	Integrated Luminosity	Radiation Dose in Arc	Radiation Dose in DS	
	[GeV]	[fb-1]	[Gy/year]	[Gy/year]	
Run 1	3.5/4.0	~30	<<1	~10	
Run 2	6.5/7.0	~100	~1	~20	
Run 3	7	~300	~2-4	~40	
HL-LHC	7	~3000	~4-8	~80-160	

from R2E Availability workshop 2014

We should not forget the ions runs

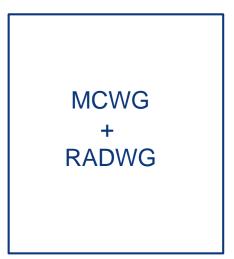

- Due to the Bound-Free Pair Production (BFPP), even for short runs, radiation levels can be up to 50 times those of a proton run (Very localized)
- The solution before the HL is rotate/substitute the equipment where the level are too high (DS)



How to maintain and further improve the R2E failure rate?

- Recipe:
 - 1. Radiation Monitoring
 - 2. Equipment inventory

- 3. Follow the new developments to be installed in radiation areas by means of dedicated guidelines
- Request a strong collaboration between the equipment groups and the Radiation Working group (RADWG) and the Monitoring and Calculation Working group (MCWG)



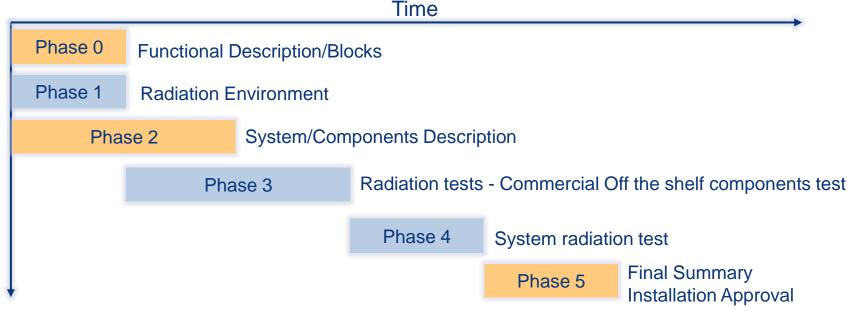
Radiation Monitoring and Equipment inventory

- 1. Equipment inventory
 - Know what there is in the tunnel and in the critical areas
 - Track the failures due to the radiation in the LHC and in the injector (collaboration with the AWG for the use of the AFT tool)
 - Suggest and foresee mitigation actions
 - Radiation testing coordination and supervision
- 2. Radiation Monitoring
 - Radiation levels in the entire accelerator (LHC and Injector) using RadMon, BLMs and passive dosimeters
 - The radiation levels at the point of failures
 - Radiation levels in the DS and in ARC in order to foresee an equipment rotation

RADWG + Equipment group

New initiatives and developments

- RADWG is the interface with all the ATS equipment groups
 - BE-CO in view of the CO3 initiative for the new CERN fieldbus foreseen for the LS3
 - BE-BI in view of the upgrade of the BPM frontend
 - TE-MPE splice protection system for HL and consolidation of existing hardware
 - TE-VSC in view of the new readout of the pressure sensors
 - BE-RF for the pickup amplifier for the transverse feedback in the PSB



Radiation Hardness Assurance (RHA) guidelines

- 3. Follow the new developments to be installed in radiation areas by means of a dedicated guideline
- RHA consists of all activities undertaken to ensure that the electronics systems of the accelerator perform to their design specifications after exposure to the radiation environment.
- The RHA should be a part of the quality assurance of the hardware
- The RHA guidelines have to define the
 - PROCESSES
 - ACTORS / RESPONSIBLE

RHA guidelines for new developments

- A document has to keep track of all the phases and the results
- Proposal: A part in the ECR should be added to keep into account the RHA approval
- Follow-up action of the 227th LMC Meeting held on 22nd July 2015
- The R2E radiation test service has acquired a huge know-how on radiation testing and radiation effects which should be strengthened

Phases

Radiation tests – CHARM

Phase 3

Radiation tests

Phase 4 System radiation test

- CHARM is a mixed field radiation facility completely targeted at radiation tests on electronics system and components located at CERN in the East Area
 - Electronics components
 - New developed systems
 - Evaluate the susceptibility of an existing system installed in critical areas.

Emulate the same radiation environment of the Tunnel areas and shielded areas

- 2015: 25 users in total from TE, EN and PH
- 2016: 10 users already scheduled
- RADWG gives the availability to test in several facility at CERN and outside CERN

Conclusions

- R2E made a very good work to reduce the number of failures
 - We will see failures in the coming years (around 1-2 dumps/fb⁻¹) The latest EPC upgrade will pave the way for 0.5 dumps/fb⁻¹ in 2017
 - Long term TID will become an issue for the equipment in the tunnel. The solution is to rotate/substitute the equipment with the help of monitoring and a correct development/qualification process
- Looking at LS3 and HL
 - RADWG and MCWG keep tracking the failures and the radiation levels
 - We proposed a Radiation Hardness Assurance (RHA) guidelines which should be integrated within the ECR to verify that the guidelines have been followed
 - The know-how on radiation testing and radiation effect should be strengthened in the future

Thank you

BACKUP Slides

QPS and EPC a closer look

QPS - Actions Mitigations during LS1:	QPS	Dumps	
 Firmware upgrades Upgraded dataction evictoms type 	2012	32	
 Upgraded detection systems type nDQQDI 	2015 after TS2	2+1	
 Relocation Mitigation during the YETS 2015 	2016	0-5	
 Deployment of the new 600A design 	2017	0-5	

EPC – Actions EPC Control **Power part** Mitigation during the YETS 2015 WATCHDOG fault corrected • Dumps Dumps FGC2 ~ok 2012 15 10 FGC2 ~ok **2015** after TS2 2+1 3+1 FGC2 ? 2016 0-5 ~24 0-5 2017 0-5 **FGClite** OK!

Radiation Levels – Critical Areas

Critical Areas	2012 HEH	2015 HEH		2015 Measurements		2016 Predictions	2017 Predictions
	Measurements	Predictions		(4fb-1)	_	35fb-1	45fb-1
UJ14/16	1.10E+08	5.04E+07		6.82E+07	→	5.7E+08	7.3E+08
RR13/17	1.80E+07	1.68E+07		1.44E+07	\rightarrow	1.2E+08	1.5E+08
UJ56	1.20E+08	4.24E+07	\rightarrow	9.77E+07	\rightarrow	8.1E+08	1.0E+09
RR53/57	1.80E+07	2.64E+07	\longrightarrow	9.17E+06	\rightarrow	7.6E+07	9.8E+07
UJ76	5.50E+07	6.48E+06	\longrightarrow	9.75E+06	\rightarrow	8.1E+07	1.0E+08
RR73/77	3.00E+07	1.92E+07	\rightarrow	1.57E+07	\rightarrow	1.3E+08	1.6E+08

- UJ14/16 shielded 2011/2012
- Sensitive equipment relocated from the UJs during the LS1
- RR13/17/53/56 shielded improvement during the LS1
- HEH fluence in the critical areas scale with the expected luminosity (apart from the UJ76 and RR73/77)
- Operational parameters can have important impact (see UJ76)
- Some failures can appear in the RR during the next years

