

LHC machine configuration in the 2016 proton run

R. Bruce, G. Arduini, B. Goddard, G. Iadarola, S. Redaelli

With essential input from:

F. Antoniou, H. Bartosik, P. Baudrenghien, A. Bertarelli, N. Biancacci, J. Boyd, C. Bracco, F. Carra, L. Carver, P. Collier, R. De Maria, S. Fartoukh, M. Fraser, M. Giovannozzi, P. Gradassi, P. Hermes, D. Jaquet, M. Lamont, K. Lee, A. Mereghetti, E. Metral, D. Mirarchi, Y. Papaphilippou, T. Pieloni, E. Quaranta, G. Rumolo, B. Salvachua, B. Salvant, R. Schmidt, J. Uythoven, G. Valentino, J. Wenninger, D. Wollmann, M. Zerlauth

Outline

- General strategy for 2016
- Parameters for pushed performance (luminosity) in 2016
- Ways to push β^* in 2016
 - Focus on collimation hierarchy
- Proposed configurations in 2016
- Conclusions

SPOILER ALERT!

Some similarities to Evian talk

Strategy in 2015 vs 2016

2015

- Commissioning year, coming out of LS1.
- New parameters: Increased energy to 6.5 TeV, 25 ns bunch spacing
- Put focus on feasibility, stability and ease of commissioning.
- Main priority: Get LHC running at 25 ns and 6.5 TeV
- Performance should not be main focus, but we should also not be overly pessimistic
- Started relaxed: $β^*=80$ cm, 2012 collimator settings in mm, 11 σ beambeam separation, standard 25 ns filling scheme

Strategy in 2015 vs 2016

2016

- Production year
- With 2015 OP experience and MDs: can push performance
- Performance = *integrated luminosity*
 - Depends both on peak performance, availability, turnaround, parameter evolution in stable beams... (see other talks)
 - This talk: LHC parameters for increased peak performance, keeping in mind that we should not jeopardize availability

Pushing luminosity

R. Bruce, 2016.01.27

Number of bunches

- Through scrubbing, good hope to finalize intensity rampup to 2748 bunches (see talk G. Iadarola)
- Important for luminosity production

Bunch population and emittance

- Given by parameters at injection from SPS (see talk R. Steerenberg)
- Main schemes: standard 25 ns (used in 2015) and BCMS
 - In 2015: achieved at injection \sim 2.6 µm emittance and \sim 1.2e11 p/bunch.
 - BCMS gives higher brightness (smaller emittance and same bunch intensity), but also fewer bunches. Limited to 144 bunches/injection in Run 2
- Proposed as baseline to finish intensity rampup with standard 25 ns
 - could then decide whether to move to BCMS with blown-up emittances and decrease emittance gradually until we see limitations
 - BCMS interesting option, but could cause stability issues (see talk K. Li).
 - BCMS interesting if we are limited in number of bunches

Beam parameters

	Standard 25 ns		BCMS	
	injection	collision	injection	collision
Bunch population	~1.3e11	~1.3e11	~1.3e11	~1.3e11
Transv. emittance	2.7 µm	3.4 µm	1.9 µm	>2.4 µm
N.o. bunches	2748	2748	2268*	2268
Collisions IR1/5		2736		2256

H. Bartosik, G. ladarola, D. Jaquet, G. Rumolo

*Could be increased to 2412 if the abort gap keeper is modified for 144b injections

- Transmission through LHC cycle: assuming 25% emittance blowup (standard beam, talk M. Kuhn, Evian15) and 98% intensity transmission (see talk G. Papotti)
- Note: BCMS emittances can be improved, but work required. Need to know this early

Increasing geometric factor

• Fewer collisions when bunches are not fully overlapping

- Decrease bunch length and crossing angle to minimize effect
- Crossing angle limited by beam-beam separation and aperture

R. Bruce, 2016.01.27

Increasing geometric factor

- Decreasing bunch length:
 - Limited by electron cloud effects (talk G. Iadarola) and longitudinal instabilities (talk P. Baudrenghien, H. Timko)
 - At least for the start, keep ~1.3 ns (10 cm) bunch length. Once intensity rampup is finished, consider gradual decrease towards ~1 ns (7.5 cm).
 - bunch shrinking during fills: probably require longitudinal blowup to to stay above instability threshold (talk P. Baudrenghien)
- Crossing angle:
 - MDs have demonstrated possibility to reduce IR1/5 beam-beam separation from 11 σ to 10 σ for 3.75 μ m emittance (see talk K. Li Chamonix, T. Pieloni Evian)
 - New IR2 crossing scheme, similar to IR8: no switching of external crossing is needed at polarity change

Reducing β*

• β^* in LHC so far limited mainly by aperture considerations

R. Bruce, 2016.01.27

Ways of reducing β*

- β^* : several ways to reduce.
 - Profit of better than expected aperture (done in run 1, but now "aperture gold mine" is probably depleted)
 - Reduce beam-beam separation
 (gains aperture talks T. Pieloni and K. Li)
 - Reduction to 10 $\sigma\,$ for 3.75 μm emittance possible
 - Optimize collimation hierarchy to protect smaller aperture

Collimation hierarchy and aperture

Measured loss map at β*=40 cm

• Cleaning even better (factor \sim 2) with tighter hierarchy.

Reducing collimation margins

- Could remove 2σ added when stepping back to 80 cm
- Reduce cleaning margins
 - MDs: OK for impedance to reduce to 2 sig retraction between TCP and TCS
 - MDs: 2012 margins in σ OK for long term cleaning stability (Talk B. Salvachua)
- Reduce machine protection margins
 - Margins to protect TCTs and triplets against asynchronous beam dumps
 - Profit of slightly better orbit stability
 - New method: use phase advance from dump kicker

Asynchronous beam dump

• Standard dump: extraction kickers fire when no beam passes

Asynchronous beam dump

• Standard dump: extraction kickers fire when no beam passes

• Asynchronous dump: kicker(s) fire when beam passes – kicked beam damage could TCTs/triplets. TCDQ should protect

Asynchronous beam dump

• Standard dump: extraction kickers fire when no beam passes

• Asynchronous dump: kicker(s) fire when beam passes – kicked beam damage could TCTs/triplets, if at "bad" phase

Gain in margin from phase advance

• TCTs at "good" phase advance can go much closer to the beam

What can happen if a TCT is hit?

- Impacts studied in HiRadMat
- Significant damage observed

Other limitations for moving in TCTs

- At phase advance close to zero, no primary losses from asynch dump expected on TCTs / triplets
- Other constraints limit the innermost TCT setting
 - Cleaning hierarchy: we don't want secondary halo on TCTs
 - Experimental background: leakage of showers from TCTs to the experiments
 - MD studies carried out to verify our proposed settings
- With collimator settings fixed, can calculate reach in β*

R. Bruce, 2016.01.27

• With tighter hierarhcy in IR7/6, 10σ BB separation, optics with re-matched phase, and assuming aperture does not deteriorate => β^* =40 cm possible

Scenarios for 2016 from Evian

A: $\beta^*=65$ cm

- 160 μ rad half Xing (11 σ BB)
- Remove 2 σ additional margin from 80cm

B: β=50 cm*

Use tighter IR7/6 hierarchy, 10 σ BB (165 μrad), better orbit in 2015

C: $\beta^* = 40 \, cm$

- In addition to 50 cm rely on phase
- 185 µrad half Xing (10 σ BB)

Collimator	Setting	
TCP IR7	5.5	
TCSG IR7	7.5	
TCSG IR6	8.3	
TCDQ IR6	8.3	
TCT IR1/5	9.0	
P. Aperture	9.9	
C. Aperture	10.2	
	23	

Collimator	Setting
TCP IR7	5.5
TCSG IR7	8.0
TCSG IR6	9.1
TCDQ IR6	9.6
TCT IR1/5	11.5
P. Aperture	13.4
C. Aperture	13.8

Collimator	Setting	
TCP IR7	5.5	
TCSG IR7	7.5	
TCSG IR6	8.3	
TCDQ IR6	8.3	
TCT IR1/5	10.0	
P. Aperture	11.5	
C. Aperture	11.9	

In case of worse aperture

- Calculating the aperture by scaling the *first* heavy-ion measurement, we lose 5-10 cm in β^*
 - Aperture loss explained largely by optics and orbit
 - Uncertainty: aperture not measured with both signs of crossing angle
 - If necessary, can add more granularity on β^* based on aperture measurement

Peak luminosity examples

Showing peak performance – difference in integrated performance is smaller, especially for very long fills

R. Bruce, 2016.01.27

25

Integrated luminosity examples

• Calculated time evolution from LHC luminosity model (F. Antoniou, Y. Papaphilippou)

Relative increase in integrated lumi

8h fill length

β^* $4\sigma_t$	1.3 ns	1.0 ns
50 cm	1	1.1
40 cm	1.08	1.19

20h fill length β^* $4\sigma_t$ 1.3 ns1.0 ns50 cm11.0440 cm1.071.12

• Caveat: bunch length contribution expected to decrease if longitudinal blowup is used during stable beams to avoid instability

R. Bruce, 2016.01.27

Considerations for 2016 scenario

- Should choose best performance without jeopardizing safety and availability
- Availability: are there reasons to believe that availability would be worse in the more pushed 40 cm scenario?
 - Main availability bottlenecks in 2015 independent on β^*
 - New orbit interlocks should set with so large margin that they never trigger.
 Need to assess controls availability
 - Smaller beam-beam separation and tighter collimators proposed for both 50 cm and 40 cm. Based on MD results should not cause problems.
 - Could envisage also 50 cm, relying on phase, keeping relaxed collimators and 11 σ beam-beam

Proposed actions to ensure safety

- Regardless of final choice of β^* , decision in optics team to have optics with improved phase advance
- 20 deg and TCTs at 9σ: about as much margin as in 2015 between TCT setting and damage level! At 0 deg, more margin
- At startup, qualify two TCT settings with asynch dump test with different loss in margin TCDQ-TCT. Losses should be similar at small phase
- Avoid off-energy phase beating: Present orbit interlock dumps at dp/p=2.5e-4 (would give ~5 deg of phase beating)
- Add in **XPOC** more detailed analysis of standard dumps?
- With these measures, should be at least as safe as in 2015
- Possible additional measures for increased safety
 - Use collimator BPM interlock to dump outside the qualified interval.
 - Interlock on phase (quadrupole currents) under study for any choice of β^* (M. Zerlauth, K. Fuchsberger et al.)

Decision flow on β^*

• Phase advance

- Agree on the approach of using the phase advance to squeeze the machine protection margins
- Measure aperture
 - Verify that we still get the predicted "good" aperture?
- Availability
 - Come to a conclusion on whether we think we won't introduce availability issues by going to 40 cm
- Decide β*
 - 40 cm if we have positive answers on the above points

Summary

- 2015 : commissioning year, 2016: production year
- 2016 goal: increase performance as much as possible within safe limits, without penalty on availability
- Proposed strategy
 - Fix crossing angle, $β^*$ early on takes time to recommission
 - Based on MDs and OP experience, presented viable scenarios for 65 cm, 50 cm and 40 cm and reduced 10 σ beam-beam separation
 - $\beta^*=40$ cm expected to be within reach, but final decision on β^* to be taken early in commissioning after aperture measurements
 - Finalize intensity rampup with 2015-like beam. Maximize n.o. bunches, gradually increase bunch intensity
 - Then, consider reducing bunch length and/or emittance (BCMS?)

2016 baseline parameters (startup)

Parameter	Value @ injection	Value @ collision
Energy [TeV]	0.45	6.5
β* (1/2/5/8) [m]	11 / 10 / 11 / 10	0.4-0.5 / 10 / 0.4-0.5 / 3
Half X-angle (1/2/5/8) [µrad]	-170 / 170 / 170 /170	-185* / 200 / 185* / -250
Tunes (H/V)	64.28 / 59.31	64.31 / 59.32
Separation (1/2/5/8) [mm]	-2 / 3.5 / 2 / -3.5	-0.55 / 1/ 0.55 / -1
Emittance (BCMS/standard) [µm]	1.9 / 2.7	2.4 / 3.4**
Bunch intensity [p]	≤ 1.3e11	≤ 1.3e11***
4 σ bunch length [ns]	1.2	1.25
Collimator settings	"nominal"	"2σ retraction"

* Corresponding to 10 σ beam-beam separation at 40 cm. At 50cm, it should be 165.

** Assuming 25% blowup (M. Kuhn, Evian15).

*** Assuming 98% transmission

R. Bruce, 2016.01.27