Plans for the Ion Run in 2016

Past Ion Runs at LHC

1000 ub-1 per experiment before LS2 PbPb

			Int lumi (ub-1)	Beta* (m)	Num. bunches	Ebea m (Z TeV)	Sqrt(s _nn) TeV
2010	PbPb	IP1/2/5	9.5	3	129	3.5	2.76
2011	PbPb	IP1/2/5	167.6/143/149.7	1	356	3.5	2.76
	pPb Feasibility Pilot		No collision*	11/10/11/1 0		3.5	
2012	pPb	IP1/2/5/8	1	11/10/11/1 0	12	4	5.02
2013	pPb	IP1/2/5/8/LHC f/TOTEM/ALFA	31940/31200/31690/ 2120	0.8/0.8/0.8/	296/288 /296/39	4	5.02
2015	PbPb	IP1/2/5/8	703.7/433/600/6.81	0.8/0.8/0.8/ 0.8/3	518	6.37	5.02

^{*} PS injection septum leak

2016 experiment's requests

	2016		2018		
Option		$\sqrt{s_{nn}}(TeV)$		$\sqrt{s_{nn}}(TeV)$	
Α	pPb	5.02	PbPb	5.02	ALICE, LHCb ATLAS,CMS
В	pPb	8.16	PbPb	5.02	ATLAS,CMS,LHCb,LHCf
С	PbPb	5.02	PbPb	5.02	ATLAS,CMS CALICE,LHCb

- ➤ ALICE → minimum bias 1e28 cm-2s-1 (and some time at 1e29 cm-2s-1)
- ➤ LHCb 10xmore lumi than before → 4-5 times more bunches

Particularities of pPb collisions @LHC

$$(B\rho)_p = (B\rho)_{Pb} = \frac{p_p}{e} = \frac{p_{Pb}}{Ze}$$

$$p_{Pb} = Zp_p$$

Equal beam rigidity fixes the momentum

Revolution period, T, i.e. time needed for a particle to make a turn of length C:

$$T = \frac{C}{v} \qquad m_{Pb}$$

$$T_p = \frac{C}{c} \sqrt{1 + \left(\frac{m_p c}{p_p}\right)^2} \qquad < T_{Pb} = \frac{C}{c} \sqrt{1 + \left(\frac{A m_p c}{Z p_p}\right)^2} \qquad p_{Pb}$$

$$f_{RF} = h f_{rev} = h \frac{1}{T}$$
T: revolution period C: accentic higher number

Particularities of pPb collisions

28.01.2016 R. Alemany

Chamonix 2016

Particularities of pPb collisions: operation

- > RF: unlocked frequencies during the ramp and cogging at flat top:
 - ✓ done already in 2013 routinely no issues expected there
 - ✓ if 6.5 TeV even better → reduced frequency difference between beams
- ➤ BPM operated at High sensitivity → orbit resolution is worst but still acceptable
 - ➤ Pb bunch intensity ~ 2.2e8 Pb82+ → ~1.8e10 p+ → pilot bunch
 - > p+ bunch intensity ~ Pb bunch intensity
- ➤ BPM interlocked: big percentage of the 2013 fills were dumped because the lead beam dies faster → bunch intensity goes below the threshold and dumps the beam. For high sensitivity the threshold is 2.5-3.5 e9 p+ → we have to cope with

Particularities of pPb collisions: operation

- ➤ SIS/BIC: new SIS/SPS BIC interlocks developed in 2013 → same interlocks now
- > SIS: new reference orbits needed for off-momentum operation
- ▶ BLM thresholds: needed to be increased in 2013 "learnt the hard way" after repetitive dumps during the ramp and squeeze → in 2013 the collimator settings were set for 0.6 m beta* (tight collimator settings) but we end up running at 0.8 m → if we optimise the settings for the selected optics we may not observe losses anymore
- ➤ Luminosity losses compared to PbPb in dispersion suppressors around experiments and in IR3 much reduced
- Bound-free pair production rate reduced to a few % of the PbPb rate

pPb injection patterns: achieved in 2013

X 12 PS to SPS = 24 bunches

24 bunches x 12 into LHC

 \rightarrow Kb (IP1,2,5,8) = 296/288/296/39

PS bunch compression SPS injection kickers

pPb injection patterns: potential for 2016

X 12 PS to SPS = 24 bunches

24 bunches x 12 into LHC

→ Kb ~ **400**

28.01.2016 R. Alemany Chamonix 2016 PS bunch compression SPS injection kickers

^{*} SPS ZS: electrostatic septa for beam extraction to north area

pPb injection patterns: potential for 2016

- Faster Pb & p+ filling
- > Less Pb bunch intensity; degrade less on the SPS flat bottom
- > 3 Pb bunches per SPS batch do not collide

N.B.: 100 ns bunch separation needs beam-beam parasitic encounters studies. No problems observed in 2015 (PbPb) but beam-beam effects could be stronger in pPb.

PS bunch compression SPS injection kickers

Optics in pPb: squeeze

- > As the heavy-ion run physics time is always very short, operations capitalise on the wellestablished machine settings of the preceding pp run to commission as quickly as possible
- PPb run, however, always requires the commissioning of a new optics:

pp (IP1,2,5,8)
$$\rightarrow \beta^*_{min}/10/\beta^*_{min}/3$$
 pPb, (IP1,2,5,8) $\rightarrow \beta^*_{min}/\beta$

which brings some extra difficulties as compared to pp:

→ CHROMATIC EFFECTS DUE TO OFF-MOMENTUM OPERATION

Due to the off-momentum orbits there is an intrinsic beta-beat which has to be calculated and superimposed to the usual beta-beat correction on-momentum

$$\frac{\Delta \beta}{\beta} = \frac{\beta_{off-p} - \beta_{on-p}}{\beta_{on-p}} = f(\beta^*) \Rightarrow 12\%$$

 $= \frac{\beta_{off-p} - \beta_{on-p}}{\beta_{on-p}} = f(\beta^*) \Rightarrow 12\%$ Beta-beat Modifies the focusing More aperture needed ...

2013 (@ 4Z TeV) → aperture issues downgraded IP2

 β^*_{min} from 0.6 m to 0.8 m

- \triangleright This limitation could be relax if $E_{beam} = 6.5 \text{ Z TeV}$
 - → less off-momentum orbit displacement

Optics in pPb: squeeze

- ➤ Thanks to this correction the beta-beating is kept under control, tune shift remains within tolerances and dispersion-beating is very small for all steps of the squeezing procedure
- > except for one case (experience in 2013): beam 1 and negative momentum offset > attributed to uncorrected coupling

CERN-ATS-Note-2012-102 PERF

17 December 2012 Reine.Versteegen@cern.ch

Chromatic effects and their correction in off-momentum operation of the LHC for p-Pb collisions

R. Versteegen CERN, CH-1211 Geneva 23

OPERATING THE LHC OFF-MOMENTUM FOR p-Pb COLLISIONS

R. Versteegen[#], R. Bruce, J. M. Jowett, M. J. McAteer*, E. H. McLean, A. S. Langner, Y. I. Levinsen, T. Persson, S. Redaelli, B. Salvachua, P. K. Skowronski, M. Solfaroli Camillocci, R. Tomás, G. Valentino, J. Wenninger, CERN, Geneva, Switzerland S. M. White, BNL, USA

Beta* limitations for ALICE in pPb

➤ ALICE detector vertical displacement of ~ 5 mm → compensated in the optics by y = -2 mm IP displacement

➤ Needed in 2016 and beyond

In 2015 @6.37 Z TeV and beta* = 0.8 m → close to an aperture limit for + 60 urad polarity*

- 4 Z TeV → bigger beam size → less aperture
 → β*_{min} > 0.8 m
 - > For min bias at 1e28 cm⁻²s⁻¹ not a problem
 - ➤ However the lower the beta* the longer ALICE can be levelled → longer fills
- ➢ If IP1&5 at 0.4 m in pp 13 TeV run → same optics is possible for pPb → L peak higher
- ➤ Higher luminosity peak in IP1&5 → faster burn-off → less luminosity for ALICE
 Luminosity sharing is going to be a difficult subject

*(ALICE dipole – external = total)_{half-angle} $137 \ \mu rad - 77 \ \mu rad = 60 \ \mu rad$

2015 PbPb Highlights

- Linac3 and heavy ion source: several improvements performed; after stripper foil exchange increased extracted intensity
- ➤ LEIR: intensive and extensive beam studies performed within the context of the LEIR crash program allowed an important transmission improvement
- ➤ PS batch compression from 200 ns to 100 ns → room for more bunches
- > SPS hard work to reduce the losses during the energy ramp
- SPS injection kicker switch replacement → faster rise time with less jitter → batch spacing from 225 ns → 175 ns → 150 ns → close to 500 bunches per beam in LHC
- > SPS/LHC Transverse damper team following up very closely the progress as to fully guarantee the required bunch stability
 - → Bunch intensities, average per bunch, 2e8 Pb82+

2015 PbPb Highlights

- ALICE luminosity levelled at design lumi of 1e27 cm-2s-1
- > ATLAS & CMS got peaks of over 3e27 cm-2s-1
- > LHCb joint the PbPb ion run for the first time

- 30 End Of Fill, 5 dumped due to faults
- Fraction of premature dumps: 5/35 = 14.3 %
- □ Average turnaround (per SB) = 204/35 = 5.8 h
 - Average Fault time (per SB) = 88/35 = 2.5 h

Potential performance (for high luminosity)

Calculated with the following assumptions:

- ➤ Number of colliding bunches = 400
- ➤ Pb bunch intensity (highest average achieved in 2015) = 1.8e10 p
- > p bunch intensity (conservative, MD to achieve 4-5e10) = 1.8e10
- ➤ Normalized emittance (Pb,p) = 1.5 umrad, beta* = 0.8 m, IP1&5 ½ angle = 145 urad
- > Run length (reference 2015 PbPb) = 21 days with 1.5 fill per day
- Average fill length = 6 hours (pPb 2013 dumped by interlocked BPMs, PbPb 2015 dumped by operator)

IP1&5	Ebeam (TeV)	Peak Lumi (cm-2s-1)	Integrated Fill Lumi (ub-1)	Integrated Run Lumi (nb-1)
PbPb	6.37Z	2.7e27	35	1
pPb	4Z	2e29	2600	77
pPb	6.5Z	3e29	3900	116

Within the usual 10-15% uncertainty

- ➤ ALICE → minimum bias 1e28 cm-2s-1 (and some time at 1e29 cm-2s-1). Studies needed to estimate how long levelling will last to calculate integrated luminosity
- ➤ LHCb 10xmore lumi than before → 4-5 times more bunches, not included in the calculations above. The bunch sharing needs detailed filling schemas preparation

Potential performance (for high luminosity)

IP1&5	Ebeam (TeV)	Peak Lumi (cm-2s-1)	Integrated Fill Lumi (ub-1)	Integrated Run Lumi (nb-1)
PbPb	6.37Z	2.7e27	35	1
pPb	4Z	2e29	2600	77
pPb	6.5Z	3e29	3900	116

Within the usual 10-15% uncertainty

How to increase the performance:

- \rightarrow If p bunch intensity = 4e10 \rightarrow pPb peak lumi increases by **factor 2**
- ➤ If beta*=0.4 m (not possible for 4Z TeV) → peak lumi increases by factor 1.5
- ➤ Draw back: higher Pb burn-off → shorten fill length:
 - > Smaller impact in IP1&5 integrated lumi, may be a factor << 1.5
 - ➤ Less integrated lumi for ALICE (remember they are levelled to 1e28 cm-2s-1)
 - Greater p bunch intensity ... beam-beam effects for Pb beam?
- Find filling patterns with more bunches; no penalization!

Backup

What's special about pPb: cogging

- We monitor the time interval between the revolution frequency markers (bucket 1 of both rings)
- Cogging takes 15 minutes maximum @ 4Z TeV

