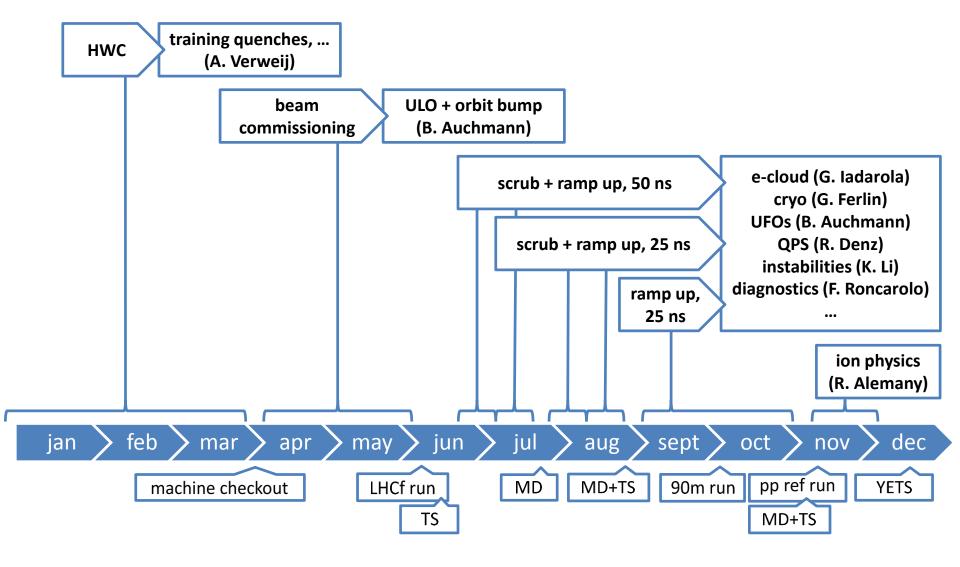
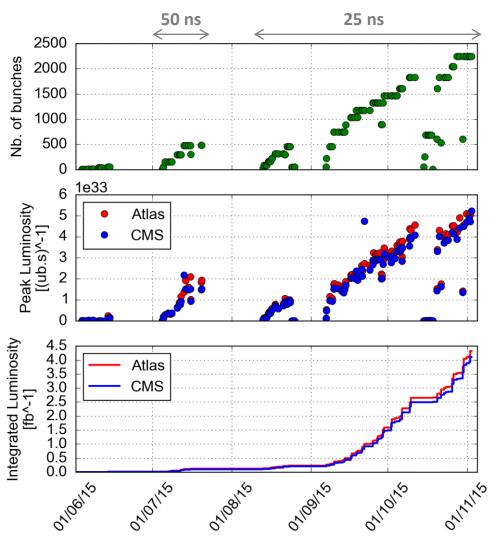
2016 LHC Performance Workshop Chamonix, 25 January 2016

Lessons learnt in LHC operation in 2015

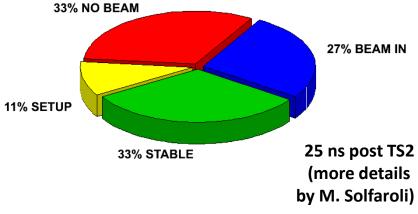
G. Papotti (BE-OP-LHC)


with material from and/or thanks to:

F. Antoniou, F. Burkart, J. Esteban Muller, A. Gorzawski, M. Hostettler, G. Iadarola, D. Jacquet, M. Kuhn, M. Lamont, L. Ponce, B. Salvachua, M. Schaumann, M. Solfaroli, R. Tomas, J. Uythoven, J. Wenninger

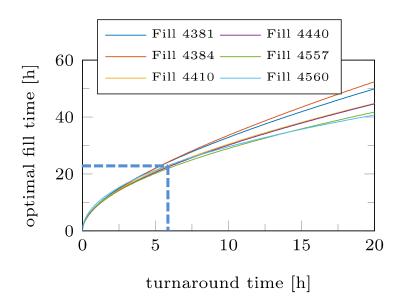

outline

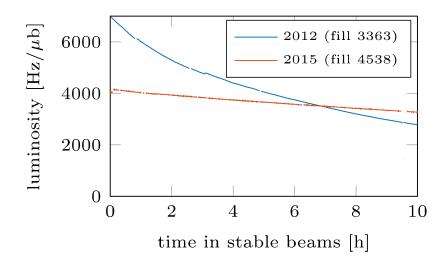
- 2015 timeline
- performance
 - luminosity (peak, integrated, lifetime, optimum fill time)
 - transmission, emittance
 - luminosity equality between IP1 and IP5
- miscellanea
 - injection
 - orbit and Q feedbacks, tune
 - outcomes of MDs


2015 timeline

luminosity history

- invested a lot of time in scrubbing and special physics
- intensity ramp-up lasted until the end
- real production started in September only




record peak luminosity

	2015	2012
energy [TeV]	6.5	4
bunch spacing [ns]	25	50
beta* [cm] (crossing angle [urad])	80 (290)	60 (290)
e*[mm] at start of fill	3.5	2.5
max. bunch population [1011 p/bunch]	1.15	1.6
max. number of bunches/colliding pairs IP1/5	2244/2232	1380
max. stored energy [MJ]	270	140
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹] in IP1/5	~0.5	>0.7

luminosity lifetime

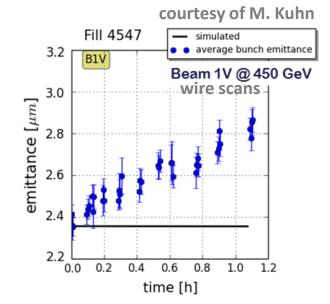
- very healthy: ~30-40 h
 - high energy
 - synchrotron radiation
 - lower brightness

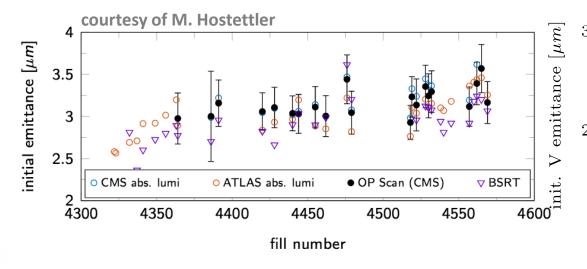
- optimum fill time >20 h for an average turnaround ~6.5 h
 - no OP dumps apart from during intensity ramp up!
 - conclusion still valid for 2016

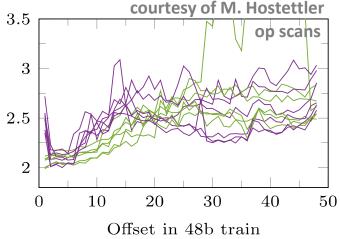
transmission through the cycle

	2011	2012	2015
ramp	99.2/99.8	98.3/98.4	98.9/99.2
squeeze	99.9/99.9	98.8/98.0	99.8/99.7
adjust	99.5/99.7	98.2/98.4	99.1/99.2
total (b1/b2)	99.2/99.3	96.2/95.3	97.8/98.1

2011: negligible losses

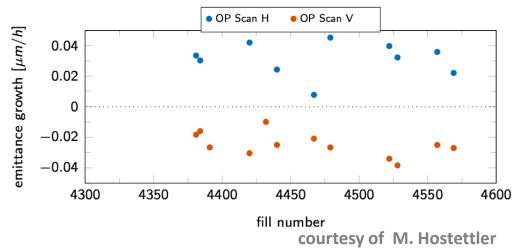

• 2012: 4-5% lost before physics

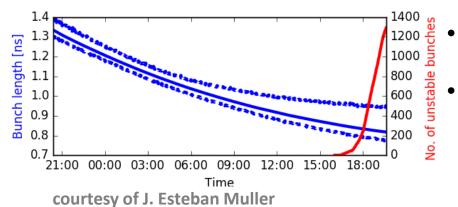

• 2015: ~2%


despite high Q' and octupoles

emittance until collisions

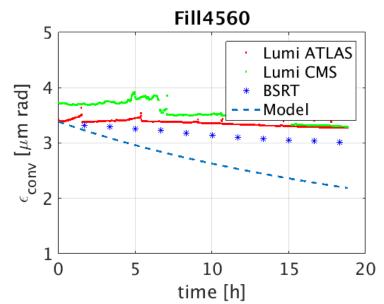
- until collisions, wire scans:
 - IBS is the main source for h growth
 - typical v growth: ~5 % in 10 min.
 - independent of brightness, Q', MO, ADT
- emittance at start of collisions: ~3 μm
 - average growth: ~0.5 μm (25 %)
 - from ATLAS luminosity vs wires at injection
 - BCMS (1 fill!): ~2.5 μm

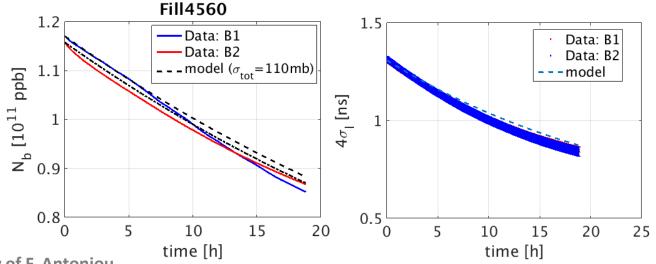




emittance growth in physics

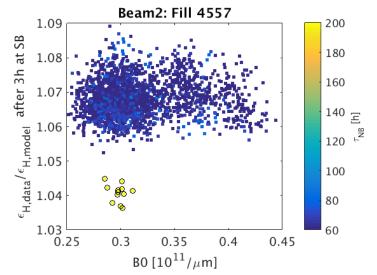
- h growth: ~0.03μm/h
- v shrinkage: ~0.02μm/h
- conv. h/v: constant within errors
- BCMS (only one, 2 h long fill)
 - h increase: 0.1 μm/h
 - v constant

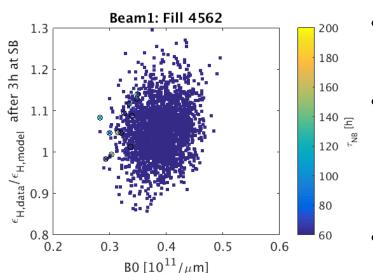




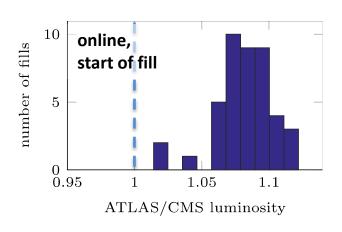
- longitudinal shrinkage also consistent with synchrotron radiation damping
- long fills at the limit of stability
 - bunch flattening available as mitigation

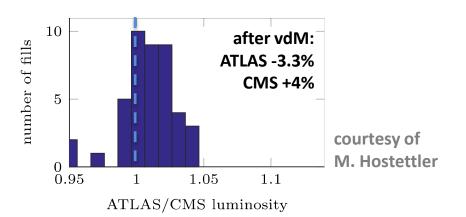
luminosity model


- includes: IBS, synchrotron radiation, burn off in IP1-5
- fully parametrised (one function), bunch-by-bunch
- points to missing components of transverse emittance growth
 - use of measured emittance better matches intensity and longitudinal behaviour



bunch-by-bunch differences

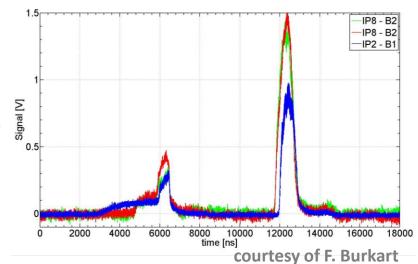



- non colliding bunches added in many fills
 - thanks LPC!
 - much better lifetime (excellent vacuum!)
 - smaller emittance growth, closer to the model
- different fills, different results
 - one "good" example: b2, fill 4557
 - one "bad" example: b1, fill 4562
- ongoing work on understanding the differences (fill-by-fill, bunch-by-bunch)
- important data! continue inserting noncolliding bunches during intensity ramp up
 - as long as there is space
 - as long as no issues with stability
- systematic studies planned

courtesy of F. Antoniou 25.01.2016, Chamonix

giulia papotti

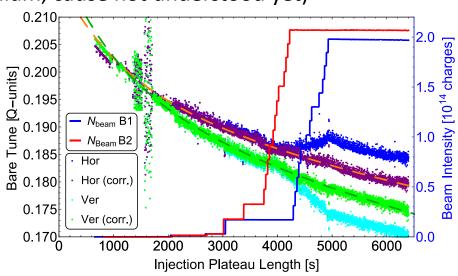
IP1/5 luminosity difference



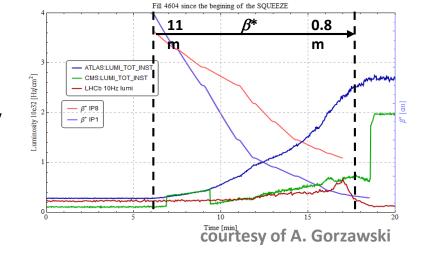
- the difference triggered additional studies:
 - measured beta at IP: ~84 cm [optics team]
 - waist position off by 20 cm wrt IP [optics team]
 - slightly too big crossing angles: extra 10-20% [J. Wenninger]
- very important information for the next beam commissionings!
 - optics correction strategy (incl. ballistic optics, k-modulations, ...)

MISCELLANEA

injection


- spend on average 2x min time: still room for improvement
- 2x12 bunch transfer/ring for TL ("steering while filling")
 - 2015: only 1% of time (~20 h) dedicated to injection tuning
 - helped by better trajectory references
- no dumps due to losses, but 144-bunch limit and often got close to dump
 - IQC to use diamond BLMs as extra source of information, and tune thresholds

- improved measurements at injection
 - had better Q' measurements
 - automated coupling measurement and correction to come
 - coupling scan in application, and at probe injection
 - wire scanner application: better, but still room for improvement


feedbacks, tune

- QFB used in ramp and squeeze
 - improved Q signals
 - "gated" device solved co-existence with transverse dampers
 - co-existence with abort gap cleaning still a problem in squeeze
- OFB used in stable beams
 - thanks to improved OFB stability and configurability, and BPM signal quality
- decisive for the IR8 triplet movement impact on Stable Beams!
 - R8 triplet movement causes orbit drifts of up to ~0.2 mm rms (period of ~ 8 h, present when triplet filled with Helium, cause not understood yet)
- Q/Q' + snapback well controlled
 - FiDeL + QFB
 - need for precycle questioned
- Q dependence on intensity at inj.
 - e.g. Laslett Q shift
 - ideally automate the correction

(some) outcomes of MDs

- 3x5 days invested in machine studies in 2015
 - organized in 3 prep LSWGs, results in 5 LSWGs
- some highlights of results
 - ②* = 40 cm fully probed and ready for operation in 2016
 - ramp + squeeze commissioned and already used for the 2.51 TeV run
 - β* leveling, and collide + squeeze fully demonstrated
 - quench tests
 - crystal channeling observed at 6.5 TeV

- new or developed instrumentation: DOROS, BTF, ICT/WCT, Schottky...
- instability threshold tracked during 2015 and observed to improve with scrubbing

conclusion: a long and successful year

- **6.5 TeV**, **25 ns**, 2244 bunches in physics, 80 cm β *
- despite
 - recovery from LS1 (dipole training, earth faults, ...)
 - ULO, QPS, UFOs
 - abundant e-cloud and heat-load for cryo (2016!)
- much improvement gained in the understanding
 - during operation, scrubbing and MDs
 - excellent performance from all systems
- performance:
 - excellent luminosity lifetime
 - excellent transmission through the cycle
 - acceptable emittance growth
 - some causes to be pinned down