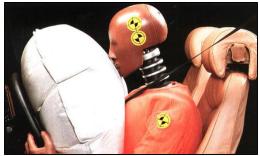
CERN,

Chamonix


26th January 2016

# BEAM INSTRUMENTATION GROUP DEPENDABILITY APPROACH

#### Beam Instrumentation equipment

- The Beam Instrumentation Group is in charge of equipment installed in all CERN accelerators, some are solely for observation but others function as protection system.
- There is a huge difference between a Safety Critical System and an "Observation System",
  - The difference starts with the architectural design, followed by an entirely different implementation procedure.

#### Safety Critical System



#### **Observation System**

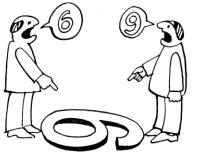


# Critical systems involved in Dependability

- Dependability
  - Measure of a system's availability, reliability & maintainability
- The criteria used in this presentation for selecting beam instrumentation considered "critical" are LHC systems that:
  - Generate interventions or preventive maintenance that reduce beam availability.
  - Generate false dumps.
  - Can be responsible for blind failures.
    - Where the machine should be protected but the system is not operational and / or not monitored).

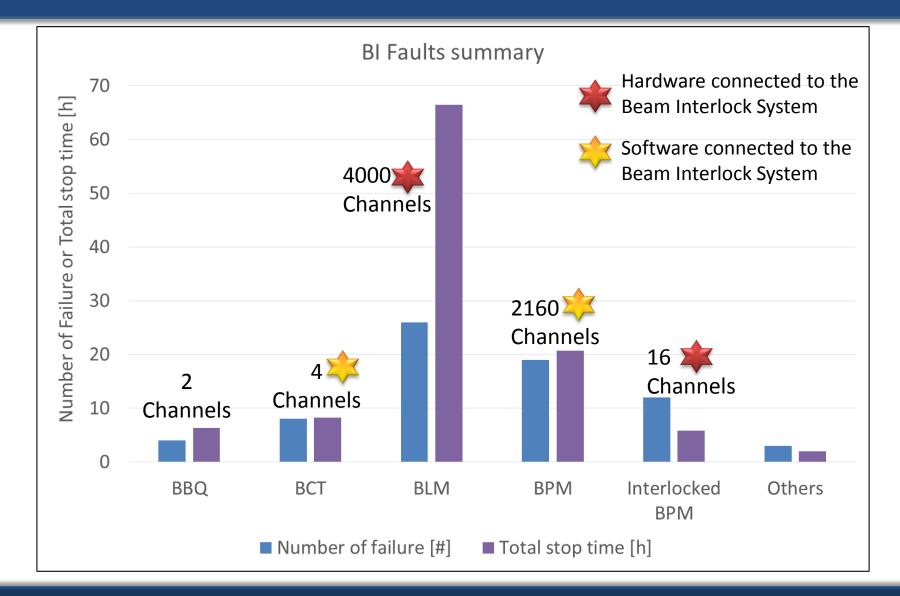
### List of BI Critical systems

- Beam Loss Monitor System [BLM]
- SW Interlocked Beam Positioning Monitors for orbit observation [Standard BPM]
- HW Interlocked Beam Positioning Monitors for the dump line in LSS6 [Interlocked BPM]
- Synchrotron Light Abort Gap Monitor [BSRA]
- DC Beam Current Transformer [BCTDC]
- Fast Beam Current Change monitor linked to the Fast Beam Current Transformer [BCTF]
- Tune measurement system [BBQ]
- Orbit and Tune feedback system [OFC/OFSU]









#### Failures in 2015

 The failure analysis presented on the next few slides is based on data from the Accelerator Fault Tracking [AFT] Tool which gives the overview from the Operation point of view.



- More than 70 faults of Beam Instrumentation have been analyzed.
- From the Expert point of view, the number of faults is larger than the AFT result, but invisible to Operations due to factors such as: redundancy, recovery strategies, etc...
  - These are difficult to analyse as they are catalogued by each system using their preferred fault tracking method.

#### Failures - 2015 Summary

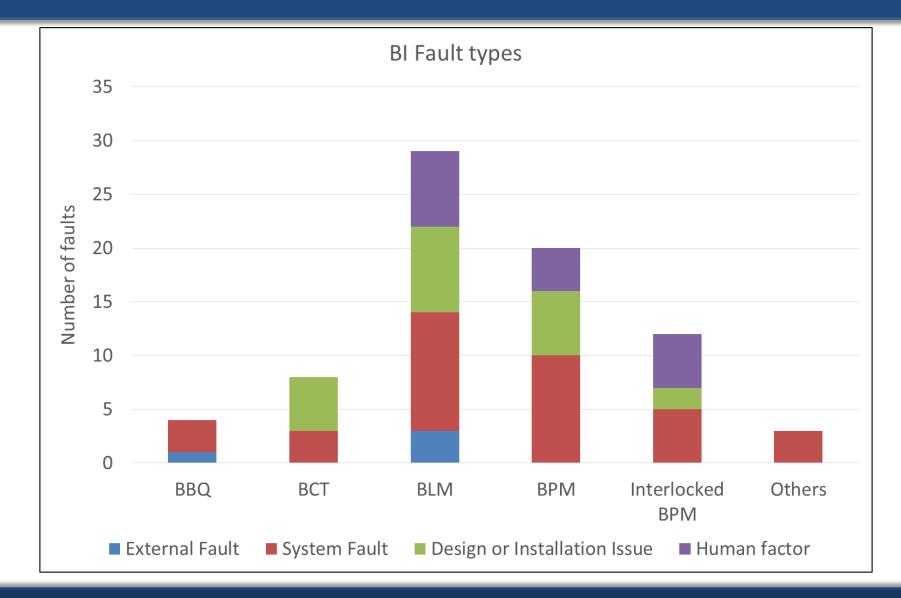


## Fault categorization

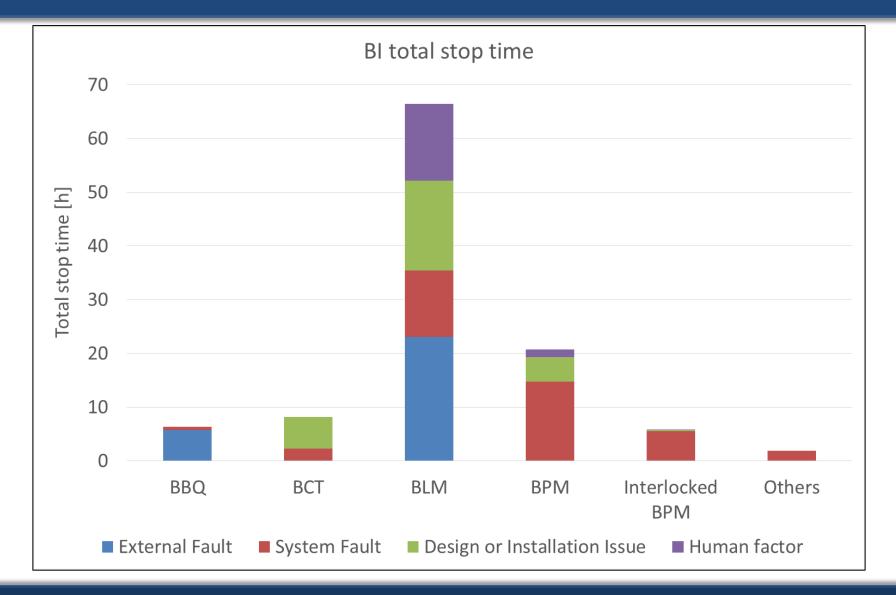
#### Faults have been categorized into 4 sub-categories:

- "External fault": represents external interference leading to a failure, such as the surge current discharge that damaged the BLM system.
- "System Fault": Fault of a Hardware/Software nature.
- "Design and installation issues": mainly due to missing test-benches or additional functionality added to systems after design completion.
- "Human factor": due to wrong operation, lack of communication / understanding of the issue or modifications by untrained people.



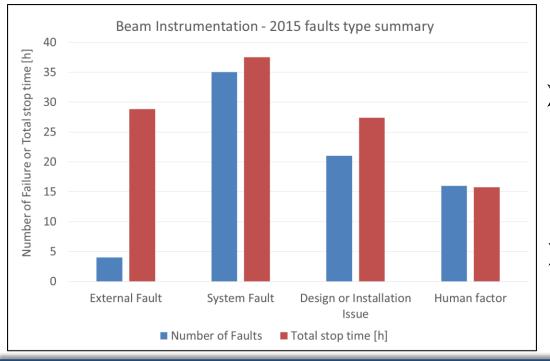







#### BI Fault types - 2015 Summary

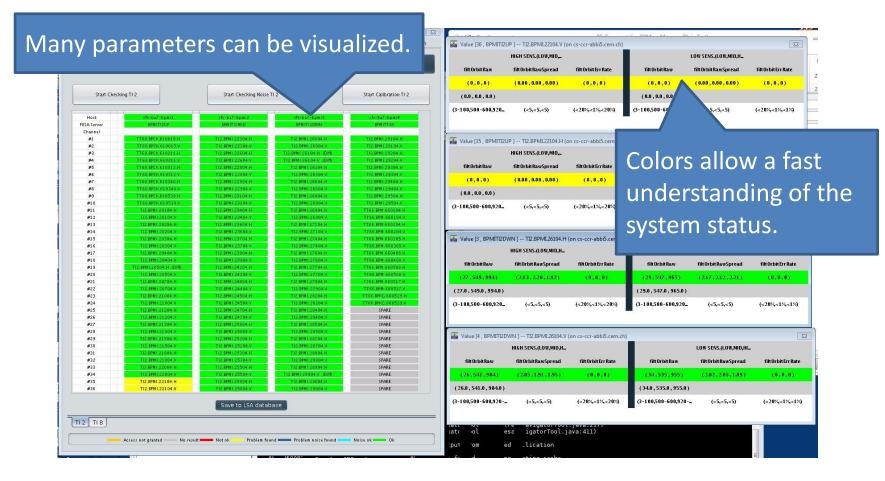



#### BI Intervention time - 2015 Summary



#### Lesson learned in 2015

| Failure Type   | Number of<br>failures [#] | Total stop time<br>[h] | Contribution<br>Percentage |   |
|----------------|---------------------------|------------------------|----------------------------|---|
| External Fault | 4                         | 28.8                   | 26%                        |   |
| System Fault   | 35                        | 37.5                   | 34%                        | , |
| Design Issue   | 21                        | 27.4                   | 25%                        |   |
| Human factor   | 16                        | 15.7                   | 14%                        |   |



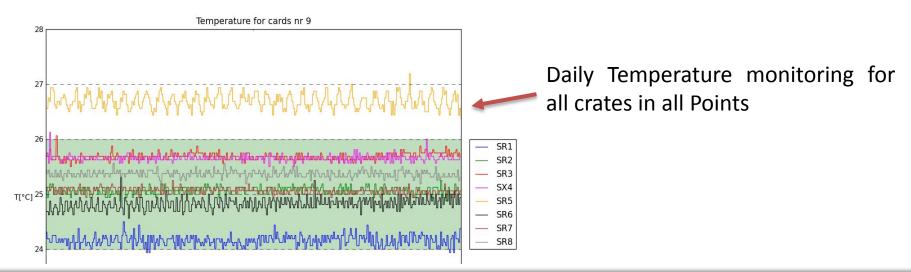

- Total stop time in 2015
  => 109.4 hours (<2%)</li>
- No R2E failures thanks to heavy testing of BLM & BPM systems at design stage.
- We need to better understand the nature of the faults for optimizing their mitigation.
- Improving the beam availability means for BI working on several aspects.

### WHAT HAS BEEN DONE TO FORESEE AND REDUCE FAILURES

### **Diagnostics: Online monitoring**

• BPM calibration screenshot for the SPS-LHC transfer lines.




• These tools do not prevent faults but they help save time understanding issues.

### **Diagnostics: Offline monitoring**

- Several offline monitoring functions added during 2015.
- Daily checks introduced with the aim of detecting parameter degradation.

Daily report on number of errors per Optical link

|          |              |                      |                      | CRC | COMP | LK1 | ERRORS | LK2 | ERRORS | LK1 | LOST | LI | K2 LOST | FID | COMP |
|----------|--------------|----------------------|----------------------|-----|------|-----|--------|-----|--------|-----|------|----|---------|-----|------|
| Card     | BLECF Serial | BLETC Serial         | BLECS Serial         | Α   | В    | Α   | В      | Α   | В      | Α   | В    | A  | В       | Α   | В    |
| SR5-L 8  | 0473 0546    | 144115249047404545   | 3026419007996394497  | 0   | 0    | 0   | 0      | 0   | 0      | 0   | 3    | 0  | 0       | 0   | 0    |
| SR7-L 10 | 0047 0017    | 16140901125476397313 | 16429131499061498881 | 0   | 0    | 0   | 0      | 0   | 0      | 0   | 1    | 0  | 0       | 0   | 0    |



#### Diagnostics: New event warning

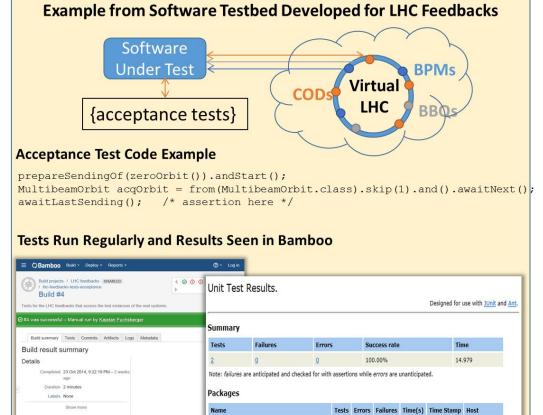
 BLM Threshold changes – automatic alert to experts in charge of Piquet service.

|                           | Table | 1: Cha                 | anges of BLM info in | n LSA                |   |     |
|---------------------------|-------|------------------------|----------------------|----------------------|---|-----|
| Expert Name               |       | $\operatorname{ition}$ |                      | Dcum                 |   |     |
| Expert Name               | old   | new                    | old new              |                      |   | new |
| BLMBI.11L1.BOT20_MBA-LEFL | -     | -                      | THRI.ARDS_MBMB       | THRI.ARDS_MBMB_IQT15 | - | -   |
| BLMBI.11L5.BOT20_MBA-LEFL | -     | -                      | THRI.ARDS_MBMB       | THRI.ARDS_MBMB_IQT15 | - | -   |
| BLMBI.11R1.BOT20_MBB-LEHR | -     | -                      | THRI.ARDS_MBMB       | THRI.ARDS_MBMB_IQT15 | - | -   |
| BLMBI.11R5.B0T20_MBB-LEGR | -     | -                      | THRI.ARDS_MBMB       | THRI.ARDS_MBMB_IQT15 | - | -   |

- Most of the diagnostic tools have been created or grown with the project development. Now systems are installed but many tools are needed for understanding issues.
- With the growing of the system complexity we need a simplification of software used for diagnostic purpose.



#### **Test-benches**


#### • Testing BI Software (e.g. Orbit Feedback software test-bench)

- 1. Prepare Software for Testing
- Relax Constraints (RBAC etc) ٠
- Isolate Reliance on Other Systems •

#### 2. Plant Virtualization

- Simulate Timing ٠
- Simulate Data I/O
- 3. Decide Test Objectives
- FESA Mechanics (GET/SET/Subs)
- I/O Processing
- **Control Loop Behavior**
- 4. Assert Tests
- Assert Pass & Failure Cases ٠
- Assert Boundary Cases ٠

#### Plans in 2016 to Develop New Testbeds for LHC BLM & Tune Software



cern.lhc.feedbacks.tests.acceptance.example

2 0

0

14.979 2014-10-

CS-CCF-23T19:20:35 bob08.cern.ch

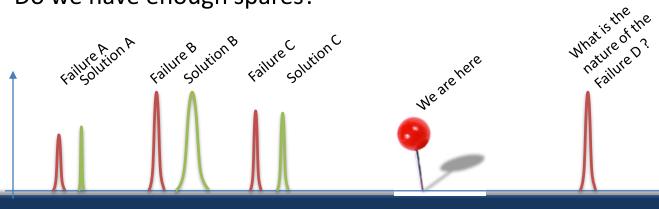
0

0

#### Intervention time reduction

#### **Table of Contents**

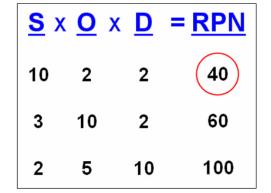
| 0 | Creation of a Piquet service for |
|---|----------------------------------|
|   | BLM.                             |


- Preparation of a Piquet Service
  Manual
  - Learning from past failures.
  - Reduction in time taken to resolve issues.

| 1.   | PURPOSE OF THIS DOCUMENT6                                                 |
|------|---------------------------------------------------------------------------|
| 2.   | MANUAL                                                                    |
| 2.1  | CHECKING THE PIQUET SERVICE                                               |
| 2.2  | RULE FOR THE INTERVENTION                                                 |
| 2.3  | CHECKING THE ISSUE DESCRIPTION IN THE LOGBOOK                             |
| 2.4  | CONNECTING BY REMOTE DESKTOP                                              |
| 2.5  | USEFUL PHONE NUMBERS                                                      |
| 3.   | APPLICATIONS FOR THE PIQUET SERVICE                                       |
| 3.1  | AUTHENTICATION (ROLE-BASED ACCESS CONTROL)                                |
| 3.2  | RUNNING APPLICATIONS                                                      |
|      | 3.2.1 Running Application Launcher from a virtual machine                 |
|      | 3.2.2 Running applications from a bookmark                                |
|      | 3.2.3 Running applications from the Beam Instrumentation server           |
| 3.3  | STATUS APPLICATION                                                        |
|      | 3.3.1 Internal Beam Permit failure                                        |
| 3.4  | FIXED DISPLAY (BLM OP GUI (LHC FIXED DISPLAY MAXLOSS VIA CONCENTRATOR))12 |
| 3.5  | FESA EXPERT APPLICATION                                                   |
| 3.6  | COMBINER (EXPERT APPLICATION FOR COMBINER)                                |
|      | 3.6.1 How to execute a DAC Reset                                          |
|      | 3.6.3 How to execute a Connectivity Check (Modulation)                    |
| 3.7  | CONNECTIVITY DIAGNOSTIC (BLM CONNECTIVITY DIAGNOSTIC)                     |
| 5.7  | 3.7.1 Connectivity Check error (Modulation error, Connectivity failure)   |
| 3.8  | CCM CONSOLE                                                               |
|      | 3.8.1 Equip State                                                         |
|      | 3.8.1.1 MCS Check (Management of Critical Statuses (MCS) Online Check)    |
|      | 3.8.1.2 Consistency failure                                               |
|      | 3.8.2 Threshold Application                                               |
|      | 3.8.2.1 Change of monitor factor                                          |
|      | 3.8.3.1 Generate settings                                                 |
|      | 3.8.4 DIAMON Application                                                  |
|      | 3.8.4.1 Restart the Concentrator                                          |
| 3.9  | LSA APPLICATION SUITE                                                     |
|      | 3.9.1 Drive Settings                                                      |
| 3.10 |                                                                           |
|      | 3.10.1 Post Processing                                                    |
| 4.   | OTHER PROCEDURES                                                          |
| 4.1  | RESETTING OR REBOOTING A VME CRATE                                        |
| 4.2  | REPLACEMENT OF A CARD IN THE VME CRATE OR IN THE TUNNEL                   |
| 4.3  | SPARE MATERIALS LOCATION40                                                |

#### WHAT BEAM INSTRUMENTATION NEEDS FOR FURTHER IMPROVING ITS DEPENDABILITY

### **Reliability Analysis**

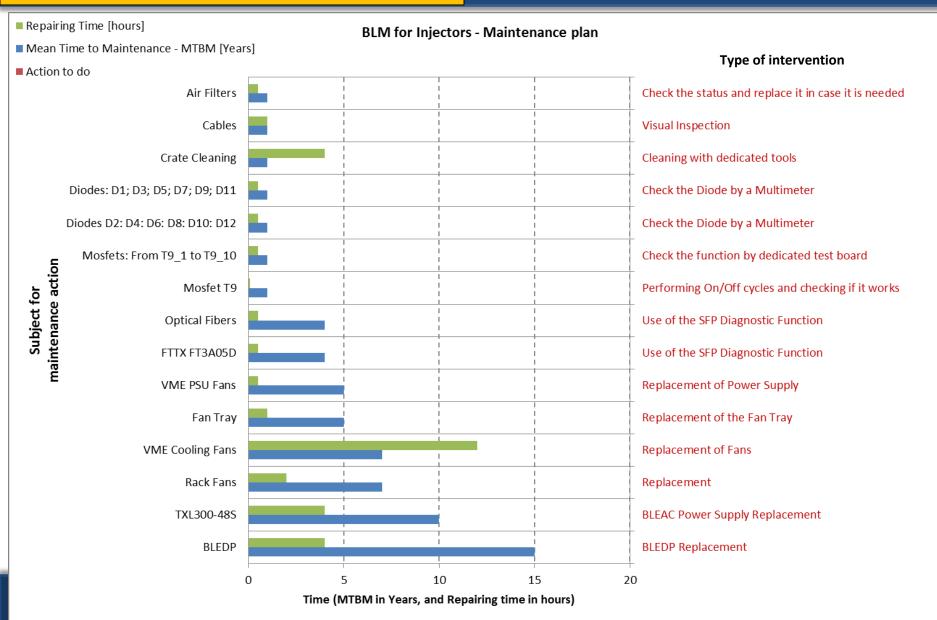

- Apart from a few exceptions, such as the LHC and injector BLM systems, the normal way of proceeding is: "learn from the experience".
- This approach can work in general, but means that we are often working to solve issues rather than foresee them:
  - Simple example:
    - A brushed fan has a lifetime of 7 years.
    - We have many fans installed everywhere.
    - What happens in case of multiple failures?
    - Do we have enough spares?



# **Common Analysis Method Required**

- Need a common method for running Reliability Analysis for all future critical systems (not just BE-BI?) composed of 3 main points:
  - Failure Prediction.
  - Failure mode and criticality analysis using the Risk Priority Number method.
  - Fault Tree analysis.

(e.g. Using Military handbook as reference standards.)






Subsystem A

For projects with Prediction and Failure mode analysis done, a maintenance plan is automatically obtained as one of the results.

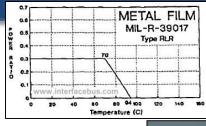
#### Maintenance plan



# Connecting systems to the Interlock

- We have cases of equipment originally designed for observation or measurements only which are now being connected to the Beam Interlock System.
- Many systems have been designed, manufactured and installed following the measurement performance needs without performing a proper Reliability Analysis.
- BI propose that the decision to connect new systems to the Beam Interlock System should be limited to those that have undergone Reliability Analysis, and are compliant with BIS specifications.




#### A structured approach to improve dependability

- Training of design engineers in best practice:
  - CERN guidelines for component "derating rules"?
  - What do we mean by failure modes?
  - How to guarantee high reliability manufacturing, assembling, etc.
    - How do we verify this?
  - What is the appropriate tool for fault tracking?
    - AFT, Jira, EAM, etc. ?
- $\circ$  Identifying critical systems early in the design phase:
  - Needs to be clearly included in specifications.
  - Systems should be audited during conception phase.
- Maintaining Reliability Analysis Expertise:
  - Often done solely by Temporary Personnel.
    - Overhead for starting each analysis.
    - Subsequent loss of knowledge when they leave.
  - BE-BI Group would profit from a longer term (centralised?) Reliability Analysis team.









#### Conclusions

- The reliability analysis of BLM system (over 4000 channels connected to BIS), has certainly contributed to its full reliability & low number of system faults. Currently addressing human factor & remaining design issues to further improve availability.
- Need to extend reliability analysis to other systems with all engineers aware of the importance of such an approach at the design stage (Consolidation & HL-LHC).



- Reliability, Availability and Maintainability (R.A.M.) analysis should be performed on all BI systems affecting availability.
  - To do this BI will need more support and would greatly profit from a dedicated team for guaranteeing the feasibility of this important and complex task.

# Thanks for your attention!

And many thanks to the AFT team and BI colleagues for their contribution to this presentation!