Plans for 2016 and Run 2

Mike Lamont

An attempt at synthesis Acknowledgements all round

After LS1

Where are we? 1/2

- 6.5 TeV, 2*80 cm, 2*levelled with optics well under control
- Nominal 25 ns beam, 2244 bunches
- High electron cloud
- Operating with high chromaticity, octupoles, ADT throughout the cycle to combat instabilities
- Good transmission through the cycle
- Good luminosity performance beam-beam OK
- Acceptable emittance growth (and enjoying sync. light)
- UFO rates down

This not a bad place to start

Where are we? 2/2

- Availability is reasonable
- Mature system performance
 - QPS, RF, Cryogenics, ADT, Power converters
 Collimation, BI, Controls, LBDS, injection, TDI...
- Operational efficiency is good
 - injection, cycle, decay and snapback, feedbacks
- Proven machine protection
- Challenges
 - High e-cloud, UFOs, ULO, instabilities, (beam induced heating), R2E

Product lifecycle

PRODUCT LIFE CYCLE

Where do we want to go?

Short term - 2016

- Stable, safe operations
- Electron cloud off
- 6.5 TeV, 40 to 50 cm
- Nominal 25 ns beam, 2748 bunches, 288 bpi
- Reasonable availability
- Excellent operational efficiency

Production operation

How are we going to get there?

- Choose a not too challenging operating regime that will allow stable and reproducible production
- Keep avoidable interruptions to production to a minimum (while remaining flexible)
- Don't compromise:
 - Machine safety
 - "Remarkable cleaning stability with 6.5 TeV beam thanks to excellent machine reproducibility"

How are we going to get there?

Continued improvement: incoming for 2016

- Availability
 - Sustained effort from QDS, cryogenics, circuits, power converters, LBDS, Injection, RF, Collimation...
- System performance across the board
 - ADT performance monitoring, OBSBOX, Is the damper working?
- Operational efficiency
 - Injection, pre-cycle, combined ramp & squeeze
 - (Turn off electron cloud)
- Premature dumps
 - BLM threshold adjustment

How are we going to get there?

Continued improvement: incoming for 2016

- Set-up efficiency
 - Collimation (full validation for squeeze and collide in 1 fill) and still pushing
- Machine protection
 - BCCM, Collimator BPM interlock, continued vigilance
- Beam performance
 - Emittance growth, instabilities, good control of key parameters, reduction of chromaticity and octupoles,

2016

- Initial beam commissioning
- Re-establish e-cloud conditions of 2015
- Continue gentle increase in number of bunches at the heatload limit
- Exploit

Initial commissioning

System commissioning

- Transverse damper
- RF
- Beam instrumentation
- Feedbacks
- Injection, beam dumps

Beam based measurements

- Optics meas. & correction
- Magnet model meas. & correction
- Aperture measurements

Beam dump

Initial commissioning++

Detailed breakdown by Belen at Evian
Shouldn't hold too many mysteries – 4 weeks should be OK

- Squeeze to 40 cm check local aperture etc.
- Combined ramp and squeeze
- Characterize shortened pre-cycle
- Check out the ULO
- Check impedance of TDIs
- Commission additional interlocks
- Set-up TOTEM's Roman Pots
- Prep for special runs: VdM (19 m), 2.5 km

Scrubbing and intensity rampupupu

- Re-establish 2012 ~2000 bunches conditions during dedicated 4 day run (450 GeV)
- Intensity ramp-up (288b) phase 1:
 - below the heat load limit
 - remedial scrubbing as required
 - **-** 3-12-48/72-288-570-860-1200-1700
 - ~7 steps let's say 3 days per step 3 weeks
- Phase 2: (maximal) scrubbing during Stable Beam
 - ~2000 to 2748
 - Small increments in number of bunches ("mini-steps") playing on batch gap
- High Q', octupoles, ADT, longer bunches, WP etc.

Giovanni Iadarola

2016 Q1/Q2 (v1.1)

	Jan				Feb				Mar				
Wk	1	2	3	4	5	6	7	8	9	10	11	12	13
Мо	4	11	18	25	1	8	15	22	29	7	14	21	Easter Mon 28
Tu										Dowering	tosts		
We										Powering	tests	Recommissioning with beam	
Th				Year end tech	nnical stop							With De	aiii
Fr											hine	G. Friday	
Sa											Mac		
Su													

		Scrul	obing										
	Apr	May						June					
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26
Мо	4	11	18	25	2	9	Whit 16	23	30	6	13	들 20	27
Tu				Ir	tensity ramp- ubbing as requ	up						physic	
We				Scri	ubbing as requ	ired				TS1		cial p	
Th			\		Ascension							Spe	
Fr					May Day comp				MD 1				
Sa													
Su				1st May									

2016 Q3/Q4 (v1.1)

Timing of MD2, floating MD, special runs to be determined

2016 version 1.1

Phase	Days
Initial Commissioning	28
Scrubbing: 4 days initially and then as required during ramp-up	7
Proton physics 25 ns	152
Special physics runs (high beta*; VdM)	8
Machine development	22
Technical stops	15
Technical stop recovery	6
Ion setup/proton-lead run	4 + 24
Total	266 days (38 weeks)

2016 beam parameters (nominal 25 ns)

Energy	6.5 TeV
Bunch spacing	25 ns
Bunch population	~1.25e11
Max bunches/injection	288
Max. number bunches	2748
Nc GPDs	2736
Emittance exit SPS	2.7 mm.mrad
Emittance into SB	3.4 mm.mrad
Beta* GPDs	40 or 50
Crossing angle GPDs	185 or 165

Note the limit of around 1.3e11ppb from the SPS - see Verena's talk

Integrated luminosity

- Fit 2015 post-TS2 greater than 459b Stable Beam distribution
- September 8th to 3rd November
 - 52 days (90 m run taken out), 381 hours of Stable beam, ~31% physics efficiency
- * L(t) input initial luminosity, luminosity lifetime from burn
- Scale to 150 days (implies same availability, turnaround)
- Dump fill after 18 hours

40 versus 50 cm

Assume Nc = 2736, 3.5 micron, 1.2e11 ppb, 1.25 ns

	40 cm	50 cm
Beam size at IP (um)	14.2	15.9
Crossing angle (urad)	185*2	165*2
F (bunch length: 1.25 ns)	0.63	0.72
Peak luminosity (cm ⁻² s ⁻¹)	1.1e34	1.0e34
Burn-off lifetime (hour)	25.8	28.5
Integrated per 150 days (fb ⁻¹)	33.2	30.7

Availability? Aperture? Interlocks? Phase advance?

Courtesy Steve Hancock from 2012

Fill 3453, BCMS 25ns

Following a 3.5 day scrubbing run with nominal 25ns beams at 450GeV, a pilot physics run took place with BCMS 25ns beams. Multiple 48-bunch batches of 1.1E11 ppb and \sim 1.3µm (from wirescans of the first couple of batches) were injected. Three fills made it to stable beams, with typically 1.0E11 ppb and \sim 1.8µm (from luminosity). The last of these showed clear indications of electron cloud.

BCMS

Is clearly interesting (see Run 2 below)

- 2015: one attempt emittance blow-up to something similar to nominal
- Possible stability issues with low emittance
- Explore possibilities with "tuned" BCMS
 - controlled emittance blow-up in injectors
- To be pursued when e-cloud settles down

Bunch population	< 1.3e11
Max bunches/injection	144
No colliding bunches GPDs	2448
Emittance exit SPS	1.9 um
Emittance into SB	2.4 um

Run 2

Shutdown/Technical stop Protons physics Commissioning Ions

- EYETS Extended Year End Technical Stop 19 weeks CMS pixel upgrade
- Assume machine stays cold during EYETS
- Assume for the moment: p-Pb end 2016, Pb-Pb end 2018 see Jamie

Run 2 - objectives

- Deliver 100+ fb⁻¹ to GPDs, keep ALICE, LHCb, TOTEM and ALFA happy
- Keep pushing performance and availability
- Now we've got the machine sorted out for Run 2 we can concentrate on the HL-LHC
- Look forward to HL-LHC without compromising present performance:
 - ATS, beta* levelling, LRBB compensation, full de-tuning...
- Look forward to the post-LS2 LIU era and how to exploit the potential
- Prepare for (or go to) 7 TeV operation

	Apr				May		S	Scrubbing June					
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26
Mo	3	10	Easter Mon 17	24	1st May	8	15	z	2 29	Whit s	12	5	19 20
Tu								+				, Ask	
We			out									dal phy	
Th			checkout			missioning h beam		Ascension				Š.	
Fr		G. Priday											
Sa			Machine										
Su			ž										

	July	uly Aug							Sep					
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39	
Mo	3	10	17	24	31	7	14	21		4	11	18	25	
Tu									physic	MD 2				
We	1				TS1				d lei					
Th				MD1					Special	Jeune G				
Fr														
Sa			·											
Su														

	Oct	Oct Nov Dec											d of run 0000			
Wk	40	41	42	43	44	45	46	47	48	49	50	51	52			
Mo	2	9	16	23	30	6	13	20	27	4	11	18	Xmas 25			
Tu												Technical				
We					TS2							stop				
Th				MD 3												
Fr											*					
Sa																
Su																

2017 version v0.1

Phase	Days
Initial Commissioning post EYETS	28
Scrubbing (assuming machine stays cold)	7
Proton physics 25 ns	163
Special physics runs	8
Machine development	15
Technical stops	10
Technical stop recovery	4
Total	235 days (34 weeks)

- Machine development scaled down
- Might debate: initial commissioning; start of YETS17-18

	Jan				Feb			Mar					
Wk	1	2	3	4	5	6	7	8	9	10	11	12	13
Mo	1	8	15	22	29	5	12	19	26	5	12	19	26
Tu													
We											out	Recomn	nissioning
Th					'	echnical st	op				checkou	with	beam
Fr													G. Friday
Sa											Machine		
Su											ž		

	Apr	r May							June					
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26	
Mo	Easter Mon 2	9	16	23	30	7	14	Whit 21	28	4	11	18	26	
Tu					1st May									
We		Scrubbing												
Th					5	Ascension								
Fr					physic					MD 1				
Sa					pda p									
Su					Sp.									

	July		Aug					Sep					
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Mo	2	9	16	23	30	6	13	20	27	3		0 17	24
Tu											physic		
We											schi p		
Th			MD2					MD 3			Š		
Fr													
Sa													
Su													

	Oct	Nov						Dec					
Wk	40	41	42	43	44	45	46	47	48	49	50	51	52
Mo	1	8	15	22	29	5	12	19	26	3	10	17	24
Tu							lons						Xmas
We							setup						
Th					MD 4				IONS			Start LS2	
Fr											_	tart Wz	
Sa													
Su													

2018 version 0.2

Phase	Days
Initial Commissioning	21
Scrubbing	4
Proton physics 25 ns	162
Special physics runs	8
Machine development	22
Technical stops	15
Technical stop recovery	6
Ion setup/ion run	4 + 24
Total	266 days (38 weeks)

Peak performance increase?

- Turn off electron cloud
- BCMS
- Injector optimization PSB to SPS
- Emittance conversation in LHC
- Novel optics... flat beams, squeezing further
- Reduced crossing angle (LRBB limits)
- Maximizing number of bunches
 - 12b, SPS injection, PS 80 bunches

E-cloud should come as a matter of course, the others need to be actively pursued

Possible 2017/18 parameters

	Nominal	BCMS		
Beta* (1/2/5/8)	0.4/10/0.4/3	0.4/10/0.4/3		
Half crossing angle	-185/200/185/-250	-155/200/155/-250		
Nc	2736	2448		
Proton per bunch	1.25e11	1.25e11		
Emittance into SB	3.2	2.3		
Bunch length	1.25	1.25		
Peak luminosity	~1.3e34	~1.6e34		
Peak pile-up	~33	~47		
Luminosity lifetime	~23	~17		
150 days	38 fb ⁻¹	43 fb ⁻¹		

Peak luminosity limited to ~1.7e34 by inner triplets (Laurent Tavian Evian 2012)

Conclusions

- Looking good for 2016
 - On the back of experience and a huge amount of effort across the board - should be entering the exploitation domain
 - Clear priority to get e-cloud scrubbed
 - Known unknowns: ULO, earth faults...
 - Been operating the LHC for long enough not to worry about unknown unknowns
- Enthusiasm and commitment remains high we could do some serious stuff in 2017 & 2018