Plans for 2016 and Run 2 Mike Lamont An attempt at synthesis Acknowledgements all round #### **After LS1** # Where are we? 1/2 - 6.5 TeV, 2*80 cm, 2*levelled with optics well under control - Nominal 25 ns beam, 2244 bunches - High electron cloud - Operating with high chromaticity, octupoles, ADT throughout the cycle to combat instabilities - Good transmission through the cycle - Good luminosity performance beam-beam OK - Acceptable emittance growth (and enjoying sync. light) - UFO rates down #### This not a bad place to start # Where are we? 2/2 - Availability is reasonable - Mature system performance - QPS, RF, Cryogenics, ADT, Power converters Collimation, BI, Controls, LBDS, injection, TDI... - Operational efficiency is good - injection, cycle, decay and snapback, feedbacks - Proven machine protection - Challenges - High e-cloud, UFOs, ULO, instabilities, (beam induced heating), R2E # **Product lifecycle** # PRODUCT LIFE CYCLE ## Where do we want to go? Short term - 2016 - Stable, safe operations - Electron cloud off - 6.5 TeV, 40 to 50 cm - Nominal 25 ns beam, 2748 bunches, 288 bpi - Reasonable availability - Excellent operational efficiency ### **Production operation** # How are we going to get there? - Choose a not too challenging operating regime that will allow stable and reproducible production - Keep avoidable interruptions to production to a minimum (while remaining flexible) - Don't compromise: - Machine safety - "Remarkable cleaning stability with 6.5 TeV beam thanks to excellent machine reproducibility" # How are we going to get there? Continued improvement: incoming for 2016 - Availability - Sustained effort from QDS, cryogenics, circuits, power converters, LBDS, Injection, RF, Collimation... - System performance across the board - ADT performance monitoring, OBSBOX, Is the damper working? - Operational efficiency - Injection, pre-cycle, combined ramp & squeeze - (Turn off electron cloud) - Premature dumps - BLM threshold adjustment # How are we going to get there? Continued improvement: incoming for 2016 - Set-up efficiency - Collimation (full validation for squeeze and collide in 1 fill) and still pushing - Machine protection - BCCM, Collimator BPM interlock, continued vigilance - Beam performance - Emittance growth, instabilities, good control of key parameters, reduction of chromaticity and octupoles, #### 2016 - Initial beam commissioning - Re-establish e-cloud conditions of 2015 - Continue gentle increase in number of bunches at the heatload limit - Exploit # **Initial commissioning** #### **System commissioning** - Transverse damper - RF - Beam instrumentation - Feedbacks - Injection, beam dumps #### Beam based measurements - Optics meas. & correction - Magnet model meas. & correction - Aperture measurements #### Beam dump # **Initial commissioning++** Detailed breakdown by Belen at Evian Shouldn't hold too many mysteries – 4 weeks should be OK - Squeeze to 40 cm check local aperture etc. - Combined ramp and squeeze - Characterize shortened pre-cycle - Check out the ULO - Check impedance of TDIs - Commission additional interlocks - Set-up TOTEM's Roman Pots - Prep for special runs: VdM (19 m), 2.5 km # Scrubbing and intensity rampupupu - Re-establish 2012 ~2000 bunches conditions during dedicated 4 day run (450 GeV) - Intensity ramp-up (288b) phase 1: - below the heat load limit - remedial scrubbing as required - **-** 3-12-48/72-288-570-860-1200-1700 - ~7 steps let's say 3 days per step 3 weeks - Phase 2: (maximal) scrubbing during Stable Beam - ~2000 to 2748 - Small increments in number of bunches ("mini-steps") playing on batch gap - High Q', octupoles, ADT, longer bunches, WP etc. Giovanni Iadarola # 2016 Q1/Q2 (v1.1) | | Jan | | | | Feb | | | | Mar | | | | | |----|-----|----|----|---------------|-------------|---|----|----|-----|----------|-------|---------------------------|---------------| | Wk | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | Мо | 4 | 11 | 18 | 25 | 1 | 8 | 15 | 22 | 29 | 7 | 14 | 21 | Easter Mon 28 | | Tu | | | | | | | | | | Dowering | tosts | | | | We | | | | | | | | | | Powering | tests | Recommissioning with beam | | | Th | | | | Year end tech | nnical stop | | | | | | | With De | aiii | | Fr | | | | | | | | | | | hine | G. Friday | | | Sa | | | | | | | | | | | Mac | | | | Su | | | | | | | | | | | | | | | | | Scrul | obing | | | | | | | | | | | |----|-----|-------|----------|---------|---------------------------------|------|---------|------|------|-----|----|--------|----| | | Apr | May | | | | | | June | | | | | | | Wk | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | | Мо | 4 | 11 | 18 | 25 | 2 | 9 | Whit 16 | 23 | 30 | 6 | 13 | 들 20 | 27 | | Tu | | | | Ir | tensity ramp-
ubbing as requ | up | | | | | | physic | | | We | | | | Scri | ubbing as requ | ired | | | | TS1 | | cial p | | | Th | | | \ | | Ascension | | | | | | | Spe | | | Fr | | | | | May Day comp | | | | MD 1 | | | | | | Sa | | | | | | | | | | | | | | | Su | | | | 1st May | | | | | | | | | | # 2016 Q3/Q4 (v1.1) Timing of MD2, floating MD, special runs to be determined ## **2016 version 1.1** | Phase | Days | |---|------------------------| | Initial Commissioning | 28 | | Scrubbing: 4 days initially and then as required during ramp-up | 7 | | Proton physics 25 ns | 152 | | Special physics runs (high beta*; VdM) | 8 | | Machine development | 22 | | Technical stops | 15 | | Technical stop recovery | 6 | | Ion setup/proton-lead run | 4 + 24 | | Total | 266 days
(38 weeks) | # 2016 beam parameters (nominal 25 ns) | Energy | 6.5 TeV | |-----------------------|-------------| | Bunch spacing | 25 ns | | Bunch population | ~1.25e11 | | Max bunches/injection | 288 | | Max. number bunches | 2748 | | Nc GPDs | 2736 | | Emittance exit SPS | 2.7 mm.mrad | | Emittance into SB | 3.4 mm.mrad | | Beta* GPDs | 40 or 50 | | Crossing angle GPDs | 185 or 165 | Note the limit of around 1.3e11ppb from the SPS - see Verena's talk # **Integrated luminosity** - Fit 2015 post-TS2 greater than 459b Stable Beam distribution - September 8th to 3rd November - 52 days (90 m run taken out), 381 hours of Stable beam, ~31% physics efficiency - * L(t) input initial luminosity, luminosity lifetime from burn - Scale to 150 days (implies same availability, turnaround) - Dump fill after 18 hours ## 40 versus 50 cm Assume Nc = 2736, 3.5 micron, 1.2e11 ppb, 1.25 ns | | 40 cm | 50 cm | |---|--------|--------| | Beam size at IP (um) | 14.2 | 15.9 | | Crossing angle (urad) | 185*2 | 165*2 | | F (bunch length: 1.25 ns) | 0.63 | 0.72 | | Peak luminosity (cm ⁻² s ⁻¹) | 1.1e34 | 1.0e34 | | Burn-off lifetime (hour) | 25.8 | 28.5 | | Integrated per 150 days (fb ⁻¹) | 33.2 | 30.7 | Availability? Aperture? Interlocks? Phase advance? #### **Courtesy Steve Hancock from 2012** #### Fill 3453, BCMS 25ns Following a 3.5 day scrubbing run with nominal 25ns beams at 450GeV, a pilot physics run took place with BCMS 25ns beams. Multiple 48-bunch batches of 1.1E11 ppb and \sim 1.3µm (from wirescans of the first couple of batches) were injected. Three fills made it to stable beams, with typically 1.0E11 ppb and \sim 1.8µm (from luminosity). The last of these showed clear indications of electron cloud. #### **BCMS** #### Is clearly interesting (see Run 2 below) - 2015: one attempt emittance blow-up to something similar to nominal - Possible stability issues with low emittance - Explore possibilities with "tuned" BCMS - controlled emittance blow-up in injectors - To be pursued when e-cloud settles down | Bunch population | < 1.3e11 | |---------------------------|----------| | Max bunches/injection | 144 | | No colliding bunches GPDs | 2448 | | Emittance exit SPS | 1.9 um | | Emittance into SB | 2.4 um | ### Run 2 Shutdown/Technical stop Protons physics Commissioning Ions - EYETS Extended Year End Technical Stop 19 weeks CMS pixel upgrade - Assume machine stays cold during EYETS - Assume for the moment: p-Pb end 2016, Pb-Pb end 2018 see Jamie # Run 2 - objectives - Deliver 100+ fb⁻¹ to GPDs, keep ALICE, LHCb, TOTEM and ALFA happy - Keep pushing performance and availability - Now we've got the machine sorted out for Run 2 we can concentrate on the HL-LHC - Look forward to HL-LHC without compromising present performance: - ATS, beta* levelling, LRBB compensation, full de-tuning... - Look forward to the post-LS2 LIU era and how to exploit the potential - Prepare for (or go to) 7 TeV operation ### | | Apr | | | | May | | S | Scrubbing June | | | | | | |----|-----|-----------|---------------|----|---------|----------------------|----|----------------|------|--------|----|---------|-------| | Wk | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | | Mo | 3 | 10 | Easter Mon 17 | 24 | 1st May | 8 | 15 | z | 2 29 | Whit s | 12 | 5 | 19 20 | | Tu | | | | | | | | + | | | | , Ask | | | We | | | out | | | | | | | | | dal phy | | | Th | | | checkout | | | missioning
h beam | | Ascension | | | | Š. | | | Fr | | G. Priday | | | | | | | | | | | | | Sa | | | Machine | | | | | | | | | | | | Su | | | ž | | | | | | | | | | | | | July | uly Aug | | | | | | | Sep | | | | | | |----|------|---------|----|-----|-----|----|----|----|---------|---------|----|----|----|--| | Wk | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | | | Mo | 3 | 10 | 17 | 24 | 31 | 7 | 14 | 21 | | 4 | 11 | 18 | 25 | | | Tu | | | | | | | | | physic | MD 2 | | | | | | We | 1 | | | | TS1 | | | | d lei | | | | | | | Th | | | | MD1 | | | | | Special | Jeune G | | | | | | Fr | | | | | | | | | | | | | | | | Sa | | | · | | | | | | | | | | | | | Su | | | | | | | | | | | | | | | | | Oct | Oct Nov Dec | | | | | | | | | | | d of run
 0000 | | | | |----|-----|-------------|----|------|-----|----|----|----|----|----|----|-----------|-------------------|--|--|--| | Wk | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | | | | | Mo | 2 | 9 | 16 | 23 | 30 | 6 | 13 | 20 | 27 | 4 | 11 | 18 | Xmas 25 | | | | | Tu | | | | | | | | | | | | Technical | | | | | | We | | | | | TS2 | | | | | | | stop | | | | | | Th | | | | MD 3 | | | | | | | | | | | | | | Fr | | | | | | | | | | | * | | | | | | | Sa | | | | | | | | | | | | | | | | | | Su | | | | | | | | | | | | | | | | | ### **2017 version v0.1** | Phase | Days | |---|------------------------| | Initial Commissioning post EYETS | 28 | | Scrubbing (assuming machine stays cold) | 7 | | Proton physics 25 ns | 163 | | Special physics runs | 8 | | Machine development | 15 | | Technical stops | 10 | | Technical stop recovery | 4 | | Total | 235 days
(34 weeks) | - Machine development scaled down - Might debate: initial commissioning; start of YETS17-18 ## | | Jan | | | | Feb | | | Mar | | | | | | |----|-----|---|----|----|-----|-------------|----|-----|----|----|---------|--------|------------| | Wk | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | Mo | 1 | 8 | 15 | 22 | 29 | 5 | 12 | 19 | 26 | 5 | 12 | 19 | 26 | | Tu | | | | | | | | | | | | | | | We | | | | | | | | | | | out | Recomn | nissioning | | Th | | | | | ' | echnical st | op | | | | checkou | with | beam | | Fr | | | | | | | | | | | | | G. Friday | | Sa | | | | | | | | | | | Machine | | | | Su | | | | | | | | | | | ž | | | | | Apr | r May | | | | | | | June | | | | | | |----|--------------|-----------|----|----|---------|-----------|----|---------|------|------|----|----|----|--| | Wk | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | | | Mo | Easter Mon 2 | 9 | 16 | 23 | 30 | 7 | 14 | Whit 21 | 28 | 4 | 11 | 18 | 26 | | | Tu | | | | | 1st May | | | | | | | | | | | We | | Scrubbing | | | | | | | | | | | | | | Th | | | | | 5 | Ascension | | | | | | | | | | Fr | | | | | physic | | | | | MD 1 | | | | | | Sa | | | | | pda p | | | | | | | | | | | Su | | | | | Sp. | | | | | | | | | | | | July | | Aug | | | | | Sep | | | | | | |----|------|----|-----|----|----|----|----|------|----|----|--------|------|----| | Wk | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | | Mo | 2 | 9 | 16 | 23 | 30 | 6 | 13 | 20 | 27 | 3 | | 0 17 | 24 | | Tu | | | | | | | | | | | physic | | | | We | | | | | | | | | | | schi p | | | | Th | | | MD2 | | | | | MD 3 | | | Š | | | | Fr | | | | | | | | | | | | | | | Sa | | | | | | | | | | | | | | | Su | | | | | | | | | | | | | | | | Oct | Nov | | | | | | Dec | | | | | | |----|-----|-----|----|----|------|----|-------|-----|------|----|----|-----------|------| | Wk | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | | Mo | 1 | 8 | 15 | 22 | 29 | 5 | 12 | 19 | 26 | 3 | 10 | 17 | 24 | | Tu | | | | | | | lons | | | | | | Xmas | | We | | | | | | | setup | | | | | | | | Th | | | | | MD 4 | | | | IONS | | | Start LS2 | | | Fr | | | | | | | | | | | _ | tart Wz | | | Sa | | | | | | | | | | | | | | | Su | | | | | | | | | | | | | | ## **2018 version 0.2** | Phase | Days | |-------------------------|------------------------| | Initial Commissioning | 21 | | Scrubbing | 4 | | Proton physics 25 ns | 162 | | Special physics runs | 8 | | Machine development | 22 | | Technical stops | 15 | | Technical stop recovery | 6 | | Ion setup/ion run | 4 + 24 | | Total | 266 days
(38 weeks) | ## Peak performance increase? - Turn off electron cloud - BCMS - Injector optimization PSB to SPS - Emittance conversation in LHC - Novel optics... flat beams, squeezing further - Reduced crossing angle (LRBB limits) - Maximizing number of bunches - 12b, SPS injection, PS 80 bunches E-cloud should come as a matter of course, the others need to be actively pursued # Possible 2017/18 parameters | | Nominal | BCMS | | | |---------------------|---------------------|---------------------|--|--| | Beta* (1/2/5/8) | 0.4/10/0.4/3 | 0.4/10/0.4/3 | | | | Half crossing angle | -185/200/185/-250 | -155/200/155/-250 | | | | Nc | 2736 | 2448 | | | | Proton per bunch | 1.25e11 | 1.25e11 | | | | Emittance into SB | 3.2 | 2.3 | | | | Bunch length | 1.25 | 1.25 | | | | Peak luminosity | ~1.3e34 | ~1.6e34 | | | | Peak pile-up | ~33 | ~47 | | | | Luminosity lifetime | ~23 | ~17 | | | | 150 days | 38 fb ⁻¹ | 43 fb ⁻¹ | | | Peak luminosity limited to ~1.7e34 by inner triplets (Laurent Tavian Evian 2012) #### Conclusions - Looking good for 2016 - On the back of experience and a huge amount of effort across the board - should be entering the exploitation domain - Clear priority to get e-cloud scrubbed - Known unknowns: ULO, earth faults... - Been operating the LHC for long enough not to worry about unknown unknowns - Enthusiasm and commitment remains high we could do some serious stuff in 2017 & 2018